à 10. DC (DIRECT-COUPLED) AMPLIFIERS

Size: px
Start display at page:

Download "à 10. DC (DIRECT-COUPLED) AMPLIFIERS"

Transcription

1 0.DC-Amps-X.nb à 0. DC (DIRECT-COUPLED) AMPLIFIERS ü AC COUPLED SMALL SIGNAL AMPLIFIERS ADVANTAGES:. Signal, load and the amplifier bias are separate. One can work on the bias calculations stage by stage w/o worrying about an interaction with the signal source or the load. 2. No dc current flows through the load or through the signal source. (Magnetic saturation of the load or the signal source is prevented. Also, their dc resistances do not interfere with the bias.) 3. Stages can easily be cascaded. Design of a stage involves only the ac loading effects of its neighbors, dc conditions of the adjacent stages are completely independent of each other. DISADVANTAGES: For dc isolation and stability AC coupled amplifiers depend on the isolating capability of capacitors while expecting the capacitors to be fully transparent (almost like a short circuit) at the signal frequency. a. At low frequencies capacitors fail to act like short circuit. Therefore, the AC coupled amplifier behaves like a high pass filter and becomes useful only above a certain cut-off frequency. b. 3 capacitors are needed for each amplifier stage. Capacitors are bulky and costly and cannot be integrated on a silicon chip. c. "DC-like" slowly varying signals cannot be amplified because of impractically high values of capacitors required. ü DIFFERENTIAL AMPLIFIERS 0. THE DIFFERENCE AMPLIFIER (THE DIFFERENTIAL AMPLIFIER) COMMON-MODE RESPONSE DIFFERENTIAL - INPUT RESPONSE A. The Tail Current Source B. The BJT Current Source 0. 2 BJT DIFFERENCE AMPLIFIER with ZENER DIODE REGULATED CURRENT SOURCE 0. 3 OUTPUT RESISTANCE OF A BJT CURRENT SOURCE EXAMPLE ELE 343 Notes Prof. M.G. Guven

2 2 0.DC-Amps-X. ü 0. THE DIFFERENCE AMPLIFIER (THE DIFFERENTIAL AMPLIFIER)* BJT VERSION The circuit is made symmetrical. I O is a DC-current source. Q = Q 2 (matched transistors). R C = R C2 = R C and R = R 2 Typically,» V EE» =» V CC» = ±0 V ±2 V ±5 V and v O = v 02 I CQ = I CQ2. I BQ = I BQ2 I EQ = I EQ2 I EQ + I EQ2 = I O I EQ = I EQ2 = I O ÄÄÄÄÄÄÄÄ 2 î I BQ = I O ê 2 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Hb EFF + L b EFF and I CQ = I O ê 2 * ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Hb EFF + L

3 0.DC-Amps-X.nb For bias v v 2 = 0 V X = 0 - I BQ.R - V - V BEQ For proper bias For both transistors V CEQ = V CQ - V EQ = V CC - R C.I CQ - V X where V EQ = V X V CEQ > V CESAT V CC - R C.I CQ - V X > V CESAT The Difference Amplifier with v and v 2 applied: Two extreme cases:. Pure Differential Input 2. Pure Common-Mode Input v ª-v 2 = v INDM ê 2 v ª v 2 = v INCM ELE 343 Notes Prof. M.G. Guven

4 4 0.DC-Amps-X..» v» ª» v 2» but signs are opposite. 2.» v» ª» v 2» and signs are the same. The outputs :. v OUT = v O "Single ended" 2. v OUT = v O2 "Single ended" outputs are measured wrt the common (ground). 3. v OUT = v O - v O2 "Differential output" outputs are measured wrt the each other. ü COMMON-MODE RESPONSE Right ª Left Differential Output v O - v O2 ª 0 always in common mode Therefore,. Zero response for common-mode input--differential output operation What if single ended output, v O or v O2? Since i E = i E2 = I O / 2 and fixed, ï i C = i C2 = fixed ï v O = v O2 = fixed, Therefore, 2. Zero response for common-mode input--single-ended output operation. Note that, in the single-ended output case, the output voltage contains a bias voltage since it is measured wrt the ground. However, the measured voltage does not change with (does not respond to) the common mode input. In the differential output, the bias voltages are also canceled leaving an absolute zero output.

5 0.DC-Amps-X.nb Summary: The difference amplifier circuit shown above does not respond to common mode signals applied to its input. It "rejects" common-mode signals ü DIFFERENTIAL - INPUT RESPONSE I will assume the signals are small so that I can do a small-signal (linear) analysis. v = Hv INDM Lê2 v 2 = -Hv INDM L ê 2 v = v 2 v - v 2 = v INDM SSAC Equivalent: The pivot point behaves as if it is tied to ground. Its potential (voltage) cannot change. Therefore it behaves like a "Virtual Ground". ELE 343 Notes Prof. M.G. Guven

6 6 0.DC-Amps-X. So, equivalently: Dv O =-R C h fe Di B î Di B = i j V indm ê 2 y ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z k R + h ie { Single - Ended Output Differential Gain» A vdm» = D i j Dv O y ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z = k V indm { R C h fe ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 2 HR + h ie L If R is small then A vdm = R C h fe ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ = R C h fe ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 2 h ie 2 h fe. ÄÄÄÄÄÄÄÄÄÄÄ ktêq I CQ = ÄÄÄÄÄ 2 R C I CQ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ kt ê q Then :. Gain for Differential Input ê SingleEnded Output : A vdm = ÄÄÄÄÄ 2 R C I CQ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ kt ê q where I CQ > I O ê 2 2. Input Impedance R indm = V indm ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ I indm where V indm ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ = HR + h ie L.Di B and I indm =Di B 2 Therefore, R indm = 2 h ie since R &R 2 are external. 3. Output Impedance HR out L single-ended output = R C In conclusion: The design of differential amplifier is very simple. Given (A vdm & R indm ) or (A vdm & R out ) or (R indm & R out ) use appropriate pairs of equations (two equations) to determine the two unknowns, I CQ & R C. ï I O > 2 I CQ

7 0.DC-Amps-X.nb Differential Gain Hfor Single Ended Output operationl A vdm = ÄÄÄÄÄ 2 R C I CQ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ kt ê q A vdm = ÄÄÄÄÄ HDC bias on R C L ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ = 2.59 V ÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 2 kt ê q mv = 50» R C.I CQ»H» VL CC - V CBQ» where V CBQ Zero or reverse biasing Potential Max. Differential Gain achievable HA vdm L max possible ª ÄÄÄÄÄ V CC ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 2 kt ê q ~ 250 for V CC = 2 VDC. à THE TAIL CURRENT SOURCE ü A. SIMPLE V EE R E CIRCUIT Assuming v and v 2 do have a common DC component. Then, Hv L DC - R.I BQ - V BEQ = V EQ I O =- -» V EE» -V EQ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄ Ä =» V EE» +V EQ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄ and 2 I EQ = I O R E R E Therefore, I O & I BQ & I CQ depend on what Hv L DC is. This creates a disadvantage for this simple implementation of the tail current source that has to be kept in mind. ELE 343 Notes Prof. M.G. Guven

8 8 0.DC-Amps-X. a. Differential Mode Gain: SSACC: Because of virtual ground behaviour of point "X" (the tail) for pure differential input, 2 R E 's get shorted to ground with no effect on the differential response. Therefore, the equations derived earlier with an ideal current source biasing the tail should be applicable to this circuit.. Gain for Differential Input ê SingleEnded Output : A vdm = ÄÄÄÄÄ 2 R C I CQ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ kt ê q where I CQ > I O ê 2 2. Input Impedance R indm = 2 h ie since R &R 2 are external. 3. Output Impedance : HR out L single-ended output = R C b. Common Mode (Response) Gain: SSAC:

9 0.DC-Amps-X.nb SSAC analysis on the left half: ELE 343 Notes Prof. M.G. Guven

10 0 0.DC-Amps-X. V incm = R Di B + h ie.di B + 2 R E H + h fe L Di B Amplitute of small signal of "v o " HV o L cm =Dv o =-R C.h fe.di B Common Mode HSSACL Gain A vcm = HV ol cm -R C.h fe.di B ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ V incm HR + h ie + Hh fe + L 2R E Di B If R E is large enough, A vcm ô R C ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 2 R E A vcm ô R C I CQ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄ 2 R E I CQ I ÄÄÄÄÄÄÄÄÄÄ ktêq M ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Ä, I ÄÄÄÄÄÄÄÄÄÄÄ ktêq M I O > 2 I CQ» -R C h fe»» A vcm» = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ R + h ie + Hh fe + L 2 R E A vdm A vdm» A vcm» = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Ä = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ R I o E ÄÄÄÄÄ 2 I ÄÄÄÄÄÄÄÄÄÄÄ ktêq M DC voltage drop on R ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ E 2kTêq Ultimate low A vcm will be attained with values approaching A vdm >» A vdm» ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ»V EE» ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Make ê Pick V EE much larger than kt ê q 2kTêq Common - Mode - Rejection - Ratio = C.M.R.R = D» A vdm» ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ» A vcm» > V EE ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 2 kt ê q Conclusions :. Differential Response is same as the differential amplifier with an ideal current source. 2. Common mode response is not zero. CMMR is not infinite. 3. Common mode rejection can be improved by increasing V EE but it will always be inferior. ü B. BJT CURRENT SOURCES. Simple BJT Current Source

11 0.DC-Amps-X.nb Comparison of BJT and resitor characteristics where r O = ê h oe = / slope = ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ V CEX+V ÅÅÅÅÅÅÅÅ AX I CQX is much larger than an R X. 2. BJT Current Source with Emitter Degeneration ELE 343 Notes Prof. M.G. Guven

12 2 0.DC-Amps-X. If a unbypassed R EX is present the equivalent small signal resisitance of the resulting current source becomes much higher than h oe -. Therefore, do not bypass R EX of the current source circuit. (See next section for proof.) à OUTPUT RESISTANCE OF A BJT CURRENT SOURCE WITH EMITTER DEGENERATION It's small signal equivalent circuit to calculate r o using the I test, V test method.

13 0.DC-Amps-X.nb Rearranging the circuit for the loop equations: ELE 343 Notes Prof. M.G. Guven

14 4 0.DC-Amps-X. -R EX 0 J N = i j R BX + h ie + R EX y -V Test k-r EX + h - - z J I N oe.h fe R EX + h oe { I 2 -R EX LinearSolveA i j R BX + h ie + R EX y 0 k-r EX + h - - z, J NE oe.h fe R EX + h oe { -V Test R EX V Test 99- ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ I ÅÅÅÅÅÅÅ h oe.h fe - R EX M R EX + I ÅÅÅÅÅÅÅ h oe + R EX MHh ie + R BX + R EX L =, Hh ie + R BX + R EX L V Test 9- ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ I ÅÅÅÅÅÅÅ h oe.h fe - R EX M R EX + I ÅÅÅÅÅÅÅ h oe + R EX MHh ie + R BX + R EX L == Hh ie + R BX + R EX L V Test I 2 =-ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ I ÄÄÄÄÄÄÄ.h h fe - R EX M R EX + I ÄÄÄÄÄÄÄ + R EX MHh ie + R BX + R EX L oe h oe r o == V Test ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ I Test = V Test ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ -I 2 I ÅÅÅÅÅÅÅ h oe.h fe - R EX M R EX + I ÅÅÅÅÅÅÅ h oe + R EX MHh ie + R BX + R EX L ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ h ie + R BX + R EX r 0 =+ i j ÄÄÄÄÄÄÄÄÄÄ k h oe y + R EX z + { R EX i ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ j y ÄÄÄÄÄÄÄÄÄÄ.h fe - R EX z h ie + R BX + R EX k h oe { a. For small R EX (approaching Common-Emitter)

15 0.DC-Amps-X.nb r 0 = ÄÄÄÄÄÄÄÄÄÄ + R EX ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ. ÄÄÄÄÄÄÄÄÄÄ.h fe ô r 0 = ÄÄÄÄÄÄÄÄÄÄ h oe R BX h oe b. For large R EX and small R BX (i.e. Common-Base) h oe r 0 = ÄÄÄÄÄÄÄÄÄÄ + R EX ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ. ÄÄÄÄÄÄÄÄÄÄ.h fe ô r 0 = h fe ÄÄÄÄÄÄÄÄÄÄ h oe R EX h oe Implement V BBX.R BX R B2X with as small as R BX as possible. Solution: Use a zener diode with a small r Z to subsitute for R B2X. Then, R BX > r Z // R R BX > r Z h oe ELE 343 Notes Prof. M.G. Guven

16 6 0.DC-Amps-X. ü 0.2 BJT DIFFERENCE AMPLIFIER with ZENER DIODE REGULATED CURRENT SOURCE Note that ( % S b L IO requires R BX << Hb + L R EX. The Zener diode circuit is ideal for good stability.

17 0.DC-Amps-X.nb V REX = V Z - V BEX and I EX > I CX > I O Pick V Z,R EX such that R EX > V Z - V BEX ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Pick R X such that D Z avoids operating in its soft breakdown. I O I R - I BX = I D > I ZMIN V R =» V EE» -V Z Pick R X =» V EE» -V Z ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ <» V EE» -V Z ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ I D + I BX I ZMIN + I BX Then, one can get output resistance as high as, r o > h fex.h oex - I-V chs. of BJT Current Source With Zener where: Slope = ÅÅÅÅÅ r o = ÅÅÅÅÅÅÅÅ hoex h fex ELE 343 Notes Prof. M.G. Guven

18 8 0.DC-Amps-X. Simple BJT Tail Current Source Slope = ÅÅÅÅÅ r o = h oex Example : Given the specs of a BJT Difference Amplifier, design its current source, calculate its common - mode and differential mode gains, input impedances, CMRR and CMR range. V Z = 6V V CC =+5 V V EE =» 5 V» V A = 00 R C = 7 K b > 00 I O = 2mA I ZMIN =.5 ma. Design of Zener Diode biased BJT Current Source : R EX = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄ 2mA = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 5.3 = 2.65 KW 2mA R X = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ Ä = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄ > 3KW HI DMIN I ZMIN L I BX + I DMIN I ÄÄÄÄÄÄÄÄÄÄÄÄ 2 ma 00 M + 3mA 2. Find A vd,a vcm, R indm Upper common - mode range If R and R 2 > 0 A vd = ÄÄÄÄÄ 2 Hv L max = Hv 2 L max R C.I CQ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ kt ê q = ÄÄÄÄÄ H7KL I ÄÄÄÄÄÄÄÄÄÄÄÄ 2 ma M 2 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ = 3.5 ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ = 35 A vcm > R C ÄÄÄÄÄÄÄÄÄÄÄÄ 2 r o = R C R C ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄ > ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 2 Hh oex L -.h fex I 2 I ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ cx V ÄÄÄÄÄÄÄÄ M -.h AX +V fex CEX where r o is the small signal resistance of the current source and is equivalent to R E of simple current source in the equation above. Calculating V CEX, V CEX = V X - H-» V EE» +V Z - V BEQ L

19 0.DC-Amps-X.nb For HV CEX L Hv L DC = 0, Hv 2 L DC = 0 V X =-V BEQ, therefore, HV CEX L Hv L DC = 0, Hv 2 L DC = 0 = H L > 9 V > V CESAT O.K. Since I EX > I O, H h oex L - = i - I cx y j ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z = i j ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 2 ma k V AX + V CEX { k 00 V + 9Vy { - z > 55 K 7KW A vcm = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄ Ä > 6 * * 55 KW*00 I + ÄÄÄÄÄÄÄ 9 00 M CMRR = A vdm ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 35 > = 07 db of rejection HVery Good!L A -4 vcm 6.0 This will be true as long as Hv CM L MIN < Hv L CM = Hv 2 L CM < Hv CM L MAX, the common - mode range of the amplifier. Calculating the common - mode range minimum, Since the current source behavior collapses for V X -V EE + V REX + V CESAT Then the common - mode voltage applied to bases of Q and Q 2 can not go below, Hv MIN = v 2 MIN L V BEQ Hor 2L + HV X L MIN V BEQ - V EE + V REX + V CESAT HV X L MIN =-5 V + HV Z - V BEX L + V CESAT =-5 V + H6-0.7L + V =-8.7 V Hv CM L MIN = V XMIN + V BEQ = > -8V Calculating the common - mode range maximum, ELE 343 Notes Prof. M.G. Guven

20 20 0.DC-Amps-X. Condition for proper operation of Q and Q 2 : HV CC - R C I CQ L > V X + V CESAT Substitute V X = v MAX - V BEQ v MAX V CC - R C I CQ + V BEQ - V CESAT v MAX = 5 V - 7 * ma > 7.7

7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING

7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING à 7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING Figure. AC coupled common emitter amplifier circuit ü The DC Load Line V CC = I CQ + V CEQ + R E I EQ I EQ = I CQ + I BQ I

More information

JFET CAPACITANCE CALCULATIONS

JFET CAPACITANCE CALCULATIONS JFET CAPACITANCE CALCULATIONS JFET CAPACITANCE CALCULATIONS In order to simplify the design procedure for the frequency response of the JFET amplifier we will consider effect of each capacitance separately.

More information

à FIELD EFFECT TRANSISTORS

à FIELD EFFECT TRANSISTORS Prof.M.G.Guvench à FIELD EFFECT TRANSISTORS ü FET: CONTENTS Principles of Operation Models: DC, S.S.A.C. and SPICE Applications: AC coupled S.S. Amplifiers ü FET: NAMES JFET Junction Field Effect Transistor

More information

OPERATIONAL AMPLIFIER ª Differential-input, Single-Ended (or Differential) output, DC-coupled, High-Gain amplifier

OPERATIONAL AMPLIFIER ª Differential-input, Single-Ended (or Differential) output, DC-coupled, High-Gain amplifier à OPERATIONAL AMPLIFIERS à OPERATIONAL AMPLIFIERS (Introduction and Properties) Phase relationships: Non-inverting input to output is 0 Inverting input to output is 180 OPERATIONAL AMPLIFIER ª Differential-input,

More information

FEEDBACK, STABILITY and OSCILLATORS

FEEDBACK, STABILITY and OSCILLATORS FEEDBACK, STABILITY and OSCILLATORS à FEEDBACK, STABILITY and OSCILLATORS - STABILITY OF FEEDBACK SYSTEMS - Example : ANALYSIS and DESIGN OF PHASE-SHIFT-OSCILLATORS - Example 2: ANALYSIS and DESIGN OF

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : ND_EE_NW_Analog Electronics_05088 Delhi Noida Bhopal Hyderabad Jaipur Lucknow ndore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-4546 CLASS TEST 08-9 ELECTCAL ENGNEENG Subject

More information

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59

DC Biasing. Dr. U. Sezen & Dr. D. Gökçen (Hacettepe Uni.) ELE230 Electronics I 15-Mar / 59 Contents Three States of Operation BJT DC Analysis Fixed-Bias Circuit Emitter-Stabilized Bias Circuit Voltage Divider Bias Circuit DC Bias with Voltage Feedback Various Dierent Bias Circuits pnp Transistors

More information

Chapter 5. BJT AC Analysis

Chapter 5. BJT AC Analysis Chapter 5. Outline: The r e transistor model CB, CE & CC AC analysis through r e model common-emitter fixed-bias voltage-divider bias emitter-bias & emitter-follower common-base configuration Transistor

More information

Workshop: Average values and uncertainties Quantum aspects of physical chemistry

Workshop: Average values and uncertainties Quantum aspects of physical chemistry Workshop: Average values and uncertainties Quantum aspects of physical chemistry http://quantum.bu.edu/pltl/2/2.pdf Last updated Tuesday, November 15, 2005 12:56:11-05:00 Copyright 2005 Dan Dill (dan@bu.edu)

More information

EE105 Fall 2014 Microelectronic Devices and Circuits

EE105 Fall 2014 Microelectronic Devices and Circuits EE05 Fall 204 Microelectronic Devices and Circuits Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Terminal Gain and I/O Resistances of BJT Amplifiers Emitter (CE) Collector (CC) Base (CB)

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II ) Most of the content is from the textbook: Electronic devices and circuit theory,

More information

ESE319 Introduction to Microelectronics. Output Stages

ESE319 Introduction to Microelectronics. Output Stages Output Stages Power amplifier classification Class A amplifier circuits Class A Power conversion efficiency Class B amplifier circuits Class B Power conversion efficiency Class AB amplifier circuits Class

More information

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1 Quick Review If R C1 = R C2 and Q1 = Q2, what is the value of V O-dm? Let Q1 = Q2 and R C1 R C2 s.t. R C1 > R C2, express R C1 & R C2 in terms R C and ΔR C. If V O-dm is the differential output offset

More information

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION

Biasing BJTs CHAPTER OBJECTIVES 4.1 INTRODUCTION 4 DC Biasing BJTs CHAPTER OBJECTIVES Be able to determine the dc levels for the variety of important BJT configurations. Understand how to measure the important voltage levels of a BJT transistor configuration

More information

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130

CARLETON UNIVERSITY. FINAL EXAMINATION December DURATION 3 HOURS No. of Students 130 ALETON UNIVESITY FINAL EXAMINATION December 005 DUATION 3 HOUS No. of Students 130 Department Name & ourse Number: Electronics ELE 3509 ourse Instructor(s): Prof. John W. M. ogers and alvin Plett AUTHOIZED

More information

Section 1: Common Emitter CE Amplifier Design

Section 1: Common Emitter CE Amplifier Design ECE 3274 BJT amplifier design CE, CE with Ref, and CC. Richard Cooper Section 1: CE amp Re completely bypassed (open Loop) Section 2: CE amp Re partially bypassed (gain controlled). Section 3: CC amp (open

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

Bipolar Junction Transistor (BJT) - Introduction

Bipolar Junction Transistor (BJT) - Introduction Bipolar Junction Transistor (BJT) - Introduction It was found in 1948 at the Bell Telephone Laboratories. It is a three terminal device and has three semiconductor regions. It can be used in signal amplification

More information

Half-circuit incremental analysis techniques

Half-circuit incremental analysis techniques 6.012 Electronic Devices and Circuits Lecture 19 Differential Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Design Problem out tomorrow in recitation Review Singletransistor

More information

CHAPTER.4: Transistor at low frequencies

CHAPTER.4: Transistor at low frequencies CHAPTER.4: Transistor at low frequencies Introduction Amplification in the AC domain BJT transistor modeling The re Transistor Model The Hybrid equivalent Model Introduction There are three models commonly

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.

More information

Junction Bipolar Transistor. Characteristics Models Datasheet

Junction Bipolar Transistor. Characteristics Models Datasheet Junction Bipolar Transistor Characteristics Models Datasheet Characteristics (1) The BJT is a threeterminal device, terminals are named emitter, base and collector. Small signals, applied to the base,

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities:

Whereas the diode was a 1-junction device, the transistor contains two junctions. This leads to two possibilities: Part Recall: two types of charge carriers in semiconductors: electrons & holes two types of doped semiconductors: n-type (favor e-), p-type (favor holes) for conduction Whereas the diode was a -junction

More information

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom ID # NAME EE-255 EXAM 3 April 7, 1998 Instructor (circle one) Ogborn Lundstrom This exam consists of 20 multiple choice questions. Record all answers on this page, but you must turn in the entire exam.

More information

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ HW.nb HW #. D scattering (a) The delta function potential requires a discontinuity of the wave function, y' H+0L - y' H-0L = ÅÅÅÅÅÅÅÅÅÅÅÅ m m yh0l, while the wavefunction itself is continuous. SolveA9

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati Module: 2 Bipolar Junction Transistors Lecture-4 Biasing

More information

Chapter 2. - DC Biasing - BJTs

Chapter 2. - DC Biasing - BJTs Chapter 2. - DC Biasing - BJTs Objectives To Understand : Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

More information

Mod. Sim. Dyn. Sys. Amplifiers page 1

Mod. Sim. Dyn. Sys. Amplifiers page 1 AMPLIFIERS A circuit containing only capacitors, amplifiers (transistors) and resistors may resonate. A circuit containing only capacitors and resistors may not. Why does amplification permit resonance

More information

Approximate formulas for the distance term in far and near field interferometry Tim Cornwell, NRAO

Approximate formulas for the distance term in far and near field interferometry Tim Cornwell, NRAO EVLA Memo 75 Approximate formulas for the distance term in far and near field interferometry Tim Cornwell, NRAO tcornwel@nrao.edu Introduction In many applications in wide field and near field interferometry,

More information

Bipolar junction transistors

Bipolar junction transistors Bipolar junction transistors Find parameters of te BJT in CE configuration at BQ 40 µa and CBQ V. nput caracteristic B / µa 40 0 00 80 60 40 0 0 0, 0,5 0,3 0,35 0,4 BE / V Output caracteristics C / ma

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

More information

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5. Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232-242 Two-stage op-amp Analysis Strategy Recognize

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

S.E. Sem. III [ETRX] Electronic Circuits and Design I

S.E. Sem. III [ETRX] Electronic Circuits and Design I S.E. Sem. [ETRX] Electronic ircuits and Design Time : 3 Hrs.] Prelim Paper Solution [Marks : 80 Q.1(a) What happens when diode is operated at high frequency? [5] Ans.: Diode High Frequency Model : This

More information

Time Independent Perturbation Theory

Time Independent Perturbation Theory apr_0-may_5.nb: 5/4/04::9:56:8 Time Independent Perturbation Theory Note: In producing a "final" vrsion of these notes I decided to change my notation from that used in class and by Sakurai. In class,

More information

Chapter 2 - DC Biasing - BJTs

Chapter 2 - DC Biasing - BJTs Objectives Chapter 2 - DC Biasing - BJTs To Understand: Concept of Operating point and stability Analyzing Various biasing circuits and their comparison with respect to stability BJT A Review Invented

More information

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

EE 321 Analog Electronics, Fall 2013 Homework #8 solution EE 321 Analog Electronics, Fall 2013 Homework #8 solution 5.110. The following table summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various

More information

PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9. Electronic Circuits PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

More information

Solutions to the 2005 AP Calculus AB Exam Free Response Questions

Solutions to the 2005 AP Calculus AB Exam Free Response Questions Solutions to the 00 AP Calculus AB Exam Free Response Questions Louis A. Talman Department of Mathematical & Computer Sciences Metropolitan State College of Denver Problem. FindRootA ÅÅÅÅ 4 + Sin@p xd

More information

ECE315 / ECE515 Lecture 11 Date:

ECE315 / ECE515 Lecture 11 Date: ecture 11 Date: 15.09.016 MOS Differential Pair Quantitative Analysis differential input Small Signal Analysis MOS Differential Pair ECE315 / ECE515 M 1 and M are perfectly matched (at least in theory!)

More information

I. Frequency Response of Voltage Amplifiers

I. Frequency Response of Voltage Amplifiers I. Frequency Response of Voltage Amplifiers A. Common-Emitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o --->, r oc --->, R L ---> Find V BIAS such that I C

More information

Chapter 9 Frequency Response. PART C: High Frequency Response

Chapter 9 Frequency Response. PART C: High Frequency Response Chapter 9 Frequency Response PART C: High Frequency Response Discrete Common Source (CS) Amplifier Goal: find high cut-off frequency, f H 2 f H is dependent on internal capacitances V o Load Resistance

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also

More information

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V. When you have completed this exercise, you will be able to operate a zener-clamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based

More information

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier Common Emitter BJT Amplifier 1 Adding a signal source to the single power supply bias amplifier R C R 1 R C V CC V CC V B R E R 2 R E Desired effect addition of bias and signal sources Starting point -

More information

A two-port network is an electrical network with two separate ports

A two-port network is an electrical network with two separate ports 5.1 Introduction A two-port network is an electrical network with two separate ports for input and output. Fig(a) Single Port Network Fig(b) Two Port Network There are several reasons why we should study

More information

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution . (a) S.E. Sem. [EXTC] Analog Electronics - Prelim Question Paper Solution Comparison between BJT and JFET BJT JFET ) BJT is a bipolar device, both majority JFET is an unipolar device, electron and minority

More information

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741 (Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

More information

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation Text sec 1.2 pp. 28-32; sec 3.2 pp. 128-129 Current source Ideal goal Small signal model: Open

More information

Transistor amplifiers: Biasing and Small Signal Model

Transistor amplifiers: Biasing and Small Signal Model Transistor amplifiers: iasing and Small Signal Model Transistor amplifiers utilizing JT or FT are similar in design and analysis. Accordingly we will discuss JT amplifiers thoroughly. Then, similar FT

More information

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE To understand Decibels, log scale, general frequency considerations of an amplifier. low frequency analysis - Bode plot low frequency response BJT amplifier Miller

More information

Examples of spontaneity in terms of increased spatial arrangements Notes on General Chemistry

Examples of spontaneity in terms of increased spatial arrangements Notes on General Chemistry Examples of spontaneity in terms of increased spatial arrangements Notes on General Chemistry http://quantum.bu.edu/notes/generalchemistry/spontaneityintermsofincreasedspatialarrangements.pdf Last updated

More information

The BJT Differential Amplifier. Basic Circuit. DC Solution

The BJT Differential Amplifier. Basic Circuit. DC Solution c Copyright 010. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The BJT Differential Amplifier Basic Circuit Figure 1 shows the circuit

More information

55:041 Electronic Circuits The University of Iowa Fall Final Exam

55:041 Electronic Circuits The University of Iowa Fall Final Exam Final Exam Name: Score Max: 135 Question 1 (1 point unless otherwise noted) a. What is the maximum theoretical efficiency for a class-b amplifier? Answer: 78% b. The abbreviation/term ESR is often encountered

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

The coalescent process

The coalescent process The coalescent process Introduction Random drift can be seen in several ways Forwards in time: variation in allele frequency Backwards in time: a process of inbreeding//coalescence Allele frequencies Random

More information

General Purpose Transistors

General Purpose Transistors General Purpose Transistors NPN and PNP Silicon These transistors are designed for general purpose amplifier applications. They are housed in the SOT 33/SC which is designed for low power surface mount

More information

CBSE Physics Set I Outer Delhi Board 2012

CBSE Physics Set I Outer Delhi Board 2012 Q28. a) In Young s double slit experiment, derive the condition for (I) constructive interference and (II) destructive interference at a point on the screen. b) A beam of light consisting of two wavelengths,

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences E. Alon Final EECS 240 Monday, May 19, 2008 SPRING 2008 You should write your results on the exam

More information

Electronics. Basics & Applications. group talk Daniel Biesinger

Electronics. Basics & Applications. group talk Daniel Biesinger Electronics Basics & Applications group talk 23.7.2010 by Daniel Biesinger 1 2 Contents Contents Basics Simple applications Equivalent circuit Impedance & Reactance More advanced applications - RC circuits

More information

Chapter 3. FET Amplifiers. Spring th Semester Mechatronics SZABIST, Karachi. Course Support

Chapter 3. FET Amplifiers. Spring th Semester Mechatronics SZABIST, Karachi. Course Support Chapter 3 Spring 2012 4 th Semester Mechatronics SZABIST, Karachi 2 Course Support humera.rafique@szabist.edu.pk Office: 100 Campus (404) Official: ZABdesk https://sites.google.com/site/zabistmechatronics/home/spring-2012/ecd

More information

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits EE 330 Lecture 22 Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits Exam 2 Friday March 9 Exam 3 Friday April 13 Review Session for Exam 2: 6:00

More information

Exploring Large-scale Gravitational Quantization without in Planetary Systems, Galaxies, and the Universe

Exploring Large-scale Gravitational Quantization without in Planetary Systems, Galaxies, and the Universe Exploring Large-scale Gravitational Quantization without in Planetary Systems, Galaxies, and the Universe Howard G. Preston 1 & Franklin Potter 2,3 Abstract We explore a theory of large-scale gravitational

More information

Electronics and Communication Exercise 1

Electronics and Communication Exercise 1 Electronics and Communication Exercise 1 1. For matrices of same dimension M, N and scalar c, which one of these properties DOES NOT ALWAYS hold? (A) (M T ) T = M (C) (M + N) T = M T + N T (B) (cm)+ =

More information

1 Integration of Rational Functions Using Partial Fractions

1 Integration of Rational Functions Using Partial Fractions MTH Fall 008 Essex County College Division of Mathematics Handout Version 4 September 8, 008 Integration of Rational Functions Using Partial Fractions In the past it was far more usual to simplify or combine

More information

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EE 105: Microelectronic Devices and Circuits Spring 2008 MIDTERM EXAMINATION #1 Time

More information

ECEE 352 Analog Electronics. DC Power Supply Winter 2016

ECEE 352 Analog Electronics. DC Power Supply Winter 2016 ECEE 352 Analog Electronics DC Power Supply Winter 2016 This Document Produced By: Leo Filippini lf458@drexel.edu Instructor: Prof. Basavaiah basu@coe.drexel.edu TA: Zhihuan Wang zw78@drexel.edu The goal

More information

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION ECE-343 Test 2: Mar 21, 2012 6:00-8:00, Closed Book Name : SOLUTION 1. (25 pts) (a) Draw a circuit diagram for a differential amplifier designed under the following constraints: Use only BJTs. (You may

More information

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS

Notes for course EE1.1 Circuit Analysis TOPIC 10 2-PORT CIRCUITS Objectives: Introduction Notes for course EE1.1 Circuit Analysis 4-5 Re-examination of 1-port sub-circuits Admittance parameters for -port circuits TOPIC 1 -PORT CIRCUITS Gain and port impedance from -port

More information

6.301 Solid-State Circuits Recitation 22: More on Transimpedance Amplifiers, and Intro to Zener Diode References Prof. Joel L.

6.301 Solid-State Circuits Recitation 22: More on Transimpedance Amplifiers, and Intro to Zener Diode References Prof. Joel L. Recitation 22: More on Transimpedance Amplifiers, and Intro to Zener Diode References Before we leave the topic of transimpedance amplifiers completely, there is one biasing mystery that is worth clearing

More information

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, Anti-Logarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in

More information

Chapter 3 Output stages

Chapter 3 Output stages Chapter 3 utput stages 3.. Goals and properties 3.. Goals and properties deliver power into the load with good efficacy and small power dissipate on the final transistors small output impedance maximum

More information

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OP-AMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform

More information

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013. Final Exam Name: Max: 130 Points Question 1 In the circuit shown, the op-amp is ideal, except for an input bias current I b = 1 na. Further, R F = 10K, R 1 = 100 Ω and C = 1 μf. The switch is opened at

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

Review - Differential Amplifier Basics Difference- and common-mode signals: v ID

Review - Differential Amplifier Basics Difference- and common-mode signals: v ID 6.012 Microelectronic Devices and Circuits Lecture 20 DiffAmp Anal. I: Metrics, Max. Gain Outline Announcements Announcements D.P.: No Early effect in large signal analysis; just LECs. Lec. 21 foils useful;

More information

Active Circuits: Life gets interesting

Active Circuits: Life gets interesting Actie Circuits: Life gets interesting Actie cct elements operational amplifiers (OP AMPS) and transistors Deices which can inject power into the cct External power supply normally comes from connection

More information

Lecture 18. Common Source Stage

Lecture 18. Common Source Stage ecture 8 OUTINE Basic MOSFET amplifier MOSFET biasing MOSFET current sources Common source amplifier eading: Chap. 7. 7.7. EE05 Spring 008 ecture 8, Slide Prof. Wu, UC Berkeley Common Source Stage λ =

More information

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d)

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) 1 ECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) I. Quasi-Static Approximation A. inear Models/ Small Signals/ Quasistatic I V C dt Amp-Sec/Farad V I dt Volt-Sec/Henry 1. Switched

More information

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER Outline. Introduction 2. CMOS multi-stage voltage amplifier 3. BiCMOS multistage voltage amplifier 4. BiCMOS current buffer 5. Coupling amplifier

More information

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

ESE319 Introduction to Microelectronics. BJT Biasing Cont. BJT Biasing Cont. Biasing for DC Operating Point Stability BJT Bias Using Emitter Negative Feedback Single Supply BJT Bias Scheme Constant Current BJT Bias Scheme Rule of Thumb BJT Bias Design 1 Simple

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani ENGN3227 Analogue Electronics Problem Sets V1.0 Dr. Salman Durrani November 2006 Copyright c 2006 by Salman Durrani. Problem Set List 1. Op-amp Circuits 2. Differential Amplifiers 3. Comparator Circuits

More information

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed) ECE-342 Test 2 Solutions, Nov 4, 2008 6:00-8:00pm, Closed Book (one page of notes allowed) Please use the following physical constants in your calculations: Boltzmann s Constant: Electron Charge: Free

More information

Workshop 4: Diatomic molecule vibrational and rotational spectra CH351 Physical Chemistry, Fall 2004

Workshop 4: Diatomic molecule vibrational and rotational spectra CH351 Physical Chemistry, Fall 2004 Workshop 4: Diatomic molecule vibrational and rotational spectra CH35 Physical Chemistry, Fall 004 http://quantum.bu.edu/courses/ch35/pltl/4.pdf Last updated Monday, November 9, 004 6:59:3-05:00 Copyright

More information

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers 6.012 Electronic Devices and Circuits Lecture 18 Single Transistor Amplifier Stages Outline Announcements Handouts Lecture Outline and Summary Notes on Single Transistor Amplifiers Exam 2 Wednesday night,

More information

6.3. Transformer isolation

6.3. Transformer isolation 6.3. Transformer isolation Objectives: Isolation of input and output ground connections, to meet safety requirements eduction of transformer size by incorporating high frequency isolation transformer inside

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti Inverter with active load It is the simplest gain stage. The dc gain is given by the slope of the transfer characteristics. Small signal analysis C = C gs + C gs,ov C 2 = C gd + C gd,ov + C 3 = C db +

More information

Introduction to Transistors. Semiconductors Diodes Transistors

Introduction to Transistors. Semiconductors Diodes Transistors Introduction to Transistors Semiconductors Diodes Transistors 1 Semiconductors Typical semiconductors, like silicon and germanium, have four valence electrons which form atomic bonds with neighboring atoms

More information

Chapter 1 Introduction to Electronics

Chapter 1 Introduction to Electronics Chapter Introduction to Electronics Section - Atomic Structure. An atom with an atomic number of 6 has 6 electrons and 6 protons.. The third shell of an atom can have n = (3) = 8 electrons. Section - Materials

More information

ECE 145A/218A Power Amplifier Design Lectures. Power Amplifier Design 1

ECE 145A/218A Power Amplifier Design Lectures. Power Amplifier Design 1 Power Amplifiers; Part 1 Class A Device Limitations Large signal output match Define efficiency, power-added efficiency Class A operating conditions Thermal resistance We have studied the design of small-signal

More information