Bottom hadron spectroscopy from lattice QCD

Size: px
Start display at page:

Download "Bottom hadron spectroscopy from lattice QCD"

Transcription

1 Bottom hadron spectroscopy from lattice QCD Stefan Meinel Department of Physics Jefferson Lab, October 11, 2010

2 Some puzzles concerning non-excited non-exotic heavy hadrons

3 Ω b : Experiment Events/(0.04 GeV) D0 1.3 fb 1 Data Fit (a) M(Ω 6.6 b ) 6.8 (GeV) 7 [D/0, PRL 2008]: M Ωb = 6.165(10)(13) GeV [CDF, PRD 2009]: M Ωb = (68)(9) GeV About 6 standard deviations discrepancy

4 Ω b : Lattice QCD mass [ GeV/c 2 ] CDF experiment Lewis,Woloshyn PRD,2009 Burch,Hagan,Lang,Limmer,Schafer PRD,2009 Detmold,Lin,Wingate NPB,2009 Lin,Cohen,Mathur,Orginos PRD,2009 Λ b Ξ b Σ b Ξ' b Ω b Σ * b Ξ * b Ω * b Figure from [Lewis, arxiv: ] See also: Fermilab + staggered [Na and Gottlieb, arxiv: ] Our results with NRQCD + DWF at low pion mass will be available soon [Meinel et al., arxiv: ]

5 Quarkonium 1S hyperfine splitting: charmonium Charmonium: M(J/ψ) M(η c ) Experiment: ± 1.2 MeV [PDG, JPG 2010] perturbative QCD (potential NRQCD): MeV [Kniehl et al. PRL 2004]

6 Quarkonium 1S hyperfine splitting: bottomonium Bottomonium: M(Υ) M(η b ) Experiment: 69.3 ± 2.8 MeV [BABAR, PRL 2008, 2009, CLEO, PRD 2009] perturbative QCD (potential NRQCD): 39 ± 14 MeV [Kniehl et al., PRL 2004] Perturbation theory should work better in bottomonium than in charmonium. What is going on?

7 New physics in bottomonium? Need precise lattice calculation to check perturbative QCD result.

8 M(Υ) M(η b ): lattice QCD M(Υ) M(η b ) = 54 ± 12 MeV using Fermilab method [Burch et al., PRD 2010] M(Υ) M(η b ) = 61 ± 14 MeV using NRQCD of order v 4 [Gray et al., PRD 2005] Dominant errors on NRQCD result: relativistic (10%) and radiative (20%) Later in this talk: a new NRQCD calculation that largely removes these two sources of error

9 Mass of the Ω bbb Baryonic analogue of the Υ. Reference M Ωbbb (GeV) Ponce, PRD Hasenfratz et al., PLB Bjorken ± 0.18 Tsuge et al., MPL Silvestre-Brac, FBS Jia, JHEP ± 0.08 Martynenko, PLB Roberts and Pervin, IJMPA Bernotas and Simonis, LJP Zhang and Huang, PLB ± GeV range! Later in this talk: lattice QCD result with 12 MeV uncertainty

10 Heavy quarks on the lattice

11 Wilson Fermion action S W F [Ψ, Ψ, U] = a 4 x az 4 Ψ(x) with the lattice derivatives [ γ µ (±) µ 1 2 a (+) µ ( ) µ +m Ψ(x) }{{} removes doublers + µ ψ(x) = 1 a [U µ(x)ψ(x + ˆµ) ψ(x)], µ ψ(x) = 1 a [ψ(x) U µ(x)ψ(x ˆµ)], ± µ ψ(x) = 1 2 [ + µ ψ(x) + µ ψ(x) ], ] where U µ (x) = U µ(x aˆµ). Can define non-compact gauge field A µ through U µ (x) = exp [iaga µ (x)].

12 Wilson Fermion action: dispersion relation Energy as a function of momentum: E(p) = m 1 + p2 2m 2 + O(p 4 ) For the Wilson quark, at tree level: ( m 1 = m ma + 1 ) 3 m2 a , ( m 2 = m 1 1 ) 2 ma + m2 a , m 1 m 2 = m2 a This indicates large discretization errors (deviations from Lorentz invariance) when ma not small

13 Heavy quarks on the lattice Compton wavelength vs lattice spacing: λ = 2π m a For precise lattice calculations in b physics using relativistic action, would need simultaneously 1 L m π and m b 1 a. Thus, a huge number (L/a) of lattice points is needed. Another problem at small a: critical slowing down of topological modes [Lüscher, arxiv: ].

14 Relativistic b quarks on the lattice Work at unphysically small m and extrapolate to m b : introduces systematic errors Anisotropic lattices with a t m b 1 [Klassen, NPB 1998]: there may still be (a s m b ) p errors [Harada et al., PRD 2001] Highly improved actions remove some of the (am b ) p errors: with HISQ [Follana et al., PRD 2007] still need a < 0.03 fm. Critical slowing down? Fermilab method [El-Khadra et al., PRD 1997]: difficult parameter tuning, if incomplete still large errors

15 Nonrelativistic b quarks on the lattice Alternative approach: start with nonrelativistic effective field theory in the continuum, then discretize Lattice NRQCD [Lepage, PRD 1991, 1992]: can not take continuum limit Lattice HQET [Eichten, Hill, PLB 1990]: only for heavy-light hadrons

16 Foldy-Wouthuysen-Tani transformation Dirac Lagrangian (Minkowski space): L = Ψ( m + iˆγ 0 D 0 + iˆγ j D j )Ψ This describes both particles and antiparticles. Projection operators for quark / antiquark fields are 1 2 (1 + ˆγ0 ), 1 2 (1 ˆγ0 ) The term iˆγ j D j couples quarks and antiquarks, as it does not commute with ˆγ 0 try to remove this term via field redefinition

17 Foldy-Wouthuysen-Tani transformation ( ) 1 Ψ = exp 2m iˆγj D j Ψ (1), ( ) ( 1 Ψ = Ψ (1) exp 2m iˆγj D j = Ψ (1) exp 1 2m iˆγj results in ) D j with L = Ψ (1) ( m + iˆγ 0 D 0 )Ψ (1) + n=1 1 m n Ψ (1) O (1)n Ψ (1) O (1)1 = 1 2 D jd j ig 8 [ˆγµ, ˆγ ν ]F µν = 1 2 D jd j ig 8 [ˆγj, ˆγ k ]F jk }{{} =O C (1)1 ig 2 ˆγjˆγ 0 F j0. }{{} =O(1)1 A

18 Foldy-Wouthuysen-Tani transformation Next, remove O A (1)1 by another field redefinition ( ) 1 Ψ (1) = exp 2m 2 OA (1)1 Ψ (2), ( ) 1 Ψ (1) = Ψ (2) exp 2m 2 OA (1)1 This can be continued to any order in 1/m

19 Foldy-Wouthuysen-Tani transformation One obtains [ L = Ψ m + iˆγ 0 D 0 1 2m D jd j ig 8m [ˆγj, ˆγ k ]F jk g ( 8m 2 ˆγ0 Dj ad F j0 1 )] 2 [ˆγj, ˆγ k ] {D j, F k0 } +O(1/m 3 ) All terms to the given order commute with ˆγ 0. The mass term can be removed via Ψ Ψ exp ( imx 0ˆγ 0) Ψ, Ψ Ψ exp ( imx 0ˆγ 0)

20 Foldy-Wouthuysen-Tani transformation Next, write and Ψ = ( ψ χ ), Ψ = ( ψ, χ ) E k = F 0k, B j = 1 2 ɛ jklf kl

21 Foldy-Wouthuysen-Tani transformation One obtains [ L = ψ id 0 + D2 2m + g 2m σ B + g 8m 2 ( (D ad E) + iσ (D E E D)) ] ψ + χ [ id 0 D2 2m + O(1/m 3 ) g 2m σ B + g 8m 2 ( (D ad E) + iσ (D E E D)) ] χ Note: these are the tree-level values of the couplings

22 Power counting: heavy-light hadrons b Then, [D µ, D ν ] = igf µν implies D 0 D Λ QCD g E g B Λ 2 QCD

23 Power counting: heavy-light hadrons b leading-order Lagrangian for heavy quark: L = ψ id 0 ψ. Leads to heavy-quark spin- and flavor symmetry [Shifman, Voloshin, SJNP 1988]. Correction terms are suppressed by powers of (Λ QCD /m b ).

24 Lattice HQET Continuum Lagrangian (Euclidean): L = δm ψ ψ }{{} dim. 3 + ψ D 0 ψ }{{} dim. 4 Includes all operators of dimension 4 or less that are compatible with symmetries renormalizable! Lattice action [Eichten, Hill, PLB 1990]: S = x (lattice units with a = 1) ψ (x) [ (1 + δm)ψ(x) U 0 (x ˆ0)ψ(x ˆ0) ]

25 Lattice HQET Propagator on given gauge field background = Wilson line t t 1 G ψ (x, x ) = δ x, x (1 + δm) (t t +1) U 0 (x + nˆ0). n=0 Treat (Λ QCD /m b ) corrections as insertions in correlation functions. When renormalized nonperturbatively [Maiani et al. NPB 1992], theory remains renormalizable and continuum limit is possible [ALPHA Collaboration]. Works only for heavy-light hadrons.

26 Power counting: heavy-heavy hadrons b b v D m b v, D 0 E kin m b v 2 g E m 2 b v3, g B m 2 b v4

27 Power counting: heavy-heavy hadrons b b Leading-order Lagrangian is [ ] ] L = ψ id 0 + D2 ψ + χ [id 0 D2 χ 2m 2m Correction terms are suppressed by powers of v 2. For bottomonium, v v

28 NRQCD Continuum Lagrangian (Euclidean): L ψ = ψ (D 0 + H) ψ where H contains all terms up to desired order in v 2 or (Λ QCD /m b ). Continuum evolution equation for propagator (for fixed background gauge field): ( G ψ (t 2, x, t, x ) = T exp t2 t 1 ) (H + ig A 0 ) dt G ψ (t 1, x, t, x )

29 Lattice NRQCD One the lattice, evolution by one time slice is implemented as follows [HPQCD]: ( G ψ (t, x, t, x ) = 1 δh ) ( ) n 1 H0 U 0 (t 1, x) 2 2n ( ) n ( 1 H0 1 δh ) G ψ (t 1, x, t, x ) 2n 2 Here, H 0 = 1 2m b (2) and δh contains relativistic and Symanzik-improvement corrections (split in H 0 and δh for historical/performance reasons). Need n 3/(2m b ) for numerical stability. Lattice NRQCD works for both heavy-light and heavy-heavy (and heavy-heavy-heavy!) systems. However, can not take continuum limit - need am b 1. Also possible: moving NRQCD [Horgan et al., PRD 2009]

30 Test of lattice NRQCD: speed of light In relativistic continuum QCD, energies of hadrons satisfy E 2 M 2 p 2 = 1. Lattice NRQCD energies are shifted by state-independent constant. Define with c 2 [E(p) E(0) + M kin,1] 2 M 2 kin,1 p 2 M kin p2 [E(p) E(0)] 2 2 [E(p) E(0)]

31 Test of lattice NRQCD: speed of light Square of the speed of light, calculated for the η b (1S) at p = n 2π/L: L = 24, a 0.11 fm L = 32, a 0.08 fm c n 2 [Meinel, arxiv:1007:3966] (with Wilson action, results for c 2 would be far away from 1)

32 Bottomonium spectrum [Meinel, arxiv:1007:3966]

33 RBC/UKQCD gauge field ensembles 2+1 flavors of domain wall fermions, exact chiral symmetry for L 5 even at finite a, no doubling problem better control over operator renormalization and chiral extrapolation, automatic O(a) improvement Iwasaki gluon action - suppresses residual chiral symmetry breaking at finite L fm lattices with L = 16, a 0.11 fm 2.7 fm lattices with L = 24, a 0.11 fm and L = 32, a 0.08 fm lowest pion mass about 300 MeV [Allton et al., PRD 2007, 2008]

34 NRQCD action Includes all terms of order v 4 and spin-dependent O(v 6 ) terms [Lepage et al. PRD 1992] H 0 = 1 2m (2), ) 2 ( (2) δh = c 1 c 3 8m 3 b g 8m 2 b a 2 (4) +c 5 24m b g c 7 8m 3 b ig ) + c 2 ( 8m Ẽ Ẽ 2 b ) σ ( Ẽ Ẽ ) 2 a ( (2) c 6 16n m 2 b { (2), σ B ig 2 c 9 σ (Ẽ 8m Ẽ). 3 b } 3g c 8 64m 4 b c 4 g 2m b σ B { ( (2), σ Ẽ Ẽ )} Tree-level: c i = 1. Radiative corrections to spin-dependent couplings not yet known!

35 Radial and orbital energy splittings: am b -dependence Data from L = 32 ensemble with am l = 0.004, order-v 4 action: am b = 1.75 am b = 1.87 am b = 2.05 Υ(2S) Υ(1S) (31) (33) (31) 2S 1S (32) (33) (31) 1 3 P Υ(1S) (22) (20) (19) 1 3 P 1S (22) (20) (19) 2 3 P 1 3 P (99) (94) (80) 2 3 P Υ(1S) 0.353(10) (94) (82) 2 3 P 1S 0.359(10) (94) (82) Υ 2(1D) Υ(1S) (39) (40) (42) Splittings nearly independent of am b

36 Kinetic mass: am b -dependence Kinetic mass of of η b (1S), defined as M kin p2 [E(p) E(0)] 2 amkin L = 32, a 0.08 fm Fit A am b + B 2 [E(p) E(0)] am b

37 Lattice spacing and am (phys.) b Use Υ(2S) Υ(1S) splitting to determine a Determine am (phys.) b such that M kin (η b ) agrees with experiment L 3 T β am l am s a 1 (GeV) am (phys.) b (52) 2.469(72) (46) 2.604(75) (33) 2.689(56) (27) 2.487(39) (28) 2.522(42) (42) 2.622(70) (39) 2.691(66) (32) 1.831(25) (45) 1.829(36) (32) 1.864(27)

38 Chiral extrapolation Interpolate spin splittings to am (phys.) b for each ensemble Convert to physical units on each ensemble Simultaneously extrapolate data from (L = 32, a 0.08 fm) and (L = 24, a 0.11 fm) to m π = 138 MeV E(m π, a 1 ) = E(0, a 1 ) + A m 2 π, E(m π, a 2 ) = E(0, a 2 ) + A m 2 π. Data from (L = 16, a 0.11 fm) ensemble extrapolated independently (different physical box size)

39 Radial and orbital energy splittings: chiral extrapolation L = 24, a 0.11 fm L = 32, a 0.08 fm Experiment L = 16, a 0.11 fm L = 24, a 0.11 fm Experiment Splitting (GeV) Υ(3S) Υ(1S) Splitting (GeV) Υ(3S) Υ(1S) m 2 π (GeV 2 ) m 2 π (GeV 2 )

40 Radial and orbital energy splittings: chiral extrapolation L = 24, a 0.11 fm L = 32, a 0.08 fm Experiment L = 16, a 0.11 fm L = 24, a 0.11 fm Experiment Splitting (GeV) P 1S Splitting (GeV) P 1S m 2 π (GeV 2 ) m 2 π (GeV 2 )

41 Radial and orbital energy splittings: chiral extrapolation 0.55 L = 24, a 0.11 fm L = 32, a 0.08 fm Experiment 0.55 L = 16, a 0.11 fm L = 24, a 0.11 fm Experiment Splitting (GeV) P 1 3 P Splitting (GeV) P 1 3 P m 2 π (GeV 2 ) m 2 π (GeV 2 )

42 Radial and orbital energy splittings: chiral extrapolation Splitting (GeV) L = 24, a 0.11 fm L = 32, a 0.08 fm Experiment Υ 2 (1D) Υ(1S) Splitting (GeV) L = 16, a 0.11 fm L = 24, a 0.11 fm Experiment Υ 2 (1D) Υ(1S) m 2 π (GeV 2 ) m 2 π (GeV 2 )

43 Radial and orbital energy splittings at m π = 138 MeV Υ(3S) 2 3 P Υ 2 (1D) E (GeV) Υ(2S) 1 3 P Υ(1S) Experiment L = 32, a 0.08 fm L = 24, a 0.11 fm L = 16, a 0.11 fm 9.2

44 Spin splittings: chiral extrapolation Splitting (MeV) m 2 π (GeV 2 ) v 4 action, a 0.11 fm v 4 action, a 0.08 fm Experiment Υ(1S) η b (1S) Splitting (MeV) m 2 π (GeV 2 ) v 6 action, a 0.11 fm v 6 action, a 0.08 fm Experiment Υ(1S) η b (1S) 1S hyperfine splitting At leading order: c 2 4, independent of c 3

45 Spin splittings: chiral extrapolation Splitting (MeV) v 4 action, a 0.11 fm v 4 action, a 0.08 fm Υ(2S) η b (2S) Splitting (MeV) v 6 action, a 0.11 fm v 6 action, a 0.08 fm Υ(2S) η b (2S) m 2 π (GeV 2 ) m 2 π (GeV 2 ) 2S hyperfine splitting At leading order: c 2 4, independent of c 3

46 Spin splittings: chiral extrapolation Splitting (MeV) m 2 π (GeV 2 ) v 4 action, a 0.11 fm v 4 action, a 0.08 fm Experiment 1P tensor Splitting (MeV) P tensor splitting m 2 π (GeV 2 ) v 6 action, a 0.11 fm v 6 action, a 0.08 fm Experiment 1P tensor 2χ b0 (1P ) + 3χ b1 (1P ) χ b2 (1P ) At leading order: c 2 4, independent of c 3

47 Spin splittings: chiral extrapolation Splitting (MeV) m 2 π (GeV 2 ) v 4 action, a 0.11 fm v 4 action, a 0.08 fm Experiment 1P spin-orbit Splitting (MeV) m 2 π (GeV 2 ) v 6 action, a 0.11 fm v 6 action, a 0.08 fm Experiment 1P spin-orbit 1P spin-orbit splitting 2χ b0 (1P ) 3χ b1 (1P ) + 5χ b2 (1P ) At leading order: c 3, independent of c 4

48 Spin splittings: chiral extrapolation Splitting (MeV) v 4 action, a 0.11 fm v 4 action, a 0.08 fm 1 3 P h b (1P ) Splitting (MeV) v 4 action, a 0.11 fm v 4 action, a 0.08 fm 1 3 P h b (1P ) m 2 π (GeV 2 ) 1P hyperfine splitting m 2 π (GeV 2 ) At leading order: zero 1 3 P h b (1P )

49 Spin splittings at m π = 138 MeV 40 E (MeV) χ b2 (1P) χ b1 (1P) χ b0 (1P) h b (1P) Experiment v 4 action,a 0.08 fm v 4 action,a 0.11 fm v 6 action,a 0.08 fm v 6 action,a 0.11 fm

50 Spin splittings at m π = 138 MeV 20 0 Υ(1S) Υ(2S) E (MeV) η b (1S) η b (2S) Experiment v 4 action,a 0.08 fm v 4 action,a 0.11 fm v 6 action,a 0.08 fm v 6 action,a 0.11 fm -80

51 Effect of v 6 terms on spin splittings S-wave hyperfine and P -wave spin-orbit splitting reduced by about 20% P -wave tensor splitting reduced by about 10% NB: for v 4 action, hyperfine and tensor splitting have similar physics

52 Radiative corrections to spin splittings At leading order, hyperfine and tensor splittings are expected to be proportional to c 2 4 and independent of c 3, so radiative corrections should cancel in the ratios and Υ(2S) η b (2S) Υ(1S) η b (1S) Υ(1S) η b (1S) 1P tensor Does this also work at order v 6?

53 Spin splittings: changing c 3 or c 4 splitting with c 3 1 or c 4 1 splitting with all c i = 1 c 3 = 0.8 c 3 = 1.2 c 4 = 0.8 c 4 = 1.2 Υ(1S) η b (1S) (18) (19) (53) (12) Υ(2S) η b (2S) 0.983(87) 1.025(91) 0.68(10) 1.35(14) 1P tensor 0.991(84) 1.008(76) 0.658(67) 1.40(11) 1P spin orbit 0.871(29) 1.129(31) 0.936(32) 1.059(39) Υ(2S) η b (2S) Υ(1S) η b (1S) Υ(1S) η b (1S) 1P tensor 1.003(89) 1.003(89) 1.02(15) 0.98(10) 0.989(83) 1.013(78) 1.02(10) 0.989(77) v 4 action, a 0.11 fm

54 Spin splittings: changing c 3 or c 4 splitting with c 3 1 or c 4 1 splitting with all c i = 1 c 3 = 0.8 c 3 = 1.2 c 4 = 0.8 c 4 = 1.2 Υ(1S) η b (1S) (17) (20) (47) (11) Υ(2S) η b (2S) 0.98(13) 1.03(13) 0.63(12) 1.44(19) 1P tensor 0.987(71) 1.006(62) 0.641(59) 1.41(11) 1P spin orbit 0.845(28) 1.154(32) 0.920(29) 1.077(40) Υ(2S) η b (2S) Υ(1S) η b (1S) Υ(1S) η b (1S) 1P tensor 1.00(13) 1.00(13) 0.97(19) 1.01(14) 0.991(75) 1.018(62) 1.008(95) 1.002(74) v 6 action, a 0.11 fm

55 Ratio of hyperfine splittings: chiral extrapolation Υ(2S) η b (2S) Υ(1S) η b (1S) v 4 action, a 0.11 fm v 4 action, a 0.08 fm Υ(2S) η b (2S) Υ(1S) η b (1S) v 6 action, a 0.11 fm v 6 action, a 0.08 fm Ratio Ratio m 2 π (GeV 2 ) m 2 π (GeV 2 ) Υ(2S) η b (2S) Υ(1S) η b (1S)

56 Ratio of hyperfine and tensor splittings: chiral extrap Υ(1S) η b (1S) 1P tensor v 4 action, a 0.11 fm v 4 action, a 0.08 fm Experiment Υ(1S) η b (1S) 1P tensor v 6 action, a 0.11 fm v 6 action, a 0.08 fm Experiment Ratio Ratio m 2 π (GeV 2 ) m 2 π (GeV 2 ) Υ(1S) η b (1S) 1P tensor

57 Spin splittings: final results (v 6 action, a 0.08 fm, m π = 138 MeV) Υ(2S) η b (2S) Υ(1S) η b (1S) This work 0.403(52)(25) - Experiment Υ(1S) η b (1S) 1P tensor 1.28(12)(8) 1.467(80) Υ(2S) η b (2S) 1P tensor 0.497(87)(32) - Υ(1S) η b (1S) 60.3(5.5)(3.8)(2.1) MeV a 69.3(2.9) MeV Υ(2S) η b (2S) 23.5(4.1)(1.5)(0.8) MeV a (3.6)(1.7)(1.2) MeV b 1 3 P h b (1P ) 0.04(93)(20) MeV - a Using 1P tensor splitting from experiment b Using Υ(1S) η b (1S) splitting from experiment 1st error: statistical/fitting, 2nd error: systematic, 3rd error: experimental Gluon discretization errors still missing, will be included in v2

58 Ω bbb [Meinel, arxiv:1008:3154]

59 Ω bbb correlator C (Ω) jk αδ (t, t, x ) = x ɛ abc ɛ fgh (Cγ j ) βγ (Cγ k ) ρσ with the NRQCD propagator G af βσ (t, x, t, x ) G bg γρ(t, x, t, x ) G ch αδ (t, x, t, x ) G(t, x, t, x ) = ( Gψ (t, x, t, x ) For quark smearing, include ( 1 + r ) ns S (2) n S at source and/or sink. ).

60 Ω bbb correlator Large (t t ): C (Ω) jk Z 2 3/2 e E 3/2 (t t ) 1 2 (1 + γ 0)(δ jk 1 3 γ jγ k ) + Z 2 1/2 e E 1/2 (t t ) 1 2 (1 + γ 0) 1 3 γ jγ k. Disentangle J = 3 2 and J = 1 2 the projectors contributions by multiplying with P (3/2) ij = (δ ij 1 3 γ iγ j ), P (1/2) ij = 1 3 γ iγ j. This gives P (J) ij C (Ω) jk Z2 J e E J (t t ) 1 2 (1 + γ 0)P (J) ik.

61 Ω bbb correlator: example Data from RBC/UKQCD ensemble with L = 32, am l = local local local smeared smeared local smeared smeared C(t) t Fit includes 7 exponentials and has t min = 5

62 Ω bbb correlator: example Data from RBC/UKQCD ensemble with L = 32, am l = ln[c(t)/c(t + 1)] local local local smeared smeared local smeared smeared t

63 Computing the Ω bbb mass Energies extracted from fits of two-point functions contain a shift that is proportional to the number of heavy quarks in the hadron. This shift cancels in the energy differences ae Ωbbb 3 2 ae Υ and ae Ωbbb 3 8 (ae η b + 3aE Υ ) }{{} = 3 2 (b b spin average)

64 Ω bbb : dependence on am b Splitting (lattice units) ae Ωbbb 3 8 (ae ηb + 3aE Υ) ae Ωbbb 3 2 ae Υ Splitting (lattice units) ae Ωbbb 3 8 (ae ηb + 3aE Υ) ae Ωbbb 3 2 ae Υ am b am b

65 Ω bbb : chiral extrapolation L = 24, a 0.11 fm L = 32, a 0.08 fm L = 16, a 0.11 fm L = 24, a 0.11 fm Splitting (GeV) E Ωbbb 3 8 (E η b + 3E Υ ) Splitting (GeV) E Ωbbb 3 8 (E η b + 3E Υ ) m 2 π (GeV 2 ) m 2 π (GeV 2 )

66 Ω bbb : chirally extrapolated/interpolated results Ensemble type L 3 T m π (GeV) E Ωbbb 3 8 (Eη b + 3EΥ) (GeV) RBC/UKQCD coarse (11) RBC/UKQCD coarse (44) RBC/UKQCD fine (29) MILC coarse (41) RBC/UKQCD coarse (22) MILC fine (24) RBC/UKQCD fine (24) MILC ensembles have more accurate gluon action (Lüscher-Weisz) but use rooted staggered sea quarks. Match R.M.S. pion mass. Use the following result: E Ωbbb 3 8 (E η b + 3E Υ ) = ± stat ± syst GeV.

67 E Ωbbb 3 8 (E η b + 3E Υ ): electrostatic correction E Coulomb = 3 (e/3)2 Ω bbb 1 4πɛ 0 r Ω bbb + 3 (e/3) 2 Υ 1 2 4πɛ 0 r Υ. Expectation values from potential models (for Ω bbb from [Silvestre-Brac, FBS 1996]): Υ 1 Υ = 8.1 fm 1 r Υ r 2 Υ = 0.20 fm Ωbbb r 2 Ω bbb = 0.25 fm Estimate Ω bbb r 1 Ω bbb = (0.8 ± 0.4) Υ r 1 Υ = 6.5 ± 3.2 fm 1 This gives E Coulomb = 5.1 ± 2.5 MeV.

68 Mass of the Ω bbb : final result M Ωbbb = [ E Ωbbb 3 ] 8 (E η b + 3E Υ ) [M Υ ] PDG 3 8 LQCD + E Coulomb [ EΥ E [ ] ηb 1P tensor ]LQCD 1P tensor PDG = ± stat ± syst ± exp GeV.

69 Mass of the Ω bbb : lattice QCD vs continuum models Reference M Ωbbb (GeV) Ponce, PRD Hasenfratz et al., PLB Bjorken ± 0.18 Tsuge et al., MPL Silvestre-Brac, FBS Jia, JHEP ± 0.08 Martynenko, PLB Roberts and Pervin, IJMPA Bernotas and Simonis, LJP Zhang and Huang, PLB ± 0.10 This work ± stat ± syst ± exp Note: results from Tsuge (1985) and Zhang/Huang (2009) violate baryon-meson mass inequality M Ωbbb 3 2 MΥ = GeV [Adler et al. PRD 1982, Nussinov PRL 1983, Richard PLB 1984]

70 Outlook Heavy-light hadrons (with W. Detmold et al.): we are currently generating more DWF propagators at a 0.08 fm. Spectrum results soon. Also: axial couplings Bottomonium: arxiv:1007:3966v2 will include study of gluon discretization errors. Currently investigating with lattice potential model Triply-heavy baryons: possibly include charm quarks, compute excited states THANK YOU!

71 Extra slides

72 Bottomonium: interpolating operators fix gauge configurations to Coulomb gauge, use smearing function Γ(r), 2 2-matrix-valued in spinor space O Γ (p, t) = x, x χ (x, t) Γ(x x ) ψ(x, t) e ip (x+x )/2 NB: choice of smearing only affects overlap with states, not their energies

73 Bottomonium: interpolating operators Name L S J P C R P C Γ(r) η b (ns) A + 1 φ ns(r) Υ(nS) T 1 φ ns(r) σ i h b (np ) T + 1 φ np (r) r i /r 0 χ b0 (np ) A ++ 1 φ np (r) (r σ)/r 0 χ b1 (np ) T ++ 1 φ np (r) (r σ) i /r 0 χ b2 (np ) T ++ 2 φ np (r) (r i σ j + r j σ i )/r 0 η b (nd) T + 2 φ nd(r) r i r j /r0 2 Υ 2(nD) E φ nd(r) (r i r j σ k r j r k σ i )/r0 2 State φ(r) 1S exp[ r /r 0] 2S [1 r /(2r 0)] exp[ r /(2r [ 0)] 3S 1 2 r /(3r0) + 2 r 2 /(27r0) ] 2 exp[ r /(3r 0)] 1P exp[ r /(2r 0)] 2P [1 r /(6r 0)] exp[ r /(3r 0)] 1D exp[ r /(3r 0)] (i j, k j)

74 Multi-exponential Bayesian fitting matrix fits with multiple radial smearing functions (e.g. 1S, 2S and 3S) at source and sink 30 correlator C(Γ sk, Γ sc, p, t t ) n exp 1 n=0 A n (Γ sc ) A n(γ sk ) e En(t t ) time

75 Multi-exponential Bayesian fitting actual fit parameters: ln(e 0 ), A 0 (Γ), and for n > 0 e n ln(e n E n 1 ), B n (Γ) A n (Γ)/A 0 (Γ) Bayesian fitting [Lepage et al., NPPS 2002]: χ 2 χ 2 + χ 2 prior with the Gaussian prior χ 2 prior = i σ 2 p i (p i p i ) 2 priors for low-lying states: central values from unconstrained fit at large t, width = 10 error from fit priors for high-lying states (for L = 24 ensemble, lattice units): ẽ n = 1.4, σẽn = 1, B n (Γ) = 0, σ Bn(Γ) = 5

76 Multi-exponential Bayesian fitting increase n exp until fit results stabilize Υ(3S) ae χ 2 /dof: Υ(2S) Υ(1S) n exp

CHARMED BOTTOM BARYON SPECTROSCOPY. Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos

CHARMED BOTTOM BARYON SPECTROSCOPY. Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos CHARMED BOTTOM BARYON SPECTROSCOPY Zachary S. Brown, William Detmold, Stefan Meinel, Konstantinos Orginos 1 OUTLINE Landscape of heavy baryon spectroscopy Details of our calculation Extrapolations Results

More information

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks

B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks B-meson decay constants with domain-wall light quarks and nonperturbatively tuned relativistic b-quarks RBC and UKQCD collaborations Oliver Witzel Center for Computational Science Lattice 2013, Mainz,

More information

Charmed Bottom Mesons from Lattice QCD

Charmed Bottom Mesons from Lattice QCD Charmed Bottom Mesons from Lattice QCD Nilmani Mathur Department of Theoretical Physics Tata Institute of Fundamental Research, India Collaborators : ILGTI, M. Padmanath, R. Lewis Lattice 2016, University

More information

PoS(LATTICE 2013)248. Charmed Bottom Baryon Spectroscopy. Zachary S. Brown

PoS(LATTICE 2013)248. Charmed Bottom Baryon Spectroscopy. Zachary S. Brown The College of William & Mary E-mail: zsbrown@email.wm.edu William Detmold Massachusetts Institute of Technology E-mail: wdetmold@mit.edu Stefan Meinel Massachusetts Institute of Technology E-mail: smeinel@mit.edu

More information

strong coupling Antonio Vairo INFN and University of Milano

strong coupling Antonio Vairo INFN and University of Milano potential Non-Relativistic QCD strong coupling Antonio Vairo INFN and University of Milano For most of the quarkonium states: 1/r mv Λ QCD (0) V (r) (GeV) 2 1 Υ Υ Υ Υ η ψ c χ ψ ψ 2 0 1 2 r(fm) -1 weak

More information

Lectures on NRQCD Factorization for Quarkonium Production and Decay

Lectures on NRQCD Factorization for Quarkonium Production and Decay Lectures on NRQCD Factorization for Quarkonium Production and Decay Eric Braaten Ohio State University I. Nonrelativistic QCD II. Annihilation decays III. Inclusive hard production 1 NRQCD Factorization

More information

Precise determination of the lattice spacing in full lattice QCD

Precise determination of the lattice spacing in full lattice QCD Precise determination of the lattice spacing in full lattice QCD None of these quantities can be computed as accurately as r 1 /a in simulations, but we can combine simulation rearxiv:0910.1229v1 [hep-lat]

More information

Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24)

Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24) Popat Patel (McGill University) On behalf of the BaBar Collaboration The Lomonosov XIV Conference Moscow (2009/08/24) Outline Brief overview: BaBar Data Bottomonium Spectra Report on selected BaBar analyses

More information

Expected precision in future lattice calculations p.1

Expected precision in future lattice calculations p.1 Expected precision in future lattice calculations Shoji Hashimoto (KEK) shoji.hashimoto@kek.jp Super-B Workshop, at University of Hawaii, Jan 19 22, 2004 Expected precision in future lattice calculations

More information

Quarkonium Results from Fermilab and NRQCD

Quarkonium Results from Fermilab and NRQCD Quarkonium Results from Fermilab and NRQCD Paul Mackenzie mackenzie@fnal.gov International Workshop on Heavy Quarkonium Fermilab Sept. 20-22 2003 Thanks Christine Davies (HPQCD), Jim Simone Recent progress

More information

arxiv: v1 [hep-lat] 23 Nov 2018

arxiv: v1 [hep-lat] 23 Nov 2018 B c spectroscopy using highly improved staggered quarks arxiv:1811.09448v1 [hep-lat] 23 Nov 2018 INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma RM, Italy E-mail: andrew.lytle@roma2.infn.it

More information

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum

Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum Hyperfine Splitting in the Bottomonium System on the Lattice and in the Continuum Nikolai Zerf in collaboration with M. Baker, A. Penin, D. Seidel Department of Physics University of Alberta Radcor-Loopfest,

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

arxiv: v1 [hep-lat] 7 Oct 2007

arxiv: v1 [hep-lat] 7 Oct 2007 Charm and bottom heavy baryon mass spectrum from lattice QCD with 2+1 flavors arxiv:0710.1422v1 [hep-lat] 7 Oct 2007 and Steven Gottlieb Department of Physics, Indiana University, Bloomington, Indiana

More information

Lattice QCD From Nucleon Mass to Nuclear Mass

Lattice QCD From Nucleon Mass to Nuclear Mass At the heart of most visible m Lattice QCD From Nucleon Mass to Nuclear Mass Martin J Savage The Proton Mass: At the Heart of Most Visible Matter, Temple University, Philadelphia, March 28-29 (2016) 1

More information

Light hadrons in 2+1 flavor lattice QCD

Light hadrons in 2+1 flavor lattice QCD Light hadrons..., Lattice seminar, KITP, Jan 26, 2005. U.M. Heller p. 1/42 Light hadrons in 2+1 flavor lattice QCD Urs M. Heller American Physical Society & BNL Modern Challenges for Lattice Field Theory

More information

Spectroscopy of charmed baryons from lattice QCD

Spectroscopy of charmed baryons from lattice QCD Institute of Physics, University of Graz, 8010 Graz, Austria. E-mail: padmanath.madanagopalan@uni-graz.at Robert G. Edwards Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606, USA E-mail:

More information

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation

Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Heavy-quark hybrid mesons and the Born-Oppenheimer approximation Colin Morningstar Carnegie Mellon University Quarkonium Workshop, Fermilab Sept 20, 2003 9/20/2003 Hybrid mesons (C. Morningstar) 1 Outline!

More information

PoS(LATTICE 2013)243. Hadron spectra from overlap fermions on HISQ gauge configurations.

PoS(LATTICE 2013)243. Hadron spectra from overlap fermions on HISQ gauge configurations. Hadron spectra from overlap fermions on HISQ gauge configurations. S. Basak a, S. Datta b, A. T. Lytle b, Padmanath M. b, P. Majumdar c, and b (Indian Lattice Gauge Theory Initiative) a School of Physical

More information

arxiv: v1 [hep-lat] 4 Nov 2014

arxiv: v1 [hep-lat] 4 Nov 2014 Meson Mass Decomposition,2, Ying Chen, Terrence Draper 2, Ming Gong,2, Keh-Fei Liu 2, Zhaofeng Liu, and Jian-Ping Ma 3,4 arxiv:4.927v [hep-lat] 4 Nov 24 (χqcd Collaboration) Institute of High Energy Physics,

More information

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory

PoS(EPS-HEP 2009)057. Bottomonium Studies at BaBar. Veronique Ziegler. SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory E-mail: vziegler@slac.stanford.edu Selected studies in bottomonium physics carried out by the BaBar experiment at the SLAC PEP-II e + e collider are presented. They

More information

Pion couplings to the scalar B meson. Antoine Gérardin

Pion couplings to the scalar B meson. Antoine Gérardin Antoine Gérardin 1 Pion couplings to the scalar B meson Pion couplings to the scalar B meson Antoine Gérardin In collaboration with B. Blossier and N. Garron Based on [arxiv:141.349] LPT Orsay January

More information

Lattice QCD study of Radiative Transitions in Charmonium

Lattice QCD study of Radiative Transitions in Charmonium Lattice QCD study of Radiative Transitions in Charmonium (with a little help from the quark model) Jo Dudek, Jefferson Lab with Robert Edwards & David Richards Charmonium spectrum & radiative transitions

More information

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD

Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Probing the Chiral Limit in 2+1 flavor Domain Wall Fermion QCD Meifeng Lin for the RBC and UKQCD Collaborations Department of Physics Columbia University July 29 - August 4, 2007 / Lattice 2007 @ Regensburg

More information

Exotic and excited-state radiative transitions in charmonium from lattice QCD

Exotic and excited-state radiative transitions in charmonium from lattice QCD Exotic and excited-state radiative transitions in charmonium from lattice QCD Christopher Thomas, Jefferson Lab Hadron Spectroscopy Workshop, INT, November 2009 In collaboration with: Jo Dudek, Robert

More information

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations

PoS(LATTICE 2013)500. Charmonium, D s and D s from overlap fermion on domain wall fermion configurations Charmonium, D s and D s from overlap fermion on domain wall fermion configurations,, Y. Chen, A. Alexandru, S.J. Dong, T. Draper, M. Gong,, F.X. Lee, A. Li, 4 K.F. Liu, Z. Liu, M. Lujan, and N. Mathur

More information

Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab

Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab Meson Radiative Transitions on the Lattice hybrids and charmonium Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab 1 JLab, GlueX and photocouplings GlueX plans to photoproduce mesons

More information

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y.

Calculation of decay constant using gradient flow, towards the Kaon bag parameter. University of Tsukuba, A. Suzuki and Y. Calculation of decay constant using gradient flow, towards the Kaon bag parameter University of Tsukuba, A. Suzuki and Y. Taniguchi Contents Goal : Calculation of B K with Wilson fermion using gradient

More information

Nucleon structure near the physical pion mass

Nucleon structure near the physical pion mass Nucleon structure near the physical pion mass Jeremy Green Center for Theoretical Physics Massachusetts Institute of Technology January 4, 2013 Biographical information Undergraduate: 2003 2007, University

More information

arxiv: v1 [hep-lat] 30 Oct 2018

arxiv: v1 [hep-lat] 30 Oct 2018 E-mail: genwang27@uky.edu arxiv:1810.12824v1 [hep-lat] 30 Oct 2018 Jian Liang E-mail: jian.liang@uky.edu Terrence Draper E-mail: draper@pa.uky.edu Keh-Fei Liu E-mail: liu@pa.uky.edu Yi-Bo Yang Institute

More information

High-Precision Nonperturbative QCD

High-Precision Nonperturbative QCD High-Precision Nonperturbative QCD Peter Lepage Cornell University. G.P. Lepage, High Precision Nonperturbative QCD at the SLAC Summer Institute (August 2002). p.1/77 Why High-Precision and Nonperturbative?.

More information

New bottomonium(-like) resonances spectroscopy and decays at Belle

New bottomonium(-like) resonances spectroscopy and decays at Belle EP J Web of Conferences 70, 00034 (2014) DOI: 10.1051/ ep jconf/ 20147000034 C Owned by the authors, published by EDP Sciences, 2014 New bottomonium(-like) resonances spectroscopy and decays at Belle Umberto

More information

arxiv:hep-lat/ v1 25 Nov 1996

arxiv:hep-lat/ v1 25 Nov 1996 Quarkonium spin structure in lattice NRQCD SFU HEP-131-96 Howard D. Trottier Department of Physics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6 (November 1996) arxiv:hep-lat/9611026v1 25 Nov

More information

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison

PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD. Yasumichi Aoki RIKEN BNL Research Center. 9/23/09 LBV09 at Madison PROTON DECAY MATRIX ELEMENTS FROM LATTICE QCD Yasumichi Aoki RIKEN BNL Research Center 9/23/09 LBV09 at Madison Plan low energy matrix elements for N PS,l GUT QCD relation what is exactly needed to calculate

More information

Phenomenology with Lattice NRQCD b Quarks

Phenomenology with Lattice NRQCD b Quarks HPQCD Collaboration 16 July 2015 Our approaches to b quarks In Glasgow, we take two complementary approaches to b quarks: Nonrelativistic QCD and heavy HISQ. Here I will focus exclusively on NRQCD (for

More information

Testing the Standard Model with lattice QCD and effective field theory

Testing the Standard Model with lattice QCD and effective field theory Testing the Standard Model with lattice QCD and effective field theory Jon A. Bailey SWME Collaboration Yong-Chull Jang, Hyung-Jin Kim, Jongjeong Kim, Weonjong Lee, Jaehoon Leem, Sungwoo Park, Stephen

More information

Zahra Haddadi, KVI-CART (University of Groningen) for the BESIII collaboration 1 Sep EUNPC 2015, Groningen

Zahra Haddadi, KVI-CART (University of Groningen) for the BESIII collaboration 1 Sep EUNPC 2015, Groningen Zahra Haddadi, KVI-CART (University of Groningen) for the BESIII collaboration 1 Sep. 2015 EUNPC 2015, Groningen Outline: Charmonium spectroscopy spin-singlet states puzzle BESIII & precision measurements

More information

High Precision. Charm Physics. HISQ quarks

High Precision. Charm Physics. HISQ quarks f % f K High Precision m Charm Physics $ with m N m Ds m D m D * HISQ quarks - m s D s m " - m #c "(1P-1S) 2m Bs,av -m! Christine m Davies Bc E. Follana, G. P. Lepage, R. Horgan, K. Hornbostel, C. McNeile,

More information

Cascades on the Lattice

Cascades on the Lattice Cascade Physics - Jlab 2005 Cascades on the Lattice Kostas Orginos College of William and Mary - JLab LHP Collaboration LHPC collaborators R. Edwards (Jlab) G. Fleming (Yale) P. Hagler (Vrije Universiteit)

More information

Lecture 9 Valence Quark Model of Hadrons

Lecture 9 Valence Quark Model of Hadrons Lecture 9 Valence Quark Model of Hadrons Isospin symmetry SU(3) flavour symmetry Meson & Baryon states Hadronic wavefunctions Masses and magnetic moments Heavy quark states 1 Isospin Symmetry Strong interactions

More information

DAMTP, University of Cambridge HPQCD

DAMTP, University of Cambridge HPQCD Outline of Talk Phenomenological Motivation Overview of lattice methodology Results Future work -Motivation The CKM Matrix After EW symmetry breaking the standard model in the mass basis contains the flavour

More information

PoS(LAT2006)094. The decay constants f B + and f D + from three-flavor lattice QCD

PoS(LAT2006)094. The decay constants f B + and f D + from three-flavor lattice QCD The decay constants f B + and f D + from three-flavor lattice QCD C. Bernard a, C. DeTar b, M. Di Pierro c, A.X. El-Khadra d, R.T. Evans d, E. Freeland e, S. Gottlieb f, U.M. Heller g, J.E. Hetrick h,

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

MILC results and the convergence of the chiral expansion

MILC results and the convergence of the chiral expansion MILC results and the convergence of the chiral expansion MILC Collaboration + (for part) HPQCD, UKQCD Collaborations Benasque Center for Science, July 27, 2004 p.1 Collaborators MILC Collaboration: C.

More information

Transverse Momentum Distributions of Partons in the Nucleon

Transverse Momentum Distributions of Partons in the Nucleon Lattice 2008, Williamsburg 2008-07-18 Transverse Momentum Distributions of Partons in the Nucleon Bernhard Musch Technische Universität München presenting work in collaboration with LHPC and Philipp Hägler

More information

Study of Transitions and Decays of Bottomonia at Belle

Study of Transitions and Decays of Bottomonia at Belle 1 Study of Transitions and Decays of Bottomonia at Belle Saurabh Sandilya University of Cincinnati (On behalf of the Belle Collaboration) Outline Introduction (Bottomonia, KEKB & Belle detector) Transitions

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

Heavy quark physics with light dynamical quarks (plus a lot of other stuff) Christine Davies

Heavy quark physics with light dynamical quarks (plus a lot of other stuff) Christine Davies Heavy quark physics with light dynamical quarks (plus a lot of other stuff) Christine Davies University of Glasgow HPQCD and UKQCD collaborations Key aim of HPQCD collabn: accurate calcs in lattice QCD,

More information

Hadronic (ns) decays. VI International Workshop on Heavy Quarkonia, Elisabetta Prencipe On behalf of the BaBar collaboration

Hadronic (ns) decays. VI International Workshop on Heavy Quarkonia, Elisabetta Prencipe On behalf of the BaBar collaboration VI International Workshop on Heavy Quarkonia, 2008 Hadronic (ns) decays at BABAR Nara, 2 th 5 th December 2008 Elisabetta Prencipe On behalf of the BaBar collaboration Introduction Studying Quarkonia studying

More information

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations L. Ya. Glozman Institut für Physik, FB Theoretische Physik, Universität Graz With Christian Lang and Markus

More information

Lattice QCD investigation of heavy-light four-quark systems

Lattice QCD investigation of heavy-light four-quark systems Lattice QCD investigation of heavy-light four-quark systems Antje Peters peters@th.physik.uni-frankfurt.de Goethe-Universität Frankfurt am Main in collaboration with Pedro Bicudo, Krzysztof Cichy, Luka

More information

Hadron Structure from Lattice QCD

Hadron Structure from Lattice QCD Hadron Structure from Lattice QCD Huey-Wen Lin University of Washington 1 Outline Lattice QCD Overview Nucleon Structure PDF, form factors, GPDs Hyperons Axial coupling constants, charge radii... Summary

More information

Radiative transitions and the quarkonium magnetic moment

Radiative transitions and the quarkonium magnetic moment Radiative transitions and the quarkonium magnetic moment Antonio Vairo based on Nora Brambilla, Yu Jia and Antonio Vairo Model-independent study of magnetic dipole transitions in quarkonium PRD 73 054005

More information

High order corrections in theory of heavy quarkonium

High order corrections in theory of heavy quarkonium High order corrections in theory of heavy quarkonium Alexander Penin TTP Karlsruhe & INR Moscow ECT Workshop in Heavy Quarkonium Trento, Italy, August 17-31, 2006 A. Penin, TTP Karlsruhe & INR Moscow ECT

More information

arxiv: v1 [hep-lat] 17 Mar 2012

arxiv: v1 [hep-lat] 17 Mar 2012 Standard Model Heavy Flavor physics on the Lattice arxiv:1203.3862v1 [hep-lat] 17 Mar 2012 University of Glasgow E-mail: c.davies@physics.gla.ac.uk Lattice QCD calculations in charm and bottom physics

More information

b hadron properties and decays (ATLAS)

b hadron properties and decays (ATLAS) b hadron properties and decays (ATLAS) Milind V. Purohit Univ. of South Carolina, USA for the ATLAS collaboration M. V. Purohit SM@LHC 2012 1 Outline Detector, Di muon trigger, Performance: Mass, vertex

More information

(Towards) Baryon Resonances from Lattice QCD

(Towards) Baryon Resonances from Lattice QCD (Towards) Baryon Resonances from Lattice QCD Daniel Mohler Fermilab Theory Group Batavia, IL, USA Paphos, October 2013 Daniel Mohler (Fermilab) Baryon Resonances from Lattice QCD Paphos, October 2013 1

More information

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013

Baryon Resonance Determination using LQCD. Robert Edwards Jefferson Lab. Baryons 2013 Baryon Resonance Determination using LQCD Robert Edwards Jefferson Lab Baryons 2013 Where are the Missing Baryon Resonances? What are collective modes? Is there freezing of degrees of freedom? What is

More information

in Lattice QCD Abstract

in Lattice QCD Abstract FERMILAB-PUB-96/016-T January, 1996 Electromagnetic Splittings and Light Quark Masses arxiv:hep-lat/9602005v1 6 Feb 1996 in Lattice QCD A. Duncan 1, E. Eichten 2 and H. Thacker 3 1 Dept. of Physics and

More information

Questions in Quarkonium Spectroscopy

Questions in Quarkonium Spectroscopy Questions in Quarkonium Spectroscopy International Workshop on Heavy Quarkonium Steve Godfrey Carleton University/DESY godfrey@physics.carleton.ca A very brief introduction to potential models Questions

More information

Figure 1. (a) (b) (c)

Figure 1. (a) (b) (c) arxiv:hep-ph/9407339 v 15 Jan 1997 (a) (b) (c) Figure 1 arxiv:hep-ph/9407339 v 15 Jan 1997 H S Figure arxiv:hep-ph/9407339 v 15 Jan 1997 P/ + p - P/ + p (a) (b) Figure 3 arxiv:hep-ph/9407339 v 15 Jan 1997

More information

Heavy mesons and tetraquarks from lattice QCD

Heavy mesons and tetraquarks from lattice QCD Heavy mesons and tetraquarks from lattice QCD seminar, Technische Universität Darmstadt Marc Wagner Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik mwagner@th.physik.uni-frankfurt.de

More information

Puzzles in the Charmonium Sector of QCD

Puzzles in the Charmonium Sector of QCD Puzzles in the Charmonium Sector of QCD Eric Braaten Ohio State University support DOE Division of High Energy Physics 1 Lots of pieces Y(4140) X(3940) Y(3940) Y(4660) Y(4360) Y(4260) Y(4008) X(4160) X(3872)

More information

doi: /PhysRevD

doi: /PhysRevD doi: 10.1103/PhysRevD.64.097505 PHYSICAL REVIEW D, VOLUME 64, 097505 Hybrid quarkonia with dynamical sea quarks T. Manke, 1 A. Ali Khan, 1 S. Aoki, 2 R. Burkhalter, 1,2 S. Ejiri, 1 M. Fukugita, 3 S. Hashimoto,

More information

Meson wave functions from the lattice. Wolfram Schroers

Meson wave functions from the lattice. Wolfram Schroers Meson wave functions from the lattice Wolfram Schroers QCDSF/UKQCD Collaboration V.M. Braun, M. Göckeler, R. Horsley, H. Perlt, D. Pleiter, P.E.L. Rakow, G. Schierholz, A. Schiller, W. Schroers, H. Stüben,

More information

Recent Results from CLEO

Recent Results from CLEO Ryan Mitchell Indiana University MENU June 1, 2010 1 Overview of the CLEO Experiment CESR at Cornell University: symmetric e + e collisions at bottomonium (III) and charmonium (c) energies Inner Tracking:

More information

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom

spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom spectroscopy overview Jozef Dudek Old Dominion University & Jefferson Lab thanks for inviting a whinging pom spectroscopy? will touch only lightly on precision spectroscopy - masses of (QCD)-stable hadrons

More information

Hindered M1 Radiative Decay of from Lattice NRQCD

Hindered M1 Radiative Decay of from Lattice NRQCD Introduction Mon 25th July, Lattice 2016 Hindered M1 Radiative Decay of and from Lattice NRQCD arxiv:1508.01694, R. Dowdall, C. Davies, R. Horgan, G. Von Hippel, M. Wingate Motivation Terminology M1 Radiative

More information

T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34. The Topology in QCD. Ting-Wai Chiu Physics Department, National Taiwan University

T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34. The Topology in QCD. Ting-Wai Chiu Physics Department, National Taiwan University T.W. Chiu, Chung-Yuan Christian Univ, May 13, 2008 p.1/34 The Topology in QCD Ting-Wai Chiu Physics Department, National Taiwan University The vacuum of QCD has a non-trivial topological structure. T.W.

More information

String calculation of the long range Q Q potential

String calculation of the long range Q Q potential String calculation of the long range Q Q potential Héctor Martínez in collaboration with N. Brambilla, M. Groher (ETH) and A. Vairo April 4, 13 Outline 1 Motivation The String Hypothesis 3 O(1/m ) corrections

More information

Lattice studies of multiply charmed baryons

Lattice studies of multiply charmed baryons Lattice studies of multiply charmed baryons Gunnar Bali (Regensburg) QWG13, IHEP Beijing, 23.4.2013 Outline Motivation Simulation parameters Multiply charmed baryons Summary Gunnar Bali (Uni Regensburg)

More information

PoS(EPS-HEP2011)179. Lattice Flavour Physics

PoS(EPS-HEP2011)179. Lattice Flavour Physics Rome University Tor Vergata" and INFN sez. Rome Tor Vergata" E-mail: nazario.tantalo@roma.infn.it I briefly discuss recent lattice calculations of a selected list of hadronic matrix elements that play

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster

The Lattice QCD Program at Jefferson Lab. Huey-Wen Lin. JLab 7n cluster The Lattice QCD Program at Jefferson Lab Huey-Wen Lin JLab 7n cluster 1 Theoretical Support for Our Experimental Agenda 2 Theoretical Support for Our Experimental Agenda JLab Staff Joint appointments and

More information

Coupled-channel effects in radiative. Radiative charmonium transitions

Coupled-channel effects in radiative. Radiative charmonium transitions Coupled-channel effects in radiative charmonium transitions Feng-Kun Guo Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn IHEP, Beijing, April 16, 2013 Based on: Guo, Meißner, PRL108(2012)112002;

More information

Lattice QCD Calculation of Nucleon Tensor Charge

Lattice QCD Calculation of Nucleon Tensor Charge 1 / 36 Lattice QCD Calculation of Nucleon ensor Charge. Bhattacharya, V. Cirigliano, R. Gupta, H. Lin, B. Yoon PNDME Collaboration Los Alamos National Laboratory Jan 22, 2015 2 / 36 Neutron EDM, Quark

More information

arxiv: v1 [hep-lat] 24 Oct 2013

arxiv: v1 [hep-lat] 24 Oct 2013 arxiv:30.646v [hep-lat] 24 Oct 203 Lattice NRQCD study of in-medium bottomonium states using N f = 2+,48 3 2 HotQCD configurations Department of Physics, Sejong University, Seoul 43-747, Korea E-mail:

More information

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions

Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Lattice QCD Calculations of Generalized Form Factors with Dynamical Fermions Sergey N. Syritsyn Lawrence Berkeley National Laboratory Nuclear Science Division INT Workshop Orbital angular momentum in QCD

More information

Origin of Nucleon Mass in Lattice QCD

Origin of Nucleon Mass in Lattice QCD Origin of Nucleon Mass in Lattice QCD Quark and glue components of hadron mass Decomposition of meson masses πn σ term, strangeness and charmness Decomposition of nucleon mass c QCD Collaboration Trento,

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

Charmonium Spectroscopy and Decay at CLEO c

Charmonium Spectroscopy and Decay at CLEO c Charmonium Spectroscopy and Decay at CLEO c Helmut Vogel Carnegie Mellon University CLEO c at CESR (for the CLEO Collaboration) PHIPSI09, IHEP, Beijing, 13 Oct 2009 Acknowledgments and thanks to: Matt

More information

New Charmonium Results from CLEO c

New Charmonium Results from CLEO c New Charmonium Results from CLEO c Helmut Vogel (for the CLEO Collaboration) Carnegie Mellon University CHARM09, Leimen, Germany One of the last CLEO c events (taken on 3 March 2008) e+e- Ds*+Ds- CLEO

More information

Richard Williams. Hèlios Sanchis-Alepuz

Richard Williams. Hèlios Sanchis-Alepuz Richard Williams Hèlios Sanchis-Alepuz Introduction 2 Idea: Information on hadron properties encoded in Green s functions EM form-factors Dyson-Schwinger Approach Nonpert. Covariant Multi-scale Symmetries

More information

Properties of ground and excited state hadrons from lattice QCD

Properties of ground and excited state hadrons from lattice QCD Properties of ground and excited state hadrons from lattice QCD Daniel Mohler TRIUMF, Theory Group Vancouver, B.C., Canada Newport News, March 22 200 Co-Workers: Christof Gattringer, Christian Lang, Georg

More information

Exotic hadronic states XYZ

Exotic hadronic states XYZ Exotic hadronic states XYZ Yu-Ping Guo (KPH, Mainz University) International School of Nuclear Physics 37 th Course Probing Hadron Structure with lepton and Hadron Beams Erice-Sicily September 16-4, 15

More information

A Simple Idea for Lattice QCD at Finite Density

A Simple Idea for Lattice QCD at Finite Density A Simple Idea for Lattice QCD at Finite Density Rajiv V. Gavai Theoretical Physics Department Tata Institute of Fundamental Research Mumbai and Sayantan Sharma Physics Department Brookhaven National Laboratory

More information

arxiv: v1 [hep-lat] 3 Nov 2009

arxiv: v1 [hep-lat] 3 Nov 2009 SU(2 chiral fits to light pseudoscalar masses and decay constants arxiv:0911.0472v1 [hep-lat] 3 Nov 2009 The MILC Collaboration: A. Bazavov, W. Freeman and D. Toussaint Department of Physics, University

More information

Hadronic physics from the lattice

Hadronic physics from the lattice Hadronic physics from the lattice Chris Michael c.michael@liv.ac.uk University of Liverpool Hadronic physics from the lattice p.1/24 Hadronic Structure - Introduction What are hadrons made of? Is a meson

More information

The light hadron spectrum from lattice QCD

The light hadron spectrum from lattice QCD Ch. Hoelbling with S. Durr Z. Fodor J. Frison S. Katz S. Krieg T. Kurth L. Lellouch Th. Lippert K. Szabo G. Vulvert The Budapest-Marseille-Wuppertal collaboration Rab 2008 Outline 1 Motivation 2 Setup

More information

Isospin and Electromagnetism

Isospin and Electromagnetism Extreme Scale Computing Workshop, December 9 11, 2008 p. 1/11 Isospin and Electromagnetism Steven Gottlieb Extreme Scale Computing Workshop, December 9 11, 2008 p. 2/11 Questions In the exascale era, for

More information

Review of Standard Tau Decays from B Factories

Review of Standard Tau Decays from B Factories Review of Standard Tau Decays from B Factories Fabrizio Salvatore, RHUL Tau mass measurement Tau decays to strange particles: - Measurement of V us using τ s decays - τ KKπν τ, KKKν τ branching fractions

More information

The heavy-light sector of N f = twisted mass lattice QCD

The heavy-light sector of N f = twisted mass lattice QCD The heavy-light sector of N f = 2 + 1 + 1 twisted mass lattice QCD Marc Wagner Humboldt-Universität zu Berlin, Institut für Physik mcwagner@physik.hu-berlin.de http://people.physik.hu-berlin.de/ mcwagner/

More information

Heavy quark physics with NRQCD bs and light dynamical quarks Christine Davies

Heavy quark physics with NRQCD bs and light dynamical quarks Christine Davies Heavy quark physics with NRQCD bs and light dynamical quarks Christine Davies University of Glasgow HPQCD and UKQCD collaborations Key aim of HPQCD collabn: accurate calcs in lattice QCD, emphasising heavy

More information

Relativistic heavy quarks on the lattice

Relativistic heavy quarks on the lattice Relativistic heavy quarks on the lattice Christine Davies University of Glasgow HPQCD collaboration ECT* workshop April 2012 Charm and bottom physics Lattice QCD calculations important because: simple

More information

EFT as the bridge between Lattice QCD and Nuclear Physics

EFT as the bridge between Lattice QCD and Nuclear Physics EFT as the bridge between Lattice QCD and Nuclear Physics David B. Kaplan QCHSVII Ponta Delgada, Açores, September 2006 National Institute for Nuclear Theory Nuclear physics from lattice QCD? Not yet,

More information

Critical Behavior of heavy quarkonia in medium from QCD sum rules

Critical Behavior of heavy quarkonia in medium from QCD sum rules Critical Behavior of heavy quarkonia in medium from QCD sum rules Kenji Morita Institute of Physics and Applied Physics, Yonsei University in Collaboration with Su Houng Lee Aim of this talk: 1. Practical

More information

Hybrid Quarkonia with Dynamical Sea Quarks

Hybrid Quarkonia with Dynamical Sea Quarks Hybrid Quarkonia with Dynamical Sea Quarks CP-PACS Collaboration 1 T. Manke, 1 A. Ali Khan, 2 S. Aoki, 1,2 R. Burkhalter, 1 S. Ejiri, 3 M. Fukugita, 4 S. Hashimoto, 1,2 N. Ishizuka, 1,2 Y. Iwasaki, 1,2

More information

the excited spectrum of QCD

the excited spectrum of QCD the excited spectrum of QCD the spectrum of excited hadrons let s begin with a convenient fiction : imagine that QCD were such that there was a spectrum of stable excited hadrons e.g. suppose we set up

More information

National Accelerator Laboratory

National Accelerator Laboratory Fermi National Accelerator Laboratory FERMILAB-Conf-99/278-T The Heavy Hybrid Spectrum from NRQCD and the Born-Oppenheimer Approximation K.J. Juge, J. Kuti and C.J. Morningstar Fermi National Accelerator

More information

Lattice QCD calculation of nucleon charges g A, g S and g T for nedm and beta decay

Lattice QCD calculation of nucleon charges g A, g S and g T for nedm and beta decay 1 / 49 Lattice QCD calculation of nucleon charges g A, g S and g for nedm and beta decay Boram Yoon Los Alamos National Laboratory with. Bhattacharya, V. Cirigliano, R. Gupta, H. Lin PNDME Collaboration

More information