Logarithmic Functions and Their Graphs

Size: px
Start display at page:

Download "Logarithmic Functions and Their Graphs"

Transcription

1 Section 3. Logarithmic Functions and Their Graphs Look at the graph of f(x) = x Does this graph pass the Horizontal Line Test? es What does this mean? that its inverse is a function Find the inverse of = a x. (switch x and and solve for ) = a x x = a *We don t know how to solve for!!!

2 Section 3. Definition: The function given b f(x) = log a x, where x > 0, a > 0, and a, is called the logarithmic function with base a. It is the inverse of the exponential function f(x) = a x. *Thus, = log a x is equivalent x = a. (The both name the inverse of = a x.) Working definition: The log of a number is the exponent that ou put on the base to get that number. (Memorize this!) **Remember: The logarithm is an exponent. Examples: Solve. (a) log 3 (b) log (c) log

3 Section 3. (d) log 4 (e) Evaluate f x) log x ( for x=8 4 ( ) f (8) 8 3 log log 8 8 (f) Evaluate log 0.5 (g) Evaluate log **To find the log of a number, write it in exponential form, get the bases the same, and the set the exponents equal and solve. 3

4 Section 3. Common Logarithms Because we are working in a base 0 number sstem, we call the logarithmic function with base 0 the common logarithmic function. This is the function that corresponds to the LOG button on our calculators. The common logarithmic function is one function for which we need not write the base. Examples: Find the following: (a) log0 (b) log (c) log3. 5 (d) log( ) Error NONREAL ANS Note: 0 = - will never happen. Graphing Logarithmic Functions On our calculator, graph = 0 x = log x = x 4

5 Section 3. = 0 x = x = log x *Notice that for = log x, we don t use an x-values to the left of zero. That is wh we could not put in - for x in the example, because - is not in the domain of = log x. Basic Characteristics of Logarithmic Graphs f(x) = log a x. The domain is (0, ).. The range is (-, ). 3. The x-intercept is (, 0). 4. The -axis is a vertical asmptote. 5. The function is increasing (a > 0). 6. The function is continuous. 7. The function passes the Horizontal Line test (ie. it is one-to-one) so it has an inverse function. 8. The function is a reflection of = a x over the line =x. 5

6 Section 3. Rigid Transformations Graph the following: = log x = log(x+) = log(x) = log(x+) = log(x) What kind of transformations do we have? = log(x+) is =log x shifted units to the left. = log(x) is = log x shifted unit down. What would =log(x+3) + 7 look like? =log(x+3) + 7 would be = log x shifted 3 units left and 7 units up. 6

7 Section 3. =log(x+3) + 7 Properties of Logarithms. log a = 0. log a a = 3. log a a x = x and a log ax = x 4. If log a x = log a, then x =. Examples: Solve the following equations: (a) log 5 x = log 5 8 (b) log 5 = x x = 8 5 x = x = 0 7

8 Section 3. c) log 7 x = 7 = x x = 7 Examples: Simplif the following: (a) log 6 6 x (b) 5 log 50 6 n = 6 x 5 log 50 = 0 n = x The Natural Logarithmic Function Remember f(x) = e x (where e.7) The inverse would be f(x) = log e x. Since this is used a great deal, we have a notation (and button on our calculator dedicated to it. Definition: The logarithmic function with base e is denoted f(x) = ln x *Remember that ln x is just logex. 8

9 Section 3. Properties of Natural Logarithms 5. ln = 0 6. ln e = 7. ln e x = x and e ln x = x 8. If ln x = ln, then x =. Examples: Evaluate the following: e (a) ln e 5 (b) e ln3 (c) ln e 5 3 ln e - = - Examples: Use our calculator to find the following. (a) ln 3 (b) ln 0. (c) ln (-) (d) ln(+ 5 ) Error.74 *Look at the graph of = ln x. Just as with = log x a, we cannot take the log of a negative number. = ln x 9

10 Section 3. Finding the Domain of the Logarithmic Function The domain of f(x) = log x and f(x) = ln x is (0, ) (a) What is the domain of f(x) = log(x+)? We must have x+ > 0 since what we take the log of must not be negative. Solving x+ > 0 we get x > -, so the domain is (-, ). *Note: This makes sense, because we know that f(x) = log (x+) is f(x) = log x shifted units left. The vertical asmptote of f(x) = log x is the -axis (x=0). The vertical asmptote of f(x) = log(x+) is x= -. = log(x+) 0

11 Section 3. (b) What is the domain of ln(3 - x)? We must have 3 x > 0 -x > -3 x < 3, so the domain is (-, 3) ln(3 x) (c) What is the domain of ln x? x >0, which means x > 0 or x < 0 (ie. x can be anthing but 0) So the domain is (-, 0) (0, ) ln x

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

Intermediate Algebra Chapter 12 Review

Intermediate Algebra Chapter 12 Review Intermediate Algebra Chapter 1 Review Set up a Table of Coordinates and graph the given functions. Find the y-intercept. Label at least three points on the graph. Your graph must have the correct shape.

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED FOM 11 T1 SYSTEMS OF LINEAR INEQUALITIES 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) A SYSTEM OF LINEAR INEQUALITIES = a problem where or more inequalities are graphed on the same grid, the solution

More information

If a function has an inverse then we can determine the input if we know the output. For example if the function

If a function has an inverse then we can determine the input if we know the output. For example if the function 1 Inverse Functions We know what it means for a relation to be a function. Every input maps to only one output, it passes the vertical line test. But not every function has an inverse. A function has no

More information

Example. Determine the inverse of the given function (if it exists). f(x) = 3

Example. Determine the inverse of the given function (if it exists). f(x) = 3 Example. Determine the inverse of the given function (if it exists). f(x) = g(x) = p x + x We know want to look at two di erent types of functions, called logarithmic functions and exponential functions.

More information

Section 6.1: Composite Functions

Section 6.1: Composite Functions Section 6.1: Composite Functions Def: Given two function f and g, the composite function, which we denote by f g and read as f composed with g, is defined by (f g)(x) = f(g(x)). In other words, the function

More information

Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function.

Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function. Test Instructions Objectives Section 5.1 Section 5.1 Determine if a function is a polynomial function. State the degree of a polynomial function. Form a polynomial whose zeros and degree are given. Graph

More information

POD. A) Graph: y = 2e x +2 B) Evaluate: (e 2x e x ) 2 2e -x. e 7x 2

POD. A) Graph: y = 2e x +2 B) Evaluate: (e 2x e x ) 2 2e -x. e 7x 2 POD A) Graph: y = 2e x +2 B) Evaluate: (e 2x e x ) 2 2e -x e 7x 2 4.4 Evaluate Logarithms & Graph Logarithmic Functions What is a logarithm? How do you read it? What relationship exists between logs and

More information

Logarithms Dr. Laura J. Pyzdrowski

Logarithms Dr. Laura J. Pyzdrowski 1 Names: (8 communication points) About this Laboratory An exponential function of the form f(x) = a x, where a is a positive real number not equal to 1, is an example of a one-to-one function. This means

More information

Chapter 3. Exponential and Logarithmic Functions. 3.2 Logarithmic Functions

Chapter 3. Exponential and Logarithmic Functions. 3.2 Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions 3.2 Logarithmic Functions 1/23 Chapter 3 Exponential and Logarithmic Functions 3.2 4, 8, 14, 16, 18, 20, 22, 30, 31, 32, 33, 34, 39, 42, 54, 56, 62, 68,

More information

7.1 Exponential Functions

7.1 Exponential Functions 7.1 Exponential Functions 1. What is 16 3/2? Definition of Exponential Functions Question. What is 2 2? Theorem. To evaluate a b, when b is irrational (so b is not a fraction of integers), we approximate

More information

Bishop Kelley High School Summer Math Program Course: Honors Pre-Calculus

Bishop Kelley High School Summer Math Program Course: Honors Pre-Calculus 017 018 Summer Math Program Course: Honors Pre-Calculus NAME: DIRECTIONS: Show all work in the packet. Make sure you are aware of the calculator policy for this course. No matter when you have math, this

More information

Logarithmic Functions

Logarithmic Functions Name Student ID Number Group Name Group Members Logarithmic Functions 1. Solve the equations below. xx = xx = 5. Were you able solve both equations above? If so, was one of the equations easier to solve

More information

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS

GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS GUIDED NOTES 6.4 GRAPHS OF LOGARITHMIC FUNCTIONS LEARNING OBJECTIVES In this section, you will: Identify the domain of a logarithmic function. Graph logarithmic functions. FINDING THE DOMAIN OF A LOGARITHMIC

More information

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)}

Linear Equations. Find the domain and the range of the following set. {(4,5), (7,8), (-1,3), (3,3), (2,-3)} Linear Equations Domain and Range Domain refers to the set of possible values of the x-component of a point in the form (x,y). Range refers to the set of possible values of the y-component of a point in

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

8 + 6) x 2 ) y = h(x)

8 + 6) x 2 ) y = h(x) . a. Horizontal shift 6 left and vertical shift up. Notice B' is ( 6, ) and B is (0, 0). b. h(x) = 0.5(x + 6) + (Enter in a grapher to check.) c. Use the graph. Notice A' to see h(x) crosses the x-axis

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

2.2 THE DERIVATIVE 2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 2.4 THE PRODUCT AND QUOTIENT RULES 2.6 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS

2.2 THE DERIVATIVE 2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 2.4 THE PRODUCT AND QUOTIENT RULES 2.6 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS Differentiation CHAPTER 2 2.1 TANGENT LINES AND VELOCITY 2.2 THE DERIVATIVE 2.3 COMPUTATION OF DERIVATIVES: THE POWER RULE 2.4 THE PRODUCT AND QUOTIENT RULES 25 2.5 THE CHAIN RULE 2.6 DERIVATIVES OF TRIGONOMETRIC

More information

Unit 2 Review. No Calculator Allowed. 1. Find the domain of each function. (1.2)

Unit 2 Review. No Calculator Allowed. 1. Find the domain of each function. (1.2) PreCalculus Unit Review Name: No Calculator Allowed 1. Find the domain of each function. (1.) log7 a) g 9 7 b) hlog7 c) h 97 For questions &, (1.) (a) Find the domain (b) Identif an discontinuities as

More information

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x 1. Let f(x) = x 3 + 7x 2 x 2. Use the fact that f( 1) = 0 to factor f completely. (2x-1)(3x+2)(x+1). 2. Find x if log 2 x = 5. x = 1/32 3. Find the vertex of the parabola given by f(x) = 2x 2 + 3x 4. (Give

More information

Overview. Properties of the exponential. The natural exponential e x. Lesson 1 MA Nick Egbert

Overview. Properties of the exponential. The natural exponential e x. Lesson 1 MA Nick Egbert Overview This lesson should alread be familiar to ou from precalculus. But for the sake of completeness and because of their crucial importance, we review some basic properties of the eponential and logarithm

More information

Pre-Calculus Summer Packet

Pre-Calculus Summer Packet 2013-2014 Pre-Calculus Summer Packet 1. Complete the attached summer packet, which is due on Friday, September 6, 2013. 2. The material will be reviewed in class on Friday, September 6 and Monday, September

More information

Exponential and. Logarithmic Functions. Exponential Functions. Logarithmic Functions

Exponential and. Logarithmic Functions. Exponential Functions. Logarithmic Functions Chapter Five Exponential and Logarithmic Functions Exponential Functions Logarithmic Functions Properties of Logarithms Exponential Equations Exponential Situations Logarithmic Equations Exponential Functions

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Final Eam Review MAC 1 Spring 0 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve and check the linear equation. 1) (- + ) - = -( - 7) {-

More information

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ.

The above statement is the false product rule! The correct product rule gives g (x) = 3x 4 cos x+ 12x 3 sin x. for all angles θ. Math 7A Practice Midterm III Solutions Ch. 6-8 (Ebersole,.7-.4 (Stewart DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam. You

More information

Composition of Functions

Composition of Functions Math 120 Intermediate Algebra Sec 9.1: Composite and Inverse Functions Composition of Functions The composite function f g, the composition of f and g, is defined as (f g)(x) = f(g(x)). Recall that a function

More information

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts.

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Math 141 Review for Final The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Part 1 (no calculator) graphing (polynomial, rational, linear, exponential, and logarithmic

More information

A Library of Functions

A Library of Functions LibraryofFunctions.nb 1 A Library of Functions Any study of calculus must start with the study of functions. Functions are fundamental to mathematics. In its everyday use the word function conveys to us

More information

AdvAlg9.7LogarithmsToBasesOtherThan10.notebook. March 08, 2018

AdvAlg9.7LogarithmsToBasesOtherThan10.notebook. March 08, 2018 AdvAlg9.7LogarithmsToBasesOtherThan10.notebook In order to isolate a variable within a logarithm of an equation, you need to re write the equation as the equivalent exponential equation. In order to isolate

More information

Logarithmic and Exponential Equations and Change-of-Base

Logarithmic and Exponential Equations and Change-of-Base Logarithmic and Exponential Equations and Change-of-Base MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to solve exponential equations

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Final Eam Review MAC 1 Fall 011 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve and check the linear equation. 1) (- + ) - = -( - 7) A)

More information

Goal: Simplify and solve exponential expressions and equations

Goal: Simplify and solve exponential expressions and equations Pre- Calculus Mathematics 12 4.1 Exponents Part 1 Goal: Simplify and solve exponential expressions and equations Logarithms involve the study of exponents so is it vital to know all the exponent laws.

More information

4 Exponential and Logarithmic Functions

4 Exponential and Logarithmic Functions 4 Exponential and Logarithmic Functions 4.1 Exponential Functions Definition 4.1 If a > 0 and a 1, then the exponential function with base a is given by fx) = a x. Examples: fx) = x, gx) = 10 x, hx) =

More information

Chapter 8 Notes SN AA U2C8

Chapter 8 Notes SN AA U2C8 Chapter 8 Notes SN AA U2C8 Name Period Section 8-: Eploring Eponential Models Section 8-2: Properties of Eponential Functions In Chapter 7, we used properties of eponents to determine roots and some of

More information

4.4 Graphs of Logarithmic Functions

4.4 Graphs of Logarithmic Functions 590 Chapter 4 Exponential and Logarithmic Functions 4.4 Graphs of Logarithmic Functions In this section, you will: Learning Objectives 4.4.1 Identify the domain of a logarithmic function. 4.4.2 Graph logarithmic

More information

z = log loglog

z = log loglog Name: Units do not have to be included. 2016 2017 Log1 Contest Round 2 Theta Logs and Exponents points each 1 Write in logarithmic form: 2 = 1 8 2 Evaluate: log 5 0 log 5 8 (log 2 log 6) Simplify the expression

More information

MAC Module 8. Exponential and Logarithmic Functions I. Learning Objectives. - Exponential Functions - Logarithmic Functions

MAC Module 8. Exponential and Logarithmic Functions I. Learning Objectives. - Exponential Functions - Logarithmic Functions MAC 1105 Module 8 Exponential and Logarithmic Functions I Learning Objectives Upon completing this module, you should be able to: 1. Distinguish between linear and exponential growth. 2. Model data with

More information

Solutions to the Math 1051 Sample Final Exam (from Spring 2003) Page 1

Solutions to the Math 1051 Sample Final Exam (from Spring 2003) Page 1 Solutions to the Math 0 Sample Final Eam (from Spring 00) Page Part : Multiple Choice Questions. Here ou work out the problems and then select the answer that matches our answer. No partial credit is given

More information

MAC Learning Objectives. Logarithmic Functions. Module 8 Logarithmic Functions

MAC Learning Objectives. Logarithmic Functions. Module 8 Logarithmic Functions MAC 1140 Module 8 Logarithmic Functions Learning Objectives Upon completing this module, you should be able to 1. evaluate the common logarithmic function. 2. solve basic exponential and logarithmic equations.

More information

MAC Module 8 Exponential and Logarithmic Functions I. Rev.S08

MAC Module 8 Exponential and Logarithmic Functions I. Rev.S08 MAC 1105 Module 8 Exponential and Logarithmic Functions I Learning Objectives Upon completing this module, you should be able to: 1. Distinguish between linear and exponential growth. 2. Model data with

More information

+ i sin. + i sin. = 2 cos

+ i sin. + i sin. = 2 cos Math 11 Lesieutre); Exam review I; December 4, 017 1. a) Find all complex numbers z for which z = 8. Write your answers in rectangular non-polar) form. We are going to use de Moivre s theorem. For 1, r

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Fall 2018 Practice Final Exam 2018-12-12 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Graduate T.A. Department of Mathematics Dynamical Systems and Chaos San Diego State University April 9, 11 Definition (Exponential Function) An exponential function with base a is a function of the form

More information

Example 1: Inverse Functions Show that the functions are inverse functions of each other (if they are inverses, )

Example 1: Inverse Functions Show that the functions are inverse functions of each other (if they are inverses, ) p332 Section 5.3: Inverse Functions By switching the x & y coordinates of an ordered pair, the inverse function can be formed. (The domain and range switch places) Denoted by f 1 Definition of Inverse

More information

7.4* General logarithmic and exponential functions

7.4* General logarithmic and exponential functions 7.4* General logarithmic and exponential functions Mark Woodard Furman U Fall 2010 Mark Woodard (Furman U) 7.4* General logarithmic and exponential functions Fall 2010 1 / 9 Outline 1 General exponential

More information

Essential Mathematics

Essential Mathematics Appendix B 1211 Appendix B Essential Mathematics Exponential Arithmetic Exponential notation is used to express very large and very small numbers as a product of two numbers. The first number of the product,

More information

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS

3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Section. Logarithmic Functions and Their Graphs 7. LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Ariel Skelle/Corbis What ou should learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic

More information

Lesson 18: Problem Set Sample Solutions

Lesson 18: Problem Set Sample Solutions Problem Set Sample Solutions Problems 5 7 serve to review the process of computing f(g(x)) for given functions f and g in preparation for work with inverses of functions in Lesson 19. 1. Sketch the graphs

More information

A. Evaluate log Evaluate Logarithms

A. Evaluate log Evaluate Logarithms A. Evaluate log 2 16. Evaluate Logarithms Evaluate Logarithms B. Evaluate. C. Evaluate. Evaluate Logarithms D. Evaluate log 17 17. Evaluate Logarithms Evaluate. A. 4 B. 4 C. 2 D. 2 A. Evaluate log 8 512.

More information

Integral. For example, consider the curve y = f(x) between x = 0 and x = 1, with f(x) = x. We ask:

Integral. For example, consider the curve y = f(x) between x = 0 and x = 1, with f(x) = x. We ask: Integral Integration is an important concept in mathematics, specifically in the field of calculus and, more broadly, mathematical analysis. Given a function ƒ of a real variable x and an interval [a,

More information

Graphing Linear Inequalities

Graphing Linear Inequalities Graphing Linear Inequalities Linear Inequalities in Two Variables: A linear inequality in two variables is an inequality that can be written in the general form Ax + By < C, where A, B, and C are real

More information

Math Practice Exam 3 - solutions

Math Practice Exam 3 - solutions Math 181 - Practice Exam 3 - solutions Problem 1 Consider the function h(x) = (9x 2 33x 25)e 3x+1. a) Find h (x). b) Find all values of x where h (x) is zero ( critical values ). c) Using the sign pattern

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus I - Homework Chapter 2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether the graph is the graph of a function. 1) 1)

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Learning Targets 1. I can evaluate, analyze, and graph exponential functions. 2. I can solve problems involving exponential growth & decay. 3. I can evaluate expressions

More information

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x Math 11. Exponential and Logarithmic Equations Fall 016 Instructions. Work in groups of 3 to solve the following problems. Turn them in at the end of class for credit. Names. 1. Find the (a) exact solution

More information

HONORS PRE-CALCULAUS ACP Summer Math Packet

HONORS PRE-CALCULAUS ACP Summer Math Packet Name Date Section HONORS PRE-CALCULAUS ACP Summer Math Packet For all incoming Honors Pre-Calculus ACP students, the summer math packet will be on the school website. Students will need to print a cop

More information

Appendix A. Common Mathematical Operations in Chemistry

Appendix A. Common Mathematical Operations in Chemistry Appendix A Common Mathematical Operations in Chemistry In addition to basic arithmetic and algebra, four mathematical operations are used frequently in general chemistry: manipulating logarithms, using

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions 6.3 Logarithmic Functions. 9 = 3 is equivalent to = log 3 9. 6 = 4 is equivalent to = log 4 6 3. a =.6 is equivalent to = log a.6 4. a 3 =. is equivalent

More information

Exploring the Logarithmic Function (PROVING IDENTITIES QUIZ) Transformations of the Logarithmic Function Pg. 457 # 1 4, 7, 9

Exploring the Logarithmic Function (PROVING IDENTITIES QUIZ) Transformations of the Logarithmic Function Pg. 457 # 1 4, 7, 9 UNIT 7 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Date Lesson Text TOPIC Homework Dec. 5 7. 8. Exploring the Logarithmic Function (PROVING IDENTITIES QUIZ) Pg. 5 # 6 Dec. 6 7. 8. Transformations of the Logarithmic

More information

Mth 65 Section 3.4 through 3.6

Mth 65 Section 3.4 through 3.6 Section 3.4 Square Root Functions The key to identifying the equation of a square root function is that the independent variable is under the radical. Which functions are square root functions? g( x) x

More information

44 Wyner PreCalculus Spring 2017

44 Wyner PreCalculus Spring 2017 44 Wyner PreCalculus Spring 207 CHAPTER FIVE: EXPONENTIAL AND LOGARITHMIC FUNCTIONS Review January 30 Test February 7 An exponential function is one with the independent variable in the exponent, such

More information

INTEGER EXPONENTS HOMEWORK. 1. For each of the following, determine the integer value of n that satisfies the equation. The first is done for you.

INTEGER EXPONENTS HOMEWORK. 1. For each of the following, determine the integer value of n that satisfies the equation. The first is done for you. Name: Date: INTEGER EXPONENTS HOMEWORK Algebra II INTEGER EXPONENTS FLUENCY. For each of the following, determine the integer value of n that satisfies the equation. The first is done for ou. n = 8 n =

More information

Algebra 1 (cp) Midterm Review Name: Date: Period:

Algebra 1 (cp) Midterm Review Name: Date: Period: Algebra 1 (cp) Midterm Review Name: Date: Period: Chapter 1 1. Evaluate the variable expression when j 4. j 44 [1] 2. Evaluate the variable expression when j 4. 24 j [2] 3. Find the perimeter of the rectangle.

More information

Exp, Log, Poly Functions Quarter 3 Review Name

Exp, Log, Poly Functions Quarter 3 Review Name Exp, Log, Poly Functions Quarter 3 Review Name Textbook problems for practice: p. 285-293; p. 293 #9-14, p. 294-5 #1-34, 49-52, 55,56, 57; p. 297-321 logs; p. 280-1 #11-84 *Blood Alcohol, Bungee-from binder

More information

CHAPTER 5: Exponential and Logarithmic Functions

CHAPTER 5: Exponential and Logarithmic Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 5: Exponential and Logarithmic Functions 5.1 Inverse Functions 5.2 Exponential Functions and Graphs 5.3 Logarithmic Functions

More information

Assignment 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assignment 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assignment 5 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. For the given functions f and g, find the requested composite function. 1) f(x)

More information

SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer.

SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Math 131 Group Review Assignment (5.5, 5.6) Print Name SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Solve the logarithmic equation.

More information

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee

Numerical Methods. Exponential and Logarithmic functions. Jaesung Lee Numerical Methods Exponential and Logarithmic functions Jaesung Lee Exponential Function Exponential Function Introduction We consider how the expression is defined when is a positive number and is irrational.

More information

AP CALCULUS AB SUMMER ASSIGNMNET NAME: READ THE FOLLOWING DIRECTIONS CAREFULLY

AP CALCULUS AB SUMMER ASSIGNMNET NAME: READ THE FOLLOWING DIRECTIONS CAREFULLY AP CALCULUS AB SUMMER ASSIGNMNET NAME: READ THE FOLLOWING DIRECTIONS CAREFULLY 1. This packet is to be handed in on the first day of school. 2. All work must be shown in the space provided in the packet.

More information

Exponential Functions Dr. Laura J. Pyzdrowski

Exponential Functions Dr. Laura J. Pyzdrowski 1 Names: (4 communication points) About this Laboratory An exponential function is an example of a function that is not an algebraic combination of polynomials. Such functions are called trancendental

More information

Important Math 125 Definitions/Formulas/Properties

Important Math 125 Definitions/Formulas/Properties Exponent Rules (Chapter 3) Important Math 125 Definitions/Formulas/Properties Let m & n be integers and a & b real numbers. Product Property Quotient Property Power to a Power Product to a Power Quotient

More information

Math 111: Final Review

Math 111: Final Review Math 111: Final Review Suggested Directions: Start by reviewing the new material with the first portion of the review sheet. Then take every quiz again as if it were a test. No book. No notes. Limit yourself

More information

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4)

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4) Advanced College Prep Pre-Calculus Midyear Exam Review Name Date Per List the intercepts for the graph of the equation. 1) x2 + y - 81 = 0 1) Graph the equation by plotting points. 2) y = -x2 + 9 2) List

More information

There are four irrational roots with approximate values of

There are four irrational roots with approximate values of Power of the Quadratic Formula 1 y = (x ) - 8(x ) + 4 a = 1, b = -8, c = 4 Key 1. Consider the equation y = x 4 8x + 4. It may be a surprise, but we can use the quadratic formula to find the x-intercepts

More information

Math M110: Lecture Notes For Chapter 12 Section 12.1: Inverse and Composite Functions

Math M110: Lecture Notes For Chapter 12 Section 12.1: Inverse and Composite Functions Math M110: Lecture Notes For Chapter 12 Section 12.1: Inverse and Composite Functions Inverse function (interchange x and y): Find the equation of the inverses for: y = 2x + 5 ; y = x 2 + 4 Function: (Vertical

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Lesson 6 Eponential and Logarithmic Fu tions Lesson 6 Eponential and Logarithmic Functions Eponential functions are of the form y = a where a is a constant greater than zero and not equal to one and is

More information

MATH 121 Precalculus Practice problems for Exam 1

MATH 121 Precalculus Practice problems for Exam 1 MATH 11 Precalculus Practice problems for Eam 1 1. Analze the function and then sketch its graph. Find - and -intercepts of the graph. Determine the behavior of the graph near -intercepts. Find the vertical

More information

115.3 Assignment #9 Solutions

115.3 Assignment #9 Solutions 115. Assignment #9 Solutions-1 115. Assignment #9 Solutions 8.1-12 Solve the differential equation d dx = 2(1 ), where 0 = 2 for x 0 = 0. d 1 = 2dx d 1 = 2dx ln 1 =2x + C Find C b inserting the Initial

More information

every hour 8760 A every minute 525,000 A continuously n A

every hour 8760 A every minute 525,000 A continuously n A In the previous lesson we introduced Eponential Functions and their graphs, and covered an application of Eponential Functions (Compound Interest). We saw that when interest is compounded n times per year

More information

Algebra 2 End of Year Practice Exam Specification Sheet

Algebra 2 End of Year Practice Exam Specification Sheet Algebra End of Year Practice Exam Specification Sheet Free Response (Vocabular, Knowledge, Concepts, Explanations). Properties of real numbers. Procedure (write procedure or process). Concept development/linkage

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. 3 Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 3.2 Logarithmic Functions and Their Graphs Copyright Cengage Learning. All rights reserved. What You Should Learn

More information

b g if f x x x x x x

b g if f x x x x x x 1. Find the product, if possible. AB, if A = 0 1, 4 1 0 4 4 3 15 B = 1 4 0 1 4 1 16 6 1 4 1 0 4 7 0 0 16 0 1 0 0 4 3 4 15. Find the equation of the parabola with vertex at the origin that passes through

More information

MATH 408N PRACTICE MIDTERM 1

MATH 408N PRACTICE MIDTERM 1 02/0/202 Bormashenko MATH 408N PRACTICE MIDTERM Show your work for all the problems. Good luck! () (a) [5 pts] Solve for x if 2 x+ = 4 x Name: TA session: Writing everything as a power of 2, 2 x+ = (2

More information

6.1 Polynomial Functions

6.1 Polynomial Functions 6.1 Polynomial Functions Definition. A polynomial function is any function p(x) of the form p(x) = p n x n + p n 1 x n 1 + + p 2 x 2 + p 1 x + p 0 where all of the exponents are non-negative integers and

More information

AP Calculus Summer Packet

AP Calculus Summer Packet AP Calculus Summer Packet Writing The Equation Of A Line Example: Find the equation of a line that passes through ( 1, 2) and (5, 7). ü Things to remember: Slope formula, point-slope form, slopeintercept

More information

YOU CAN BACK SUBSTITUTE TO ANY OF THE PREVIOUS EQUATIONS

YOU CAN BACK SUBSTITUTE TO ANY OF THE PREVIOUS EQUATIONS The two methods we will use to solve systems are substitution and elimination. Substitution was covered in the last lesson and elimination is covered in this lesson. Method of Elimination: 1. multiply

More information

Lesson 4b More on LOGARITHMS

Lesson 4b More on LOGARITHMS Lesson 4b More on LOGARITHMS Learning Packet Student Name Due Date Class Time/Day Submission Date THIS BOX FOR INSTRUCTOR GRADING USE ONLY Mini-Lesson is complete and information presented is as found

More information

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number.

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number. L7-1 Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions Recall that a power function has the form f(x) = x r where r is a real number. f(x) = x 1/2 f(x) = x 1/3 ex. Sketch the graph of

More information

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. ( x 1 + x 2 2., y 1 + y 2. (x h) 2 + (y k) 2 = r 2. m = y 2 y 1 x 2 x 1

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. ( x 1 + x 2 2., y 1 + y 2. (x h) 2 + (y k) 2 = r 2. m = y 2 y 1 x 2 x 1 Internet Mat117 Formulas and Concepts 1. The distance between the points A(x 1, y 1 ) and B(x 2, y 2 ) in the plane is d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 2. The midpoint of the line segment from A(x

More information

REVIEW. log e. log. 3 k. x 4. log ( x+ 3) log x= ,if x 2 y. . h

REVIEW. log e. log. 3 k. x 4. log ( x+ 3) log x= ,if x 2 y. . h Math REVIEW Part I: Problems Simplif (without the use of calculators) ln log 000 e 0 k = k = k 7 log ( ) 8 lo g (log ) Solve the following equations/inequalities Check when necessar 8 =0 9 0 + = log (

More information

PRACTICE FINAL EXAM. 3. Solve: 3x 8 < 7. Write your answer using interval notation. Graph your solution on the number line.

PRACTICE FINAL EXAM. 3. Solve: 3x 8 < 7. Write your answer using interval notation. Graph your solution on the number line. MAC 1105 PRACTICE FINAL EXAM College Algebra *Note: this eam is provided as practice onl. It was based on a book previousl used for this course. You should not onl stud these problems in preparing for

More information

Semester Review Packet

Semester Review Packet MATH 110: College Algebra Instructor: Reyes Semester Review Packet Remarks: This semester we have made a very detailed study of four classes of functions: Polynomial functions Linear Quadratic Higher degree

More information

LESSON #48 - INTEGER EXPONENTS COMMON CORE ALGEBRA II

LESSON #48 - INTEGER EXPONENTS COMMON CORE ALGEBRA II LESSON #8 - INTEGER EXPONENTS COMMON CORE ALGEBRA II We just finished our review of linear functions. Linear functions are those that grow b equal differences for equal intervals. In this unit we will

More information

We want to determine what the graph of an exponential function. y = a x looks like for all values of a such that 0 > a > 1

We want to determine what the graph of an exponential function. y = a x looks like for all values of a such that 0 > a > 1 Section 5 B: Graphs of Decreasing Eponential Functions We want to determine what the graph of an eponential function y = a looks like for all values of a such that 0 > a > We will select a value of a such

More information

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2., y 1 + y 2. ( x 1 + x 2 2

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2., y 1 + y 2. ( x 1 + x 2 2 Internet Mat117 Formulas and Concepts 1. The distance between the points A(x 1, y 1 ) and B(x 2, y 2 ) in the plane is d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 2. The midpoint of the line segment from A(x

More information

6.4 graphs OF logarithmic FUnCTIOnS

6.4 graphs OF logarithmic FUnCTIOnS SECTION 6. graphs of logarithmic functions 9 9 learning ObjeCTIveS In this section, ou will: Identif the domain of a logarithmic function. Graph logarithmic functions. 6. graphs OF logarithmic FUnCTIOnS

More information

Week 8 Exponential Functions

Week 8 Exponential Functions Week 8 Exponential Functions Many images below are excerpts from the multimedia textbook. You can find them there and in your textbook in sections 4.1 and 4.2. With the beginning of the new chapter we

More information

Final Exam A Name. 20 i C) Solve the equation by factoring. 4) x2 = x + 30 A) {-5, 6} B) {5, 6} C) {1, 30} D) {-5, -6} -9 ± i 3 14

Final Exam A Name. 20 i C) Solve the equation by factoring. 4) x2 = x + 30 A) {-5, 6} B) {5, 6} C) {1, 30} D) {-5, -6} -9 ± i 3 14 Final Exam A Name First, write the value(s) that make the denominator(s) zero. Then solve the equation. 1 1) x + 3 + 5 x - 3 = 30 (x + 3)(x - 3) 1) A) x -3, 3; B) x -3, 3; {4} C) No restrictions; {3} D)

More information