U.S. South America Workshop. Mechanics and Advanced Materials Research and Education. Rio de Janeiro, Brazil. August 2 6, Steven L.


 Bruno Bryan
 1 years ago
 Views:
Transcription
1 Computational Modeling of Composite and Functionally Graded Materials U.S. South America Workshop Mechanics and Advanced Materials Research and Education Rio de Janeiro, Brazil August 2 6, 2002 Steven L. Crouch Department of Civil Engineering University of Minnesota
2 Research Group Jianlin Wang Sonia Mogilevskaya Yun Huang Lisa Gordeliy Benoît Legros Hamid Sadraie
3 FiberReinforced Composite Materials 2D model y matrix unit cell x interphases fiber
4 Standard Numerical Methods Finite element method Boundary element method Finite element mesh (after Wacker et al., 1998)
5 Our Approach Direct boundary integral method Approximation of the unknowns by Fourier Series or Spherical Harmonics Complex (for plane problems) or real variables formalism
6 Direct Boundary Integral Method u, n u s,σ, σ n s s Governing differential equations + Boundary conditions Enrico Betti n Fundamental solution Fundamental solution (e.g. point force in plane) L Integral identities (e.g. reciprocal theorem) Boundary Integral Equation
7 Fourier Series On the Propagation of Heat in Solid Bodies, 1807 Jean Baptiste Joseph Fourier f ( x) = 1 2 m= 1 a0 + an cosmx + bn sin mx m= 1 sin mx, cosmx [ 0, 2π ] z j R j θ j τ a complete orthogonal system over [ c ϕ ( x) + c ϕ ( x) + c N ϕ ( x) ] 0 f ( x) N N
8 Spherical Harmonics William Thomson (Lord Kelvin) T&T Treatise on Natural Philosophy (1867) Y + n Surface harmonics ( θ, ϕ ) = A P ( cosθ ) n m m m { A cosmϕ + B sin mϕ} T ( cosθ ) n n n m= 1 n n A complete orthogonal system Over the unit sphere (Lyapunov, 1899) Peter Guthrie Tait f ( θ, ϕ ) ( θ, ϕ ) = n=0 Y n
9 Algorithm (perfect bond between the constituents) 1. Fix number of terms in Fourier series 2. Solve linear algebraic system (error δ1) 3. Estimate an error for each inclusion (error δ2) 4. Increase number of terms in Fourier series by some value 5. Steps 24 repeated until error δ2 is met 6. Displacements, stresses and strains calculated in the matrix and the inclusions
10 Error Estimation Use the displacements at the boundaries as the unknowns to form a system of equations Calculate stresses at the boundaries Compare the stresses at a number of uniformly distributed points t 2 t 1 max t= t 1,..., t K { ε } t δ 2 t K
11 Numerical Example Multiple cracks and circular inhomogeneities in an infinite domain subjected to uniaxial tension in the x direction; contours of σ xx
12 Imperfect Interface Models Springtype interface Partial debonding p Γ j p R j p z j p Γ j p R j p z j debonding p p µ j ν j p p µ j ν j Explicit presence of interphase layers p Γj1 p R j 1 p z j 1 p Γ p j0 Rj 0 p z j 0 p p µ j 0 ν j0 p p µ j1 ν j1 p Γ jn p R jn p Rj 0 p z j p p µ j 0 ν j 0 p Γ j0 p µ j (r) p ν j (r)
13 Numerical Example σ 0 material ν E/ Ematrix inclusion y matrix compl.co x stiff co δ = 10 ; δ 2 = terms
14 Numerical Results 2.5 perfect bond stiff coating 2.0 interphase compliant coating interphase 1.5 σ eff 1.0 matrix inclusion matrix
15 Inclusion with Interface Crack (Toya, 1974) σ 0 y ϕ µ,ν µ', ν ' 2α x
16 Computed radial and shear stresses (open circles) compared with analytical solution (solid lines); N=180 σ rr /σ µ ' = 44.2GN / m, ν ' = 0.22, µ = 2.39GN / m α = ϕ = 30 σ rθ /σ , ν ' = Angle, (a) θ Angle, (b) θ
17 Computed radial and shear displacement discontinuities (open circles) compared with analytical solution (solid lines); N= u r 0.10 / a, u θ 0.10 / a, Angle, (a) θ Angle, (b) θ
18 Example debonding of single inclusion σ = σ yy 0 y µ,ν x µ ' = µ, ν ' = ν Smooth interface: Stippes, Wilson, and Krull (1966) Rough interface: Hussain and Pu (1971)
19 Radial stress in zone of contact for smooth inclusion: solid line is analytical solution; open circles are computed results /σ 0 σ rr Angle,θ
20 Circumferential stress for smooth inclusion: solid line is analytical solution; open circles are computed results /σ 0 σ θθ Angle, θ 1.0
21 Comparison of computed radial (a) and shear (b) stresses for rough inclusion: solid lines are results from Fourier series approach /σ 0 σ rr 0.3 σ rθ /σ Angle, θ (a) Angle, θ (b)
22 Modeling evolving damage Initial attempt: Increment loading Use MohrCoulomb criterion σ r θ c σ rr tanφ ; σ rr T φ σ rθ c T c σ rr φ (c is cohesion; is angle of friction; T is tensile strength) Allow slip, separation (cracking); prohibit overlapping of displacement discontinuities during iteration
23 Issues Crack initiation and propagation are problems: If no crack is present then no stress raiser exists; Small crack produces locally high stresses crack grows too much using tensile stress criterion Cannot calculate stress intensity factors Better to integrate stresses over a characteristic length? (What should this be?) Work is continuing
24 Effect of Free Boundary u, n u s,σ, σ n s s single inclusion Melan s fundamental solution (point force in a halfplane) L n Just few results were available and they were contradictory FS = FS + M K FS ad
25 A Single Inclusion Close to the Boundary µ matrix = 1.0, ν = 0.3; µ = 100.0, ν = 0.3, R / d = matrix inc inc terms ( σ σ )/ σ xx Contours of 1 2
26 40 Regularly Distributed Inclusions µ matrix = matrix inclusion inclusion 1.0, ν = 0.15; µ = 10.0, ν = 103~117 terms 0.35 ( σ σ )/ σ xx Contours of 1 2
27 200 Randomly Distributed Inclusions ( σ σ )/ σ xx Contours of 1 2
28 Finite Domain with Circular Boundary 2.00 p = p = p =1. 4 Distribution of σ 1 σ 2
29 Finite Domain with Convex Polygonal Boundaries D A C B Embed a domain of interest in a fictitious circular domain Apply load at the boundary of the circle to satisfy (in a least squares sense) boundary conditions on the physical domain
30 Effective (macroscopic properties) 3.00 γ = 10,000 ( rigid inclusion) γ = γ = µ i /µ 0 γ = 5.0 E eff /E γ = 2.0 Labuz & Carvalho (1996) γ = 1.0 γ = 0.5 γ = Fiber volume ratio γ = 0 ( hole)
31 Effective Properties (epoxy matrix, Eglass fiber) 0.34 ; 12 8, 6, 4, 0.34 ; ; 84 int int = = = = = = erphase erphase matrix Matrix fiber fiber GPA E GPA E GPA E ν ν ν m h V m R f fiber µ µ % ; 8.5 = = = y D C A B x b
32 Variation of Effective Young s Modulus E inter (GPA) µ m µ m µ m µ m h = 1. 0 h = 0.5 h = 0. 1 h =
33 Fast Solvers V. Rokhlin, 1985 L. Greengard and V. Rokhlin, 1987 Data information 10,000 inclusions with 0.5 filling ratio Computation time (1.5GHz CPU) Direct method 1.5 months Singlelevel FMA 6 hours Multilevel FMA 2 hours
34 5,000 inclusions of random sizes and elastic properties under a uniaxial stress at infinity σ =1.0 ; Contours of σ xx xx
35 Comparison of the Algorithm Complexity direct algorithm singlelevel fast multipole algorithm multilevel fast multipole algorithm 10 5 CPU time in seconds number of degrees of freedom
36 Modeling of Graded Composite Materials 1.0 µ particle /µ matrix = 10; Contours of σ yy 1.0
37 Modeling of Graded Composite Materials (continued) 1.0 µ particle /µ matrix = 10; Contours of σ yy 1.0
38 Linear Viscoelasticity; Boltzmann model E ve E e σ η ve σ ε e ε ve One dimensional representation Stress Constant strains applied Strain Constant stresses applied Time Time Relaxation curve Creep curve
39 Example  Two inclusions and two holes C D E 1,ν 1 E 2,ν2 Stress (MPa) CANSYS CBoundary integral DANSYS DBoundary integral Time (second) Ee,Eve,ν, η 0.6 Computational costs Displacement (mm) CANSYS CBoundary integral DANSYS DBoundary integral Boundary integral method: 8 minutes, terms in Fourier series ANSYS: 11 hours, 20,375 elements Time (second)
40 25 Elastic Inclusions in a Viscoelastic Plane d y G i, ν i σ 0 r i G, G ve, ν, γ (= θ λ = θ µ ) x σ 0
41 Some Results 2.0 γ t / = t / γ = 0.01 t / γ = yy 0 σ /σ x / d σ yy / σ 0 on the line y = 0
42 25 Spherical Cavities in yz Plane z y x
43 . 0 Contours of σ / σ (0) near yy yy cavity # z y
44 Transient Heat Conduction in Composite Materials T ( x, t) Integral Identity = α t 0 Ω T ( s, τ ) G( s, τ ) n Method of Solution G( s, τ ) T ( s, τ ) dsdτ n T(x,t) is the temperature at point x at time t G(s,t) is the Green s Function Analytical space integration Approximation of temperature and flux on the boundary in Fourier series Laplace transform in time to solve boundary integral equations Verification of the results Results for one disc and one cavity agree with solution by Carslaw and Jaeger (Conduction of Heat in Solids, 1946)
45 Future Work Microcontinuum models Objectives Extend existing continuum models to account for microscopic space scale and strain gradient effects (nonlocal constitutive behavior) Examine wellestablished microcontinuum theories (e.g. Mindlin s microstructure theory) Develop a computational basis for modeling micro and macroscopic behavior of materials with microstructure Benefits Incorporate size effects Address boundary layer effects Obtain more realistic results for critical regions of high deformation gradients
46 Other Future Work Continue to work on 3D Loosening of Inclusions Viscoelasticity Transient thermoelasticity Functionally graded materials?
Loss Amplification Effect in Multiphase Materials with Viscoelastic Interfaces
Loss Amplification Effect in Multiphase Materials with Viscoelastic Interfaces Andrei A. Gusev Institute of Polymers, Department of Materials, ETHZürich, Switzerland Outlook Lamellar morphology systems
More informationFig. 1. Circular fiber and interphase between the fiber and the matrix.
Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In
More informationMechanics of Earthquakes and Faulting
Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure
More informationDiscrete Element Modelling of a Reinforced Concrete Structure
Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr
More informationMechanics of Earthquakes and Faulting
Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure
More informationMICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING
MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING N. Krishna Vihari 1, P. Phani Prasanthi 1, V. Bala Krishna Murthy 2* and A. Srihari Prasad 3 1 Mech. Engg. Dept., P. V. P. Siddhartha
More informationNonlinear Analysis of Reinforced Concrete Shells Subjected to Impact Loads
Transactions of the 7 th International Conference on Structural Mechanics in Reactor Technology (SMiRT 7) Prague, Czech Republic, August 7, 00 Paper # J0 Nonlinear Analysis of Reinforced Concrete Shells
More informationMicromechanical analysis of FRP hybrid composite lamina for inplane transverse loading
Indian Journal of Engineering & Materials Sciences Vol. 15, October 2008, pp. 382390 Micromechanical analysis of FRP hybrid composite lamina for inplane transverse loading K Sivaji Babu a *, K Mohana
More informationMMJ1133 FATIGUE AND FRACTURE MECHANICS A  INTRODUCTION INTRODUCTION
A  INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A  INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,
More informationFig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.
a). Cohesive Failure b). Interfacial Failure c). Oscillatory Failure d). Alternating Failure Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double
More informationMechanics of Earthquakes and Faulting
Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Overview Milestones in continuum mechanics Concepts of modulus and stiffness. Stressstrain relations Elasticity Surface and body
More informationElastic parameters prediction under dynamic loading based on the. unit cell of composites considering end constraint effect
Elastic parameters prediction under dynamic loading based on the unit cell of composites considering end constraint effect Wang Meng 1,, Fei Qingguo 1,, Zhang Peiwei 1, (1. Institute of Aerospace Machinery
More informationEarthquake and Volcano Deformation
Earthquake and Volcano Deformation Paul Segall Stanford University Draft Copy September, 2005 Last Updated Sept, 2008 COPYRIGHT NOTICE: To be published by Princeton University Press and copyrighted, c
More informationIdentification of interface properties using Fibre Bragg Grating sensors in a fibre pullout test Gabriel Dunkel, Laurent Humbert and John Botsis
Identification of interface properties using Fibre Bragg Grating sensors in a fibre pullout test Gabriel Dunkel, Laurent Humbert and John Botsis Laboratory of Applied Mechanics and Reliability Analysis
More informationThe Rotating Inhomogeneous Elastic Cylinders of. VariableThickness and Density
Applied Mathematics & Information Sciences 23 2008, 237 257 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. The Rotating Inhomogeneous Elastic Cylinders of VariableThickness and
More informationSEMM Mechanics PhD Preliminary Exam Spring Consider a twodimensional rigid motion, whose displacement field is given by
SEMM Mechanics PhD Preliminary Exam Spring 2014 1. Consider a twodimensional rigid motion, whose displacement field is given by u(x) = [cos(β)x 1 + sin(β)x 2 X 1 ]e 1 + [ sin(β)x 1 + cos(β)x 2 X 2 ]e
More informationMEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY SUBJECT CODE: COMRMC MODERATOR: H YILMAZ EXAMINATION DATE: OCTOBER 2017 TIME:
MEMORANDUM SUBJECT: CERTIFICATE IN ROCK MECHANICS PAPER 1 : THEORY EXAMINER: WM BESTER SUBJECT CODE: COMRMC EXAMINATION DATE: OCTOBER 2017 TIME: MODERATOR: H YILMAZ TOTAL MARKS: [100] PASS MARK: (60%)
More informationINTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011
Interlaminar failure analysis of FRP cross ply laminate with elliptical cutout Venkateswara Rao.S 1, Sd. Abdul Kalam 1, Srilakshmi.S 1, Bala Krishna Murthy.V 2 1 Mechanical Engineering Department, P. V.
More informationExercise: concepts from chapter 8
Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic
More informationANALYSIS OF THERMAL STRESSES CONTACT PROBLEM OF FUNCTIONAL MATERIAL INVOLVING FRICTIONAL HEATING WITH AND WITHOUT THERMAL EFFECTS
ANALYSIS OF THERMAL STRESSES CONTACT PROBLEM OF FUNCTIONAL MATERIAL INVOLVING FRICTIONAL HEATING WITH AND WITHOUT THERMAL EFFECTS 1 ANJANI KUMAR SINHA, 2 A. JOHN RAJAN, 3 KUMAR YOGEESH.D, 4 ERIKI ANANDA
More informationHomework Problems. ( σ 11 + σ 22 ) 2. cos (θ /2), ( σ θθ σ rr ) 2. ( σ 22 σ 11 ) 2
Engineering Sciences 47: Fracture Mechanics J. R. Rice, 1991 Homework Problems 1) Assuming that the stress field near a crack tip in a linear elastic solid is singular in the form σ ij = rλ Σ ij (θ), it
More informationFinite Element Method in Geotechnical Engineering
Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 58, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps
More informationModelling and numerical simulation of the wrinkling evolution for thermomechanical loading cases
Modelling and numerical simulation of the wrinkling evolution for thermomechanical loading cases Georg Haasemann Conrad Kloß 1 AIMCAL Conference 2016 MOTIVATION Wrinkles in web handling system Loss of
More informationModule III  Macromechanics of Lamina. Lecture 23. MacroMechanics of Lamina
Module III  Macromechanics of Lamina Lecture 23 MacroMechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the
More informationA simple planestrain solution for functionally graded multilayered isotropic cylinders
Structural Engineering and Mechanics, Vol. 24, o. 6 (2006) 000000 1 A simple planestrain solution for functionally graded multilayered isotropic cylinders E. Pan Department of Civil Engineering, The
More informationGraduate School of Engineering, Kyoto University, Kyoto daigakukatsura, Nishikyoku, Kyoto, Japan.
On relationship between contact surface rigidity and harmonic generation behavior in composite materials with mechanical nonlinearity at fibermatrix interface (Singapore November 2017) N. Matsuda, K.
More information2D Modeling of Elastic Wave Propagation in Solids Containing Closed Cracks with Friction
2D Modeling of Elastic Wave Propagation in Solids Containing Closed Cracks with Friction S. Delrue 1, V. Aleshin 2, O. Bou Matar 2, K. Van Den Abeele 1 1 Wave Propagation & Signal Processing Research Group,
More informationVORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NONLINEAR MATERIALS
The 4 th World Conference on Earthquake Engineering October 7, 008, Beijing, China VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NONLINEAR MATERIALS K.
More informationDebonding process in composites using BEM
Boundary Elements XXVII 331 Debonding process in composites using BEM P. Prochazka & M. Valek Czech Technical University, Prague, Czech Republic Abstract The paper deals with the debonding fibermatrix
More informationMultiscale approach of the mechanical behavior of RC structures Application to nuclear plant containment buildings
Multiscale approach of the mechanical behavior of RC structures Application to nuclear plant containment buildings Martin DAVID June 19, 2012 1 Industrial context EDF is responsible for numerous reinforced
More informationTHREE DIMENSIONAL STRESS ANALYSIS OF THE T BOLT JOINT
THREE DIMENSIONAL STRESS ANALYSIS OF THE T BOLT JOINT Víctor Martínez 1, Alfredo Güemes 2, Norbert Blanco 1, Josep Costa 1 1 Escola Politècnica Superior. Universitat de Girona. Girona, Spain (17071) 2
More informationArchetypeBlending Multiscale Continuum Method
ArchetypeBlending Multiscale Continuum Method John A. Moore Professor Wing Kam Liu Northwestern University Mechanical Engineering 3/27/2014 1 1 Outline Background and Motivation ArchetypeBlending Continuum
More informationASSESSMENT OF MIXED UNIFORM BOUNDARY CONDITIONS FOR PREDICTING THE MACROSCOPIC MECHANICAL BEHAVIOR OF COMPOSITE MATERIALS
ASSESSMENT OF MIXED UNIFORM BOUNDARY CONDITIONS FOR PREDICTING THE MACROSCOPIC MECHANICAL BEHAVIOR OF COMPOSITE MATERIALS Dieter H. Pahr and Helmut J. Böhm Institute of Lightweight Design and Structural
More informationExample3. Title. Description. Cylindrical Hole in an Infinite MohrCoulomb Medium
Example3 Title Cylindrical Hole in an Infinite MohrCoulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elastoplastic
More informationModelling the effects of various contents of fillers on the relaxation rate of filled rubbers
Modelling the effects of various contents of fillers on the relaxation rate of filled rubbers L. Laiarinandrasana, A. Jean, D. Jeulin, S. Forest MINES ParisTech MAT Centre des Matériaux CNRS UMR 7633 BP
More informationMechanics PhD Preliminary Spring 2017
Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n
More informationCohesive Zone Modeling of Dynamic Fracture: Adaptive Mesh Refinement and Coarsening
Cohesive Zone Modeling of Dynamic Fracture: Adaptive Mesh Refinement and Coarsening Glaucio H. Paulino 1, Kyoungsoo Park 2, Waldemar Celes 3, Rodrigo Espinha 3 1 Department of Civil and Environmental Engineering
More informationA circular tunnel in a MohrCoulomb medium with an overlying fault
MAP3D VERIFICATION EXAMPLE 9 A circular tunnel in a MohrCoulomb medium with an overlying fault 1 Description This example involves calculating the stresses and displacements on a fault overlying a 5 m
More informationNumerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach
Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach S. Stefanizzi GEODATA SpA, Turin, Italy G. Barla Department of Structural and Geotechnical Engineering,
More informationMODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE
MODELING OF THE BEHAVIOR OF WOVEN LAMINATED COMPOSITES UNTIL RUPTURE Jean Paul Charles, Christian Hochard,3, Pierre Antoine Aubourg,3 Eurocopter, 375 Marignane cedex, France Unimeca, 6 rue J. Curie, 3453
More informationMICROMECHANICAL MODELS FOR CONCRETE
Chapter 5 MICROMECHANICAL MODELS FOR CONCRETE 5.1 INTRODUCTION In this chapter three micromechanical models will be examined. The first two models are the differential scheme and the MoriTanaka model
More informationCRITERIA FOR SELECTION OF FEM MODELS.
CRITERIA FOR SELECTION OF FEM MODELS. Prof. P. C.Vasani,Applied Mechanics Department, L. D. College of Engineering,Ahmedabad 380015 Ph.(079) 7486320 [R] Email:pcvim@eth.net 1. Criteria for Convergence.
More informationNumerical Simulation of Fatigue Crack Growth: Cohesive Zone Models vs. XFEM
Numerical Simulation of Fatigue Crack Growth: Cohesive Zone Models vs. XFEM Thomas Siegmund Purdue University 1 Funding JOINT CENTER OF EXCELLENCE for ADVANCED MATERIALS, FAA Cooperative Agreement 04CAMPU.
More informationCHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES
CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric
More information17th European Conference on Fracture 25 September,2008, Brno, Czech Republic. Thermal Fracture of a FGM/Homogeneous Bimaterial with Defects
5 September,8, Brno, Czech Republic Thermal Fracture of a FGM/Homogeneous Bimaterial with Defects Vera Petrova, a, Siegfried Schmauder,b Voronezh State University, University Sq., Voronezh 3946, Russia
More informationModule 7: Micromechanics Lecture 34: Self Consistent, Mori Tanaka and Halpin Tsai Models. Introduction. The Lecture Contains. Self Consistent Method
Introduction In this lecture we will introduce some more micromechanical methods to predict the effective properties of the composite. Here we will introduce expressions for the effective properties without
More informationUNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich
UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS For Marker s Use Only LAST NAME (printed): FIRST
More informationMechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002
student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity
More informationALGORITHM FOR NONPROPORTIONAL LOADING IN SEQUENTIALLY LINEAR ANALYSIS
9th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS9 Chenjie Yu, P.C.J. Hoogenboom and J.G. Rots DOI 10.21012/FC9.288 ALGORITHM FOR NONPROPORTIONAL LOADING
More informationMechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach
Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach Sandhyarani Biswas Department of Mechanical Engineering, N.I.T Rourkela, INDIA Abstract: Nowadays,
More informationOpenhole compressive strength prediction of CFRP composite laminates
Openhole compressive strength prediction of CFRP composite laminates O. İnal 1, A. Ataş 2,* 1 Department of Mechanical Engineering, Balikesir University, Balikesir, 10145, Turkey, inal@balikesir.edu.tr
More informationMultiscale analyses of the behaviour and damage of composite materials
Multiscale analyses of the behaviour and damage of composite materials Presented by Didier BAPTISTE ENSAM, LIM, UMR CNRS 8006 151 boulevard de l hôpital l 75013 PARIS, France Research works from: K.Derrien,
More informationEDEM DISCRETIZATION (Phase II) Normal Direction Structure Idealization Tangential Direction Pore spring Contact spring SPRING TYPES Inner edge Inner d
Institute of Industrial Science, University of Tokyo Bulletin of ERS, No. 48 (5) A TWOPHASE SIMPLIFIED COLLAPSE ANALYSIS OF RC BUILDINGS PHASE : SPRING NETWORK PHASE Shanthanu RAJASEKHARAN, Muneyoshi
More informationPrediction of Micromechanical Behaviour of Elliptical Frp Composites
Prediction of Micromechanical Behaviour of Elliptical Frp Composites Kiranmayee.Nerusu Dept. of Mechanical Engg. P. V. P. Siddhartha Institute of Technology, Vijayawada 520 007, A.P, India. P. Phani Prasanthi
More informationOptimal Slope of Dramix Type Fibers in Reinforced Concrete
6 th World Congresses of Structural and Multidisciplinary Optimization Rio de Janeiro, 3 May  3 June 25, Brazil Optimal Slope of Dramix Type Fibers in Reinforced Concrete P. Prochazka 1, N. Starikov 2
More informationLimit analysis of brick masonry shear walls with openings under later loads by rigid block modeling
Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling F. Portioli, L. Cascini, R. Landolfo University of Naples Federico II, Italy P. Foraboschi IUAV University,
More informationViscoelastic Damping Characteristics of IndiumTin/SiC Particulate Composites
Viscoelastic Damping Characteristics of IndiumTin/SiC Particulate Composites HyungJoo Kim, Colby C. Swan Ctr. for ComputerAided Design, Univ. of Iowa Roderic Lakes Engineering Physics, Univ. of Wisconsin
More informationCharacterization of Thermomechanical Performances related to Breeder Pebble Beds by Discrete Element Method
Characterization of Thermomechanical Performances related to Breeder Pebble Beds by Discrete Element Method Presented by Zhiyong (John) An With contributions from: A. Ying and M. Abdou Mechanical & Aerospace
More informationFluid driven cohesive crack propagation in quasibrittle materials
Fluid driven cohesive crack propagation in quasibrittle materials F. Barpi 1, S. Valente 2 Department of Structural and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129
More informationElastoplastic Deformation in a WedgeShaped Plate Caused By a Subducting Seamount
Elastoplastic Deformation in a WedgeShaped Plate Caused By a Subducting Seamount Min Ding* 1, and Jian Lin 2 1 MIT/WHOI Joint Program, 2 Woods Hole Oceanographic Institution *Woods Hole Oceanographic
More informationEngineering Solid Mechanics
}} Engineering Solid Mechanics 1 (2013) 18 Contents lists available at GrowingScience Engineering Solid Mechanics homepage: www.growingscience.com/esm Impact damage simulation in elastic and viscoelastic
More informationMicrostructural Randomness and Scaling in Mechanics of Materials. Martin OstojaStarzewski. University of Illinois at UrbanaChampaign
Microstructural Randomness and Scaling in Mechanics of Materials Martin OstojaStarzewski University of Illinois at UrbanaChampaign Contents Preface ix 1. Randomness versus determinism ix 2. Randomness
More informationModeling of Interfacial Debonding Induced by IC Crack for Concrete Beambonded with CFRP
Proceedings of the World Congress on Engineering 21 Vol II WCE 21, June 2  July 1, 21, London, U.K. Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beambonded with CFRP Lihua Huang,
More informationAn Energy Dissipative Constitutive Model for MultiSurface Interfaces at Weld Defect Sites in Ultrasonic Consolidation
An Energy Dissipative Constitutive Model for MultiSurface Interfaces at Weld Defect Sites in Ultrasonic Consolidation Nachiket Patil, Deepankar Pal and Brent E. Stucker Industrial Engineering, University
More informationAdvantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations
The Hilltop Review Volume 7 Issue 1 Winter 2014 Article 10 December 2014 Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations TaiHsien Wu Western Michigan University
More informationA FINITE ELEMENT MODEL FOR SIZE EFFECT AND HETEROGENEITY IN CONCRETE STRUCTURES
A FINITE ELEMENT MODEL FOR SIZE EFFECT AND HETEROGENEITY IN CONCRETE STRUCTURES Roque Luiz Pitangueira 1 and Raul Rosas e Silva 2 1 Department of Structural Engineering Federal University of Minas Gerais
More informationAlternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering
University of Liège Aerospace & Mechanical Engineering Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE Van Dung NGUYEN Innocent NIYONZIMA Aerospace & Mechanical engineering
More informationAnalysis of Blocky Rock Slopes with Finite Element Shear Strength Reduction Analysis
Analysis of Blocky Rock Slopes with Finite Element Shear Strength Reduction Analysis R.E. Hammah, T. Yacoub, B. Corkum & F. Wibowo Rocscience Inc., Toronto, Canada J.H. Curran Department of Civil Engineering
More informationAim of the study Experimental determination of mechanical parameters Local buckling (wrinkling) Failure maps Optimization of sandwich panels
METNET Workshop October 1112, 2009, Poznań, Poland Experimental and numerical analysis of sandwich metal panels Zbigniew Pozorski, Monika ChudaKowalska, Robert Studziński, Andrzej Garstecki Poznan University
More informationINTERFACIAL STRENGTH EVALUATION IN A GLASS FIBER REINFORCED COMPOSITE USING CRUCIFORM SPECIMEN METHOD
INTERFACIAL STRENGTH EVALUATION IN A GLASS FIBER REINFORCED COMPOSITE USING CRUCIFORM SPECIMEN METHOD Shinji Ogihara, oriaki Sakamoto 2, Hajime Kato 2, Satoshi Kobayashi 3 and Ichiro Ueno Dept. of Mechanical
More informationPROPAGATION OF CURVED CRACKS IN HOMOGENEOUS AND GRADED MATERIALS
PROPAGATION OF CURVED CRACKS IN HOMOGENEOUS AND GRADED MATERIALS Abstract Matthew T. Tilbrook, Robert J. Moon and Mark Hoffman School of Materials Science and Engineering University of New South Wales,
More informationA micromechanical model for effective elastic properties of particulate composites with imperfect interfacial bonds
International Journal of Solids and Structures 42 (2005) 4179 4191 www.elsevier.com/locate/ijsolstr A micromechanical model for effective elastic properties of particulate composites with imperfect interfacial
More informationPractice Final Examination. Please initial the statement below to show that you have read it
EN175: Advanced Mechanics of Solids Practice Final Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use
More informationMeasurement and modelling of contact stiffness
Measurement and modelling of contact stiffness D. Nowell, University of Oxford, UK Joints workshop, Chicago, 16/8/12 Difficulties in modelling contacts In general, the normal and tangential stiffnesses
More informationModelling the nonlinear shear stressstrain response of glass fibrereinforced composites. Part II: Model development and finite element simulations
Modelling the nonlinear shear stressstrain response of glass fibrereinforced composites. Part II: Model development and finite element simulations W. Van Paepegem *, I. De Baere and J. Degrieck Ghent
More informationApplications of the Plate Membrane Theory
Chapter 2 Applications of the Plate Membrane Theory In this chapter we will give solutions for plates, which are loaded only on their edges. This implies that no distributed forces p x and p y occur, and
More informationMacroscopic theory Rock as 'elastic continuum'
Elasticity and Seismic Waves Macroscopic theory Rock as 'elastic continuum' Elastic body is deformed in response to stress Two types of deformation: Change in volume and shape Equations of motion Wave
More informationINTRODUCTION TO THE EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS
INTRODUCTION TO THE EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS SHEN R. WU and LEI GU WILEY A JOHN WILEY & SONS, INC., PUBLICATION ! PREFACE xv PARTI FUNDAMENTALS 1 1 INTRODUCTION 3
More informationGeology 229 Engineering Geology. Lecture 5. Engineering Properties of Rocks (West, Ch. 6)
Geology 229 Engineering Geology Lecture 5 Engineering Properties of Rocks (West, Ch. 6) Common mechanic properties: Density; Elastic properties:  elastic modulii Outline of this Lecture 1. Uniaxial rock
More informationMESH MODELING OF ANGLEPLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP
16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MESH MODELING OF ANGLEPLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP Wanil Byun*, Seung Jo Kim*, Joris Wismans** *Seoul National University, Republic
More informationEFFECTS OF MICROCRACKS IN THE INTERFACIAL ZONE ON THE MACRO BEHAVIOR OF CONCRETE
9th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS9 V. Saouma, J. Bolander, and E. Landis (Eds OI 0.202/FC9.07 EFFECTS OF MICROCRACKS IN THE INTERFACIAL ZONE
More informationEFFECT OF STRAIN HARDENING ON ELASTICPLASTIC CONTACT BEHAVIOUR OF A SPHERE AGAINST A RIGID FLAT A FINITE ELEMENT STUDY
Proceedings of the International Conference on Mechanical Engineering 2009 (ICME2009) 2628 December 2009, Dhaka, Bangladesh ICME09 EFFECT OF STRAIN HARDENING ON ELASTICPLASTIC CONTACT BEHAVIOUR OF A
More informationTentamen/Examination TMHL61
Avd Hållfasthetslära, IKP, Linköpings Universitet Tentamen/Examination TMHL61 Tentamen i Skademekanik och livslängdsanalys TMHL61 lördagen den 14/10 2000, kl 812 Solid Mechanics, IKP, Linköping University
More informationNUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS
IGC 009, Guntur, INDIA NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS Mohammed Younus Ahmed Graduate Student, Earthquake Engineering Research Center, IIIT Hyderabad, Gachibowli, Hyderabad 3, India.
More informationMODELING DYNAMIC FRACTURE AND DAMAGE IN A FIBERREINFORCED COMPOSITE LAMINA WITH PERIDYNAMICS
University of Nebraska  Lincoln DigitalCommons@University of Nebraska  Lincoln Mechanical & Materials Engineering Faculty Publications Mechanical & Materials Engineering, Department of 011 MODELING DYNAMIC
More informationExperimental study of mechanical and thermal damage in crystalline hard rock
Experimental study of mechanical and thermal damage in crystalline hard rock Mohammad Keshavarz Réunion Technique du CFMR  Thèses en Mécanique des Roches December, 3 nd 2009 1 Overview Introduction Characterization
More informationA Critical Planeenergy Model for Multiaxial Fatigue Life Prediction. of Homogeneous and Heterogeneous Materials. Haoyang Wei
A Critical Planeenergy Model for Multiaxial Fatigue Life Prediction of Homogeneous and Heterogeneous Materials by Haoyang Wei A Thesis Presented in Partial Fulfillment of the Requirements for the Degree
More informationWhat we should know about mechanics of materials
What we should know about mechanics of materials 0 John Maloney Van Vliet Group / Laboratory for Material Chemomechanics Department of Materials Science and Engineering Massachusetts Institute of Technology
More informationBrittle fracture of rock
1 Brittle fracture of rock Under the low temperature and pressure conditions of Earth s upper lithosphere, silicate rock responds to large strains by brittle fracture. The mechanism of brittle behavior
More informationFINITE ELEMENT APPROACHES TO MESOSCOPIC MATERIALS MODELING
FINITE ELEMENT APPROACHES TO MESOSCOPIC MATERIALS MODELING Andrei A. Gusev Institute of Polymers, Department of Materials, ETHZürich, Switzerland Outlook Generic finite element approach (PALMYRA) Random
More informationMECHANICS OF MATERIALS. EQUATIONS AND THEOREMS
1 MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS Version 20110114 Stress tensor Definition of traction vector (1) Cauchy theorem (2) Equilibrium (3) Invariants (4) (5) (6) or, written in terms of principal
More informationNanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation. Mark Hardiman
Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation Mark Hardiman Materials and Surface Science Institute (MSSI), Department of Mechanical and Aeronautical
More informationNigerian Journal of Technology, Vol. 26, No. 2, June 2007 Edelugo 37
Nigerian Journal of Technology, Vol. 26, No. 2, June 2007 Edelugo 37 APPLICATION OF THE REISSNERS PLATE THEORY IN THE DELAMINATION ANALYSIS OF A THREEDIMENSIONAL, TIME DEPENDENT, NONLINEAR, UNIDIRECTIONAL
More informationCHEMC2410: Materials Science from Microstructures to Properties Composites: basic principles
CHEMC2410: Materials Science from Microstructures to Properties Composites: basic principles Mark Hughes 14 th March 2017 Today s learning outcomes To understand the role of reinforcement, matrix and
More informationMechanical Models for Asphalt Behavior and Performance
Mechanical Models for Asphalt Behavior and Performance Introduction and Review of Linear Viscoelastic Behaviors About the webinar series Past, current, and future plan for webinar series Introduction to
More informationAbvanced Lab Course. DynamicalMechanical Analysis (DMA) of Polymers
Abvanced Lab Course DynamicalMechanical Analysis (DMA) of Polymers M211 As od: 9.4.213 Aim: Determination of the mechanical properties of a typical polymer under alternating load in the elastic range
More informationFast multipole boundary element method for the analysis of plates with many holes
Arch. Mech., 59, 4 5, pp. 385 401, Warszawa 2007 Fast multipole boundary element method for the analysis of plates with many holes J. PTASZNY, P. FEDELIŃSKI Department of Strength of Materials and Computational
More informationFinite Element Analysis Lecture 1. Dr./ Ahmed Nagib
Finite Element Analysis Lecture 1 Dr./ Ahmed Nagib April 30, 2016 Research and Development Mathematical Model Mathematical Model Mathematical Model Finite Element Analysis The linear equation of motion
More information