Here are some solutions to the sample problems assigned for Chapter 6.8 to 6.11.

Size: px
Start display at page:

Download "Here are some solutions to the sample problems assigned for Chapter 6.8 to 6.11."

Transcription

1 Lecture 3 Appendi B: Some sample problems from Boas Here are some solutions to the sample problems assigned for Chapter 6.8 to : Solution: We want to practice doing closed line integrals of the form y d dy F dr clockwise along a set of curves. Let us first check the curl of the vector in the integrand. We have ˆ yˆ zˆ F zˆ 4zˆ. y z y Thus we epect nonzero (path-dependent) closed path integrals. a) On a circle of radius : here we can use cylindrical coordinates (see eample ) and find.5 y yd dy d cos sin sin cos cos d sin cos sin cos d sin 4. b) On the square of side with sides aligned with aes and starting at (,): writing out the contributions from the 4 sides (only or y varies on each side), we find.5 y Physics 7 Lecture 3 Appendi B Autumn 8

2 y d dy d dy d dy y y y c) On the square of side, rotated by 45 with respect to the ais and starting at (,). With constant slope on each side we can epress both d and dy in terms of a single variable, say dt, dr dt ˆ ydt ˆ. Thus we have y d dy dt y dt y t, yt t, y t t, yt t, yt dt y dt y dt t t 3 t t 3 dt 4t t t : 4 Solution: Now we want to perform a(n open) line integral, y d dy dz F dr, along different paths. Again we check the curl to see C C if there is path dependence epected. We find a non-zero curl and epect path dependence ˆ yˆ zˆ F ˆ yˆ zˆ y zˆ y. y z y Physics 7 Lecture 3 Appendi B Autumn 8

3 a) First we consider a path composed of straight line segments parallel to the aes. Thus we have C y d dy dz d y dz dy z 3. y y z.5.75 b) Now along a path composed of an arc of a circle in the -y plane ( y y y ) and then parallel to the z-ais. Using cylindrical coordinates on the former ( sin, y cos ) we have y z.4..8 C y d dy dz d cos cos sin sin dz d cos cos cos sin d cos sin cos 3 sin 8 sin sin : 8 Solution: We want to verify a conservative force and find the potential for F ˆ zyˆ yzˆ. We take the curl and find that it vanishes, Physics 7 Lecture 3 Appendi B 3 Autumn 8

4 ˆ yˆ zˆ F ˆ yˆ zˆ. y z z y Net we want to find a potential such that (i.e., we perform some trivial integrals) f y, z F z zy f, z yz constant. y y zy f3, y z 6.8: Solution: Now the same game as in the previous eercise ecept that now F y sin ˆ sin yˆ. So the curl again vanishes, ˆ yˆ zˆ F y z We find the potential from y sin sin ˆ yˆ zˆ cos sin sin. Physics 7 Lecture 3 Appendi B 4 Autumn 8

5 y sin y sin f y, z F sin y sin f, z y sin const. y f3, y z 6.8: 4 Solution: Finally for F ˆ y y yˆ y we find ˆ yˆ zˆ F y z y y y y y ˆ yˆ zˆ, 3 y y y and (this requires recognizing the derivatives of the arcsine function) y y sin y f y, z F y sin y f, z y f3, y z sin y const. Physics 7 Lecture 3 Appendi B 5 Autumn 8

6 6.9: 4 Solution: We want to practice using the D Green s theorem to perform the indicated contour integral. We have I e cos yd e sin ydy CADB e cos yd e sin ydy e cos yd e sin ydy C ADBA C BA C ADBA C ADBA C ADBA ln cos Pe cos y Qe sin y y ln P d Q dy e y d ln Pe cos y Qe sin y ln P d Q dy e Pd Qdy 3. Thus applying Green s theorem we find I Q P 3 ddy y Area ADBA e sin y e sin yddy. Area ADBA 6.9: 7 Solution: We want to use the result in eercise 6.9:6 to calculate the area of an ellipse defined by a cos, y bsin, with. The result in 6.9:6 is based on the -D Green s theorem with the special choices P y, Q. With our choices to parameterize the ellipse we have d asind and dy bcos d to yield A d ab ab ab cos sin. Physics 7 Lecture 3 Appendi B 6 Autumn 8

7 6.9: Solution: For the path in the (,y) plane defined by the 4 points (3,), (5,), (5,3), (3,3), we want to evaluate the line integral yd 3 dy. This epression suggests that we define P y and Q 3 and consider the epression in the D Green s theorem, Q P y 3 5. Since this is a constant, Green s theorem tells us that we need only the area of the square defined by the 4 points (with sides of length ), which is just 4. Thus the easy approach, use Green, is yd 3dy 5 ddy. square On the other hand proceeding directly (and laboriously) we find yd 3dy d y dy d y dy y 5 y d 5 dy 6 d 9 dy : Solution: Here is one more contour integral over the indicated triangle in the clockwise direction. Using Green s theorem we have y Physics 7 Lecture 3 Appendi B 7 Autumn 8

8 Ctriangle triangle sin I y d y dy y sin y ddy y triangle ddy area. 6.: 4 Solution: Now we want to practice using the divergence theorem to relate surface and volume integrals. In this case the vector field is V cos yˆ zyˆ z sin yzˆ and the boundary surface is a sphere of radius 3. Thus we find V d Vd y y d d cos sin r3 r3 r3 r 3 4 r 3 3 r3 36. This approach is clearly simpler than during the surface integral directly! 6.: 7 Solution: Net we consider a similar problem where the surface is a cone of height 3 and a base of radius 4, and the vector field is V r ˆ yyˆ zzˆ. Thus we find (again this the simpler approach) r d rd 3 d 3 d cone cone cone cone r h 3 h 3, r 4 Physics 7 Lecture 3 Appendi B 8 Autumn 8

9 6.: 9 Solution: Now we want to use the divergence theorem to evaluate the surface integral of F ˆ yyˆ on the surface defined by z 4 y 4, z4 y 4 d F. Note the eplicit forms for the surface and the function suggest the use of cylindrical coordinates. First check the divergence to see if is usefully simple. Since F ˆ (recall the previous appendi or proceed in rectangular coordinates), i.e., a constant, the divergence theorem will be useful. We can close the surface by adding the disk in the,y plane where the outward normal is just nˆ zˆ and F nˆ F zˆ. This the desired surface integral is just the volume integral of disk the divergence, 4 d F dvol F d d dz z4 y 4 z4 4 4 d It is informative, if challenging, to also try evaluating the original surface integral directly. We know that the normal to the surface is given by the (normalized) gradient of the function defining the surface, d d nˆ, nˆ F d 4 z ˆ z d. zˆ 4 So the remaining challenge is to usefully epress the differential area d. To this end it is helpful to read Section 5.5 in Boas where it is pointed out that, for the area of a surface above the,y plane, we can epress the local differential area as Physics 7 Lecture 3 Appendi B 9 Autumn 8

10 d sec ddy secd d, where the angle is the angle between the local normal to the surface (as worked out above) and the z direction, sec nˆ zˆ 4. This factor, which is, just accounts for how much larger the area of the true surface is compared to its projection onto the,y plane. Thus we have in our case z4 y 4 d F d d d 6. 4 Again we see that the actual integration is much simpler using the divergence theorem. 6.: Solution: This eercise concerns an electrostatics problem with concentric charged cylindrical conductors, with radii R and R, and with k coulombs per meter and k coulombs per meter, respectively. We can use Gauss s law applied (per unit length) to find the electric field as function of the radius and then, by integration, the corresponding potential. Clearly we want to use cylindrical coordinates,,, z in my notation. We begin by using the translational symmetry in the z direction (the ais of the cylinders and the cylinders are very long ) to argue that the electric field has no variation with the z coordinate. Likewise the rotational symmetry about the z ais means there is no dependence on the azimuthal angle. Since we are assuming that this is a static situation with no moving charges, there can be no nonzero components of the electric field in the surface of the conductors (otherwise charges would move). Hence, by general arguments, we have only a component and it varies only with, E r E ˆ. So now we apply Gauss for the three cases: R, R R, and R. In the first and last cases there is no net charge per unit length and thus the electric field must vanish, Physics 7 Lecture 3 Appendi B Autumn 8

11 R : E d E ddz E dz R R R R q q dvol d d dz dz E R, R R : E ddz E dz R R R q q k k dvol d d dz dz E R. R In the interesting region where the charge inside the surface of integration is nonzero we have R R : E d E dz R R q q k dvol d d dz dz R R k E R R R R ˆ. R R Finally to write the electric as the gradient of a potential, E, we can simply integrate. For the inner and outer regions where the electric field vanishes the potential is a constant, and, for simplicity we take the potential to vanish at the center. In the interesting region we need only observe that d ln const. Thus with the given boundary condition at R, R, we find R : E, R R E k ˆ :, ln k R R : E, ln. R k R Physics 7 Lecture 3 Appendi B Autumn 8

12 To describe the electric field and the potential right at the surface of the conductor, we should be careful about the (true) thickness of the conductor. Here we take the idealized limit that the conducting cylindrical tube is of zero thickness. Thus the potential is smooth at the conductors, but its gradient, the electric field, changes discontinuously in this limit. We should really be careful about how we define the electric field at the conductors; we must specify whether we are approaching the conductor from inside or outside. 6.: 4 Solution: Here we want to practice using curls and Stokes theorem. We have the vector field V yˆ yˆ and a surface composed of the indicated 3 triangles, i.e., the boundary is the remaining triangle in the -y plane. To use Stokes theorem we need to specify the vertices of this triangle. For z = the plane defines + 3y = and the vertices are (6,,) and (,4,). Thus we have y y d y y dr ˆ ˆ ˆ ˆ y triangle 6 3ˆ yˆ y d dy yˆ yˆ d y d 8 d : 7 V z ˆ yz y yˆ y z zˆ 3 Solution: Now consider the vector field with the integral of its curl being over any surface with its boundary in the (,y) plane (z = ). Thus, using Stokes theorem, we find Physics 7 Lecture 3 Appendi B Autumn 8

13 I V d V dr V d. z z Thus using Stokes twice we can write the desired integral as a surface integral in the (,y) plane where d zˆ. This last result suggests that we evaluate the curl of the vector field in the (,y) plane. We have V z ˆ yˆ zˆ y z 3 z yz y y z z 3 ˆ ˆ. ˆ yz yˆ y z zˆ y y So we find thatv d (the curl as no z component) and thus for any z surface with a boundary in the (,y) plane we have I V d V d. z z 6.: Solution: Here we again want to practice using Stokes theorem. We have a vector V yˆ yˆ z zˆ and a surface defined by z 9 9y. Note that field in this eercise we do not have cylindrical symmetry. Instead the intersection of the surface with the,y plane (z = ) is an ellipse, 3 y. So first we test for simplifications by evaluating the curl, Physics 7 Lecture 3 Appendi B 3 Autumn 8

14 ˆ yˆ zˆ V ˆ z yˆ zˆ z yˆ zˆ. y z y z We also see that the local normal to the specified surface is z 9y ˆ 8yyˆ zˆ nˆ. z 9y 4 34y Physics 7 Lecture 3 Appendi B 4 Autumn 8 Thus doing the surface integral directly is going to be a bit messy. So instead we use Stokes theorem on the boundary, which is the ellipse above. On the ellipse we can define the parameterization 3cos, y sin and write V d V ds d V 3sinˆ cos yˆ z9 9 y 9 y 9 d 3sin 3cos sin cos 9 cos 6 cos 3 d 6sin cos cos 3cos 3 d 6cos 9cos cos 3 3 d cos 6. In obtaining the last line we used the fact that the integral of any odd power of the cosine over a full cycle yields zero, plus the double angle formula for the even power, i.e., the average value of cos is. We will have more to say about this when we study Fourier series. To complete this discussion let us try to perform the surface integral directly. We have

15 ˆ 8yyˆ zˆ V nˆ sec z yˆ zˆ 4 34y 4 34y 36yz 36y 9 9y y 8 y 6y 8 y y 8y. This looks pretty ugly (with many places to make an arithmetic error). On the other hand, the actual integral epressed in the,y plane, y ddy d dy, is clearly symmetric in both coordinates. Hence all of the terms with odd powers of and/or y (everything but the -) integrate to zero. So finally we have (recall eercise 6.9:7 above) z9 9 y cos V d d dy area of ellipse 4 d 3 4 3sin d cos 4 3 d 6 6. So we obtained the same answer as above, but we had to work much harder and know more tricks. Clearly using Stokes theorem is appropriate for smart but lazy physicists. 6.: 5 Solution: As a final eample consider the contour integral Physics 7 Lecture 3 Appendi B 5 Autumn 8

16 I yd zdy dz, C with the contour C defined by the intersection of the surfaces y and y z y. A little thought yields the result that the second surface is a y z. Thus the intersection with the first surface (a flat surface parallel to the z-ais and passing the z = -y plane along the line + y =, which includes the point (,,) ) is a circle of radius centered on the point (,,). To simplify things we evaluate the curl of the corresponding vector field, V yˆ zyˆ zˆ to find sphere of radius centered on the point (,,), ˆ yˆ zˆ V ˆ yˆ zˆ ˆ yˆ zˆ. y z y z Thus the curl is a simple, constant vector and we should be able to Stokes theorem. We find I yd zdy dz V dr V d C ˆ yˆ z nˆ A ˆ yˆ z nˆ ˆ ˆ. So the final question is to find the normal to the plane of the contour. This is just the normal to the plane y, nˆ ˆ yˆ, where we have used our previous knowledge that the equation of a plane is given by r r nˆ (with r ˆ yˆ ). So finally we have (note that the sign here is actually ambiguous since the tet does not specify the sense of the original contour) ˆ yˆ I ˆ yˆ zˆ. Physics 7 Lecture 3 Appendi B 6 Autumn 8

2. Below are four algebraic vector fields and four sketches of vector fields. Match them.

2. Below are four algebraic vector fields and four sketches of vector fields. Match them. Math 511: alc III - Practice Eam 3 1. State the meaning or definitions of the following terms: a) vector field, conservative vector field, potential function of a vector field, volume, length of a curve,

More information

x y x 2 2 x y x x y x U x y x y

x y x 2 2 x y x x y x U x y x y Lecture 7 Appendi B: Some sample problems from Boas Here are some solutions to the sample problems assigned for hapter 4 4: 8 Solution: We want to learn about the analyticity properties of the function

More information

APPLICATIONS OF GAUSS S LAW

APPLICATIONS OF GAUSS S LAW APPLICATIONS OF GAUSS S LAW Although Gauss s Law is always correct it is generally only useful in cases with strong symmetries. The basic problem is that it gives the integral of E rather than E itself.

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

ECE 3318 Applied Electricity and Magnetism Spring 2018 Homework #7

ECE 3318 Applied Electricity and Magnetism Spring 2018 Homework #7 EE 3318 Applied Electricity and Magnetism Spring 2018 Homework #7 Date assigned: Tuesday, March 6, 2018 Date due: Tuesday, March 20, 2018 Do Probs. 1, 2, and 7-12. (You are welcome to do the other problems

More information

Exercises of Mathematical analysis II

Exercises of Mathematical analysis II Eercises of Mathematical analysis II In eercises. - 8. represent the domain of the function by the inequalities and make a sketch showing the domain in y-plane.. z = y.. z = arcsin y + + ln y. 3. z = sin

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

Here are some solutions to the sample problems assigned for Chapter 4. Solution: Consider a function of 3 (independent) variables. treating as real.

Here are some solutions to the sample problems assigned for Chapter 4. Solution: Consider a function of 3 (independent) variables. treating as real. Lecture 11 Appendix B: Some sample problems from Boas Here are some solutions to the sample problems assigned for Chapter 4. 4.1: 3 Solution: Consider a function of 3 (independent) variables,, ln z u v

More information

Major Ideas in Calc 3 / Exam Review Topics

Major Ideas in Calc 3 / Exam Review Topics Major Ideas in Calc 3 / Exam Review Topics Here are some highlights of the things you should know to succeed in this class. I can not guarantee that this list is exhaustive!!!! Please be sure you are able

More information

Magnetostatics. Lecture 23: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Magnetostatics. Lecture 23: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetostatics Lecture 23: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Magnetostatics Up until now, we have been discussing electrostatics, which deals with physics

More information

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv 1. Matching. Fill in the appropriate letter. 1. ds for a surface z = g(x, y) A. r u r v du dv 2. ds for a surface r(u, v) B. r u r v du dv 3. ds for any surface C. G x G z, G y G z, 1 4. Unit normal N

More information

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 3. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple

More information

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017 MA101: CALCULUS PART A

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 2017 MA101: CALCULUS PART A A B1A003 Pages:3 (016 ADMISSIONS) Reg. No:... Name:... APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, FEBRUARY 017 MA101: CALCULUS Ma. Marks: 100 Duration: 3 Hours PART

More information

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3 M7Q Multivariable alculus Spring 7 Review Problems for Exam Exam covers material from Sections 5.-5.4 and 6.-6. and 7.. As you prepare, note well that the Fall 6 Exam posted online did not cover exactly

More information

2-5 The Calculus of Scalar and Vector Fields (pp.33-55)

2-5 The Calculus of Scalar and Vector Fields (pp.33-55) 9/6/2005 section_2_5_the_calculus_of_vector_fields_empty.doc 1/9 2-5 The Calculus of Scalar and Vector Fields (pp.33-55) Fields are functions of coordinate variables (e.g.,, ρ, θ) Q: How can we integrate

More information

VARIATIONAL PRINCIPLES

VARIATIONAL PRINCIPLES CHAPTER - II VARIATIONAL PRINCIPLES Unit : Euler-Lagranges s Differential Equations: Introduction: We have seen that co-ordinates are the tools in the hands of a mathematician. With the help of these co-ordinates

More information

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma

Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma Archive of Calculus IV Questions Noel Brady Department of Mathematics University of Oklahoma This is an archive of past Calculus IV exam questions. You should first attempt the questions without looking

More information

MATHEMATICS 200 April 2010 Final Exam Solutions

MATHEMATICS 200 April 2010 Final Exam Solutions MATHEMATICS April Final Eam Solutions. (a) A surface z(, y) is defined by zy y + ln(yz). (i) Compute z, z y (ii) Evaluate z and z y in terms of, y, z. at (, y, z) (,, /). (b) A surface z f(, y) has derivatives

More information

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations

Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay. Poisson s and Laplace s Equations Poisson s and Laplace s Equations Lecture 13: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay We will spend some time in looking at the mathematical foundations of electrostatics.

More information

Notes 19 Gradient and Laplacian

Notes 19 Gradient and Laplacian ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 19 Gradient and Laplacian 1 Gradient Φ ( x, y, z) =scalar function Φ Φ Φ grad Φ xˆ + yˆ + zˆ x y z We can

More information

Magnetostatics Surface Current Density. Magnetostatics Surface Current Density

Magnetostatics Surface Current Density. Magnetostatics Surface Current Density Magnetostatics Surface Current Density A sheet current, K (A/m ) is considered to flow in an infinitesimally thin layer. Method 1: The surface charge problem can be treated as a sheet consisting of a continuous

More information

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Created by T. Madas LINE INTEGRALS. Created by T. Madas LINE INTEGRALS LINE INTEGRALS IN 2 DIMENSIONAL CARTESIAN COORDINATES Question 1 Evaluate the integral ( x + 2y) dx, C where C is the path along the curve with equation y 2 = x + 1, from ( ) 0,1 to ( )

More information

Maxwell s equations for electrostatics

Maxwell s equations for electrostatics Maxwell s equations for electrostatics October 6, 5 The differential form of Gauss s law Starting from the integral form of Gauss s law, we treat the charge as a continuous distribution, ρ x. Then, letting

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

Vector fields, line integrals, and Green's Theorem

Vector fields, line integrals, and Green's Theorem Vector fields, line integrals, and Green's Theorem Line integral strategy suggested problems solutions Bunch of assorted line integral of vector filed problems here. In the solutions, I ll show the way

More information

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019 Review () Calculus II (-nyb-5/5,6) Winter 9 Note. You should also review the integrals eercises on the first review sheet. Eercise. Evaluate each of the following integrals. a. sin 3 ( )cos ( csc 3 (log)cot

More information

MATHEMATICS 317 December 2010 Final Exam Solutions

MATHEMATICS 317 December 2010 Final Exam Solutions MATHEMATI 317 December 1 Final Eam olutions 1. Let r(t) = ( 3 cos t, 3 sin t, 4t ) be the position vector of a particle as a function of time t. (a) Find the velocity of the particle as a function of time

More information

(Refer Slide Time: 2:08 min)

(Refer Slide Time: 2:08 min) Applied Mechanics Prof. R. K. Mittal Department of Applied Mechanics Indian Institute of Technology, Delhi Lecture No. 11 Properties of Surfaces (Contd.) Today we will take up lecture eleven which is a

More information

Ma 1c Practical - Solutions to Homework Set 7

Ma 1c Practical - Solutions to Homework Set 7 Ma 1c Practical - olutions to omework et 7 All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth Edition) Exercise 7.4.. Find the area of the portion of the unit sphere that is cut

More information

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface.

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface. Chapter 23 Gauss' Law Instead of considering the electric fields of charge elements in a given charge distribution, Gauss' law considers a hypothetical closed surface enclosing the charge distribution.

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III)

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III) Calculus Vector Calculus (III) Outline 1 The Divergence Theorem 2 Stokes Theorem 3 Applications of Vector Calculus The Divergence Theorem (I) Recall that at the end of section 12.5, we had rewritten Green

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

Physics 3211: Electromagnetic Theory (Tutorial)

Physics 3211: Electromagnetic Theory (Tutorial) Question 1 a) The capacitor shown in Figure 1 consists of two parallel dielectric layers and a voltage source, V. Derive an equation for capacitance. b) Find the capacitance for the configuration of Figure

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

Print Your Name: Your Section:

Print Your Name: Your Section: Print Your Name: Your Section: Mathematics 1c. Practice Final Solutions This exam has ten questions. J. Marsden You may take four hours; there is no credit for overtime work No aids (including notes, books,

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

Practice problems **********************************************************

Practice problems ********************************************************** Practice problems I will not test spherical and cylindrical coordinates explicitly but these two coordinates can be used in the problems when you evaluate triple integrals. 1. Set up the integral without

More information

the Cartesian coordinate system (which we normally use), in which we characterize points by two coordinates (x, y) and

the Cartesian coordinate system (which we normally use), in which we characterize points by two coordinates (x, y) and 2.5.2 Standard coordinate systems in R 2 and R Similarly as for functions of one variable, integrals of functions of two or three variables may become simpler when changing coordinates in an appropriate

More information

36. Double Integration over Non-Rectangular Regions of Type II

36. Double Integration over Non-Rectangular Regions of Type II 36. Double Integration over Non-Rectangular Regions of Type II When establishing the bounds of a double integral, visualize an arrow initially in the positive x direction or the positive y direction. A

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

FARADAY S LAW. dw F dr qe dr. EMF E d. EMF v B d. dt dt

FARADAY S LAW. dw F dr qe dr. EMF E d. EMF v B d. dt dt FARADAY S LAW It is observed experimentally that if the magnetic flux through a circuit is changed a voltage is produced around the circuit in such a direction as to oppose the change. The magnetic flux

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 6.1, 6.2, 6.3 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 6.1, 6.2, 6.3 Fall 2016 HOMEWORK SOLUTIONS MATH 191 Sections.1,.,. Fall 1 Problem.1.19 Find the area of the shaded region. SOLUTION. The equation of the line passing through ( π, is given by y 1() = π, and the equation of the

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 18.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Lecture 30. Tue, Nov

More information

Math 11 Fall 2016 Final Practice Problem Solutions

Math 11 Fall 2016 Final Practice Problem Solutions Math 11 Fall 216 Final Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

More information

Calculus with business applications, Lehigh U, Lecture 05 notes Summer

Calculus with business applications, Lehigh U, Lecture 05 notes Summer Calculus with business applications, Lehigh U, Lecture 0 notes Summer 0 Trigonometric functions. Trigonometric functions often arise in physical applications with periodic motion. They do not arise often

More information

B r Solved Problems Magnetic Field of a Straight Wire

B r Solved Problems Magnetic Field of a Straight Wire (4) Equate Iencwith d s to obtain I π r = NI NI = = ni = l π r 9. Solved Problems 9.. Magnetic Field of a Straight Wire Consider a straight wire of length L carrying a current I along the +x-direction,

More information

MATHS 267 Answers to Stokes Practice Dr. Jones

MATHS 267 Answers to Stokes Practice Dr. Jones MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

More information

2-5 The Calculus of Scalar and Vector Fields (pp.33-55)

2-5 The Calculus of Scalar and Vector Fields (pp.33-55) 9/9/2004 sec 2_5 empty.doc 1/5 2-5 The Calculus of Scalar and Vector Fields (pp.33-55) Q: A: 1. 4. 2. 5. 3. 6. A. The Integration of Scalar and Vector Fields 1. The Line Integral 9/9/2004 sec 2_5 empty.doc

More information

SOME PROBLEMS YOU SHOULD BE ABLE TO DO

SOME PROBLEMS YOU SHOULD BE ABLE TO DO OME PROBLEM YOU HOULD BE ABLE TO DO I ve attempted to make a list of the main calculations you should be ready for on the exam, and included a handful of the more important formulas. There are no examples

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

example consider flow of water in a pipe. At each point in the pipe, the water molecule has a velocity

example consider flow of water in a pipe. At each point in the pipe, the water molecule has a velocity Module 1: A Crash Course in Vectors Lecture 1: Scalar and Vector Fields Objectives In this lecture you will learn the following Learn about the concept of field Know the difference between a scalar field

More information

Lecture 18. Double Integrals (cont d) Electrostatic field near an infinite flat charged plate

Lecture 18. Double Integrals (cont d) Electrostatic field near an infinite flat charged plate Lecture 18 ouble Integrals (cont d) Electrostatic field near an infinite flat charged plate Consider a thin, flat plate of infinite size that is charged, with constant charge density ρ (in appropriate

More information

4Divergenceandcurl. D ds = ρdv. S

4Divergenceandcurl. D ds = ρdv. S 4Divergenceandcurl Epressing the total charge Q V contained in a volume V as a 3D volume integral of charge density ρ(r), wecanwritegauss s law eamined during the last few lectures in the general form

More information

Math 11 Fall 2007 Practice Problem Solutions

Math 11 Fall 2007 Practice Problem Solutions Math 11 Fall 27 Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

More information

ENGI 4430 Line Integrals; Green s Theorem Page 8.01

ENGI 4430 Line Integrals; Green s Theorem Page 8.01 ENGI 443 Line Integrals; Green s Theorem Page 8. 8. Line Integrals Two applications of line integrals are treated here: the evaluation of work done on a particle as it travels along a curve in the presence

More information

Math Review for Exam 3

Math Review for Exam 3 1. ompute oln: (8x + 36xy)ds = Math 235 - Review for Exam 3 (8x + 36xy)ds, where c(t) = (t, t 2, t 3 ) on the interval t 1. 1 (8t + 36t 3 ) 1 + 4t 2 + 9t 4 dt = 2 3 (1 + 4t2 + 9t 4 ) 3 2 1 = 2 3 ((14)

More information

Math 31CH - Spring Final Exam

Math 31CH - Spring Final Exam Math 3H - Spring 24 - Final Exam Problem. The parabolic cylinder y = x 2 (aligned along the z-axis) is cut by the planes y =, z = and z = y. Find the volume of the solid thus obtained. Solution:We calculate

More information

Lecture 8 Multiple Choice Questions :

Lecture 8 Multiple Choice Questions : Lecture 8 Multiple Choice Questions : 1. A point charge -3Q lies at the centre of a conducting shell of radius 2R. The net charge on the outer surface of the shell is -3Q Zero +1.5 Q d. +3Q 2. Two identical

More information

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc.

Chapter 22 Gauss s Law. Copyright 2009 Pearson Education, Inc. Chapter 22 Gauss s Law Electric Flux Gauss s Law Units of Chapter 22 Applications of Gauss s Law Experimental Basis of Gauss s and Coulomb s Laws 22-1 Electric Flux Electric flux: Electric flux through

More information

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE (SUPPLEMENTARY) EXAMINATION, FEBRUARY 2017 (2015 ADMISSION)

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE (SUPPLEMENTARY) EXAMINATION, FEBRUARY 2017 (2015 ADMISSION) B116S (015 dmission) Pages: RegNo Name PJ BDUL KLM TECHNOLOGICL UNIVERSITY FIRST SEMESTER BTECH DEGREE (SUPPLEMENTRY) EXMINTION, FEBRURY 017 (015 DMISSION) MaMarks : 100 Course Code: M 101 Course Name:

More information

HOMEWORK 8 SOLUTIONS

HOMEWORK 8 SOLUTIONS HOMEWOK 8 OLUTION. Let and φ = xdy dz + ydz dx + zdx dy. let be the disk at height given by: : x + y, z =, let X be the region in 3 bounded by the cone and the disk. We orient X via dx dy dz, then by definition

More information

free space (vacuum) permittivity [ F/m]

free space (vacuum) permittivity [ F/m] Electrostatic Fields Electrostatic fields are static (time-invariant) electric fields produced by static (stationary) charge distributions. The mathematical definition of the electrostatic field is derived

More information

McGill University April 16, Advanced Calculus for Engineers

McGill University April 16, Advanced Calculus for Engineers McGill University April 16, 2014 Faculty of cience Final examination Advanced Calculus for Engineers Math 264 April 16, 2014 Time: 6PM-9PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

PH 222-2C Fall Gauss Law. Lectures 3-4. Chapter 23 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-2C Fall Gauss Law. Lectures 3-4. Chapter 23 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-2C Fall 212 Gauss Law Lectures 3-4 Chapter 23 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 23 Gauss Law In this chapter we will introduce the following new concepts:

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

VII. Techniques of Integration

VII. Techniques of Integration VII. Techniques of Integration Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration of functions given

More information

Electric fields in matter

Electric fields in matter Electric fields in matter November 2, 25 Suppose we apply a constant electric field to a block of material. Then the charges that make up the matter are no longer in equilibrium: the electrons tend to

More information

Vectors & Coordinate Systems

Vectors & Coordinate Systems Vectors & Coordinate Systems Antoine Lesage Landry and Francis Dawson September 7, 2017 Contents 1 Motivations & Definition 3 1.1 Scalar field.............................................. 3 1.2 Vector

More information

Math 11 Fall 2018 Practice Final Exam

Math 11 Fall 2018 Practice Final Exam Math 11 Fall 218 Practice Final Exam Disclaimer: This practice exam should give you an idea of the sort of questions we may ask on the actual exam. Since the practice exam (like the real exam) is not long

More information

3 x x+1. (4) One might be tempted to do what is done with fractions, i.e., combine them by means of a common denominator.

3 x x+1. (4) One might be tempted to do what is done with fractions, i.e., combine them by means of a common denominator. Lecture 6 Techniques of integration (cont d) Integration of rational functions by partial fractions Relevant section from Stewart, Eighth Edition: 7.4 In this section, we consider the integration of rational

More information

Math 234 Exam 3 Review Sheet

Math 234 Exam 3 Review Sheet Math 234 Exam 3 Review Sheet Jim Brunner LIST OF TOPIS TO KNOW Vector Fields lairaut s Theorem & onservative Vector Fields url Divergence Area & Volume Integrals Using oordinate Transforms hanging the

More information

Gauss s Law & Potential

Gauss s Law & Potential Gauss s Law & Potential Lecture 7: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Flux of an Electric Field : In this lecture we introduce Gauss s law which happens to

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Math 20C Homework 2 Partial Solutions

Math 20C Homework 2 Partial Solutions Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

More information

2-5 The Calculus of Scalar and Vector Fields (pp.33-55)

2-5 The Calculus of Scalar and Vector Fields (pp.33-55) 9/1/ sec _5 empty.doc 1/9-5 The Calculus of Scalar and Vector Fields (pp.33-55) Q: A: 1... 5. 3. 6. A. The Integration of Scalar and Vector Fields 1. The Line Integral 9/1/ sec _5 empty.doc /9 Q1: A C

More information

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative,

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, Integral Theorems eptember 14, 215 1 Integral of the gradient We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, F (b F (a f (x provided f (x

More information

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017 Math 3B iscussion ession Week 1 Notes March 14 and March 16, 17 We ll use this week to review for the final exam. For the most part this will be driven by your questions, and I ve included a practice final

More information

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

Problem Solving 1: Line Integrals and Surface Integrals

Problem Solving 1: Line Integrals and Surface Integrals A. Line Integrals MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 1: Line Integrals and Surface Integrals The line integral of a scalar function f ( xyz),, along a path C is

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

MATH Green s Theorem Fall 2016

MATH Green s Theorem Fall 2016 MATH 55 Green s Theorem Fall 16 Here is a statement of Green s Theorem. It involves regions and their boundaries. In order have any hope of doing calculations, you must see the region as the set of points

More information

Lecture 10 - Moment of Inertia

Lecture 10 - Moment of Inertia Lecture 10 - oment of Inertia A Puzzle... Question For any object, there are typically many ways to calculate the moment of inertia I = r 2 dm, usually by doing the integration by considering different

More information

(Refer Slide Time: 01:17)

(Refer Slide Time: 01:17) Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 7 Heat Conduction 4 Today we are going to look at some one dimensional

More information

Answers for Ch. 6 Review: Applications of the Integral

Answers for Ch. 6 Review: Applications of the Integral Answers for Ch. 6 Review: Applications of the Integral. The formula for the average value of a function, which you must have stored in your magical mathematical brain, is b b a f d. a d / / 8 6 6 ( 8 )

More information

MATH 52 FINAL EXAM DECEMBER 7, 2009

MATH 52 FINAL EXAM DECEMBER 7, 2009 MATH 52 FINAL EXAM DECEMBER 7, 2009 THIS IS A CLOSED BOOK, CLOSED NOTES EXAM. NO CALCULATORS OR OTHER ELECTRONIC DEVICES ARE PERMITTED. IF YOU NEED EXTRA SPACE, PLEASE USE THE BACK OF THE PREVIOUS PROB-

More information

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero?

Lecture 4-1 Physics 219 Question 1 Aug Where (if any) is the net electric field due to the following two charges equal to zero? Lecture 4-1 Physics 219 Question 1 Aug.31.2016. Where (if any) is the net electric field due to the following two charges equal to zero? y Q Q a x a) at (-a,0) b) at (2a,0) c) at (a/2,0) d) at (0,a) and

More information

UNIT 1. INTRODUCTION

UNIT 1. INTRODUCTION UNIT 1. INTRODUCTION Objective: The aim of this chapter is to gain knowledge on Basics of electromagnetic fields Scalar and vector quantities, vector calculus Various co-ordinate systems namely Cartesian,

More information

The Gradient. Consider the topography of the Earth s surface.

The Gradient. Consider the topography of the Earth s surface. 9/16/5 The Gradient.doc 1/8 The Gradient Consider the topography of the Earth s surface. We use contours of constant elevation called topographic contours to epress on maps (a -dimensional graphic) the

More information

Module 16 : Line Integrals, Conservative fields Green's Theorem and applications. Lecture 48 : Green's Theorem [Section 48.

Module 16 : Line Integrals, Conservative fields Green's Theorem and applications. Lecture 48 : Green's Theorem [Section 48. Module 16 : Line Integrals, Conservative fields Green's Theorem and applications Lecture 48 : Green's Theorem [Section 48.1] Objectives In this section you will learn the following : Green's theorem which

More information

The Divergence Theorem

The Divergence Theorem Math 1a The Divergence Theorem 1. Parameterize the boundary of each of the following with positive orientation. (a) The solid x + 4y + 9z 36. (b) The solid x + y z 9. (c) The solid consisting of all points

More information

CALC 3 CONCEPT PACKET Complete

CALC 3 CONCEPT PACKET Complete CALC 3 CONCEPT PACKET Complete Written by Jeremy Robinson, Head Instructor Find Out More +Private Instruction +Review Sessions WWW.GRADEPEAK.COM Need Help? Online Private Instruction Anytime, Anywhere

More information

MTH101A (2016), Tentative Marking Scheme - End sem. exam

MTH101A (2016), Tentative Marking Scheme - End sem. exam MTH11A (16), Tentative Marking Scheme - End sem. eam 1. (a) Let f(, y, z) = yz and S be + y + z = 6. Using Lagrange multipliers method, find the maimum and minimum values of f on S. [7] Lag. Eqns.: yz

More information

Math 120: Examples. Green s theorem. x 2 + y 2 dx + x. x 2 + y 2 dy. y x 2 + y 2, Q = x. x 2 + y 2

Math 120: Examples. Green s theorem. x 2 + y 2 dx + x. x 2 + y 2 dy. y x 2 + y 2, Q = x. x 2 + y 2 Math 12: Examples Green s theorem Example 1. onsider the integral Evaluate it when (a) is the circle x 2 + y 2 = 1. (b) is the ellipse x 2 + y2 4 = 1. y x 2 + y 2 dx + Solution. (a) We did this in class.

More information