Eigenvalues and Eigenvectors. Eigenvalues and Eigenvectors. Initialization

Size: px
Start display at page:

Download "Eigenvalues and Eigenvectors. Eigenvalues and Eigenvectors. Initialization"

Transcription

1 Eigenvalues and Eigenvecors Iniializaion "D; General::spellD; Eigenvalues and Eigenvecors We will now review some ideas from linear algebra. Proofs of he heorems are eiher lef as exercises or can be found in any sandard ex on linear algebra. We know how o solve n linear equaions in n unknowns. I was assumed ha he deerminan of he marix was nonzero and hence ha he soluion was unique. In he case of a homogeneous sysem AX, if de HaL, he unique soluion is he rivial soluion X. If de HaL, here exis nonrivial soluions o AX. Suppose ha de HaL, and consider soluions o he homogeneous linear sysem a, x + a, x + a, x + + a,n- x n- + a,n x n a, x + a, x + a, x + + a,n- x n- + a,n x n a, x + a, x + a, x + + a,n- x n- + a,n x n ª ª ª ª ª ª a n, x + a n, x + a n, x + + a n,n- x n- + a n,n x n b n A homogeneous sysem of equaions always has he rivial soluion x, x,..., x n. Gaussian eliminaion can be used o obain he reduced row echelon form which will be used o form a se of relaionships beween he variables, and a non-rivial soluion. Example. Find he nonrivial soluions o he homogeneous sysem

2 Eigen_vv.nb Soluion. x + x - x x + x + x 5 x + 4 x + x Use Gaussian eliminaion o eliminae x and he resul is x + x - x - x + x - 6x + 6x Since he hird equaion is a muliple of he second equaion, his sysem reduces o wo equaions in hree unknowns: x + x - x - x + x We can selec one unknown and use i as a parameer. For insance, le x ; hen he second equaion implies ha x and he firs equaion is used o compue x. Therefore, he soluion can be expressed as he se of relaions: x - x x or X x x x - -

3 Eigen_vv.nb We can fin he soluion by enering he equaions ino Mahemaica. eqns 8 x + x x, x + x + x, 5 x + 4x + x <; Idenify he marix of coefficiens A and column vecor B for he marix problem AX B.

4 Eigen_vv.nb 4 vars 8x,x,x <; Needs@"LinearAlgebra`MarixManipulaion`"D; mas LinearEquaionsToMarices@eqns, varsd; A mas PT ; B mas PT ; Prin@"Solve he equaions"d; Prin@TableForm@eqnsDD; Prin@"A ", MarixForm@ADD; Prin@"B ", MarixForm@BDD; Prin@"Solve he equaion A X B"D; Prin@" A ", MarixForm@AD, MarixForm@varsD, " ", MarixForm@BDD; Prin@"»A» ", De@ADD; Prin@"Hence he sysem will have non rivial soluions."d; Developer`LinearExpressionToMarix::obs : Developer`LinearExpressionToMarix has been superseded by CoefficienArrays, and is now obsolee. I will no be included in Mahemaica version 8. Solve he equaions x + x x x + x + x 5x + 4x + x A B 5 4 Solve he equaion A X B A»A» 5 4 x x x Hence he sysem will have non rivial soluions. Form he augmened marix M [A, B] and perform Gauss-Jordan eliminaion wih row inerchanges.

5 Eigen_vv.nb 5 b Pariion@B, D; M AppendRows@A, bd; m M; Prin@"A ", MarixForm@ADD; Prin@"B ", MarixForm@BDD; Prin@"The augmened marix is"d; Prin@"M ", MarixForm@MDD; A B 5 4 The augmened marix is M 5 4 Find he reduced row echelon form of he augmened marix M [A, B]. Prin@"The augmened marix is"d; Prin@"M ", MarixForm@MDD; The augmened marix is M 5 4 M PT M PT M PT ; M PT M PT 5 M PT ; Prin@MarixForm@MDD; 6 6 M PT M PT; Prin@MarixForm@MDD; 6 6

6 Eigen_vv.nb 6 M PT M PT M PT ; M PT M PT + 6 M PT ; Prin@MarixForm@MDD; The equaion form for his marix is x + x x - x There is one free variable which we choose o be x. I is used in compuing x and x -. The soluion vecor X x x x is X ; We are done. Aside. We can verify ha his is he soluion by direc muliplicaion A X. This is jus for fun!

7 Eigen_vv.nb 7 Prin@"Solve he equaion A X "D; Prin@" A ", MarixForm@AD MarixForm@varsD, " ", MarixForm@BDD; Prin@" X ", MarixForm@varsD, " ", MarixForm@XDD; Prin@"Does ", MarixForm@AD, MarixForm@XD, " ", MarixForm@BD, "?"D; Prin@" ", MarixForm@A.XD, " ", MarixForm@BDD; Prin@Flaen@A.XD Flaen@BDD; Solve he equaion A X A 5 4 x x x X x x x X Does 5 4 X 88,, <, 8,, <, 85, 4, <<.X 88,, <, 8,, <, 85, 4, <<.X 8,, <? Aside. We can le Mahemaica find he reduced row echelon marix. This is jus for fun! M m; Prin@"M ", MarixForm@MDD; Prin@"The row reduced echelon form is"d; Prin@" ", MarixForm@RowReduce@MDDD; M 5 4 The row reduced echelon form is Background for Eigenvalues and Eigenvecors Definiion (Linearly Independen). The vecors U, U,..., U n

8 Eigen_vv.nb 8 are said o be linearly independen if he equaion c U + c U c n U n implies ha c, c,..., c n. If he vecors are no linearly independen hey are said o be linearly dependen. Two vecors in are linearly independen if and only if hey are no parallel. Three vecors in are linearly independen if and only if hey do no lie in he same plane. Definiion (Linearly Dependen). The vecors U, U,..., U n are said o be linearly dependen if here exiss a se of numbers 8c, c,..., c n < no all zero, such ha c U + c U c n U n. Theorem. The vecors U, U,..., U n are linearly dependen if and only if a leas one of hem is a linear combinaion of he ohers. A desirable feaure for a vecor space is he abiliy o express each vecor as s linear combinaion of vecors chosen from a small subse of vecors. This moivaes he nex definiion. Definiion (Basis). Suppose ha S 8U, U,..., U m < is a se of m vecors in n. The se S i s called a basis for n if for every vecor X œ n here exiss a unique se of scalars 8c, c,..., c m < so ha X can be expressed as he linear combinaion X c U + c U c n U n

9 Eigen_vv.nb 9 Theorem. In n, any se of n linearly independen vecors forms a basis of n. Each vecor X œ n is uniquely expressed as a linear combinaion of he basis vecors. Theorem. Le K, K,..., K m be vecors in n. (i) If m>n, hen he vecors are linearly independen. (ii) If mn, hen he vecors are linearly dependen if and only if de HKL, where K,..., K m D. Proof Eigenvalues and Eigenvecors Eigenvalues and Eigenvecors Applicaions of mahemaics someimes encouner he following quesions: Wha are he singulariies of A -li, where l is a parameer? Wha is he behavior of he sequence of vecors 9A j X j? Wha are he geomeric feaures of a linear ransformaion? Soluions for problems in many differen disciplines, such as economics, engineering, and physics, can involve ideas relaed o hese equaions. The heory of eigenvalues and eigenvecors is powerful enough o help solve hese oherwise inracable problems. Le A be a square marix of dimension n n and le X be a vecor of dimension n. The produc Y AX can be viewed as a linear ransformaion from n-dimensional space ino iself. We wan o find scalars l for which here exiss a nonzero vecor X such ha () AX lx; ha is, he linear ransformaion T(X) AX maps X ono he muliple lx. When his occurs, we call X an eigenvecor ha corresponds o he eigenvalue l, and ogeher hey form he eigen-

10 Eigen_vv.nb pair l, A for A. In general, he scalar l and vecor X can involve complex numbers. For simpliciy, mos of our illusraions will involve real calculaions. However, he echniques are easily exended o he complex case. The n n ideniy marix I can be used o wrie equaion () in he form () HA -lil X. The significance of equaion () is ha he produc of he marix A -li and he nonzero vecor X is he zero vecor! The heorem of homogeneous linear sysem says ha () has nonrivial soluions if and only if he marix A -li is singular, ha is, () de HA -lil. This deerminan can be wrien in he form (4) a, -l a, a, a,n- a,n a, a, -l a, a,n- a,n a, a, a, -l a,n- a,n ª ª ª ª ª a n-, a n-, a n-, a n-,n- -l a n-,n a n, a n, a n, a n,n- a n,n -l Definiion (Characerisic Polynomial). When he deerminan in (4) is expanded, i becomes a polynomial of degree n, which is called he characerisic polynomial

11 Eigen_vv.nb (5) p HlL de HA -lil p HlL H-L n Il n + c l n- + c l n c n- l + c n- l + c n M Exploraion for p(λ) n ; A Table@a i,j, 8i, n<, 8j, n<d; I n IdeniyMarix@nD; p@λ_d De@A λi n D; solse Solve@p@λD, λd; Prin@" A ", MarixForm@ADD; Prin@"p@λD De@", MarixForm@A λi n D, "D"D; Prin@"p@λD ", Collec@Expand@p@λD p@dd, λd, "+H", Expand@p@DD, "L"D; Prin@"Solve p@λd and ge"d; Prin@TableForm@solseDD; A K a, a, O a, a, p@λd De@ λ + a, a, a, λ + a, D p@λd λ +λh a, a, L+H a, a, + a, a, L Solve p@λd and ge λ Ja, + a, a, + 4a, a, a, a, + a, N λ Ja, + a, + a, + 4a, a, a, a, + a, N

12 Eigen_vv.nb n ; A Table@a i,j, 8i, n<, 8j, n<d; I n IdeniyMarix@nD; p@λ_d De@A λi n D; Prin@" A ", MarixForm@ADD; Prin@"p@λD De@", MarixForm@A λi n D, "D"D; Prin@"p@λD ", Collec@Expand@p@λD p@dd, λd, "+H", Expand@p@DD, "L"D; A a, a, a, a, a, a, a, a, a, p@λd De@ λ + a, a, a, a, λ + a, a, D a, a, λ + a, p@λd λ +λ Ha, + a, + a, L + λ Ha, a, a, a, + a, a, + a, a, a, a, a, a, L+H a, a, a, + a, a, a, + a, a, a, a, a, a, a, a, a, + a, a, a, L

13 Eigen_vv.nb n 4; A Table@a i,j, 8i, n<, 8j, n<d; I n IdeniyMarix@nD; p@λ_d De@A λi n D; Prin@" A ", MarixForm@ADD; Prin@"p@λD De@", MarixForm@A λi n D, "D"D; Prin@"p@λD ", Collec@Expand@p@λD p@dd, λd, "+H", Expand@p@DD, "L"D; A a, a, a, a,4 a, a, a, a,4 a, a, a, a,4 a 4, a 4, a 4, a 4,4 p@λd De@ λ + a, a, a, a,4 a, λ + a, a, a,4 a, a, λ + a, a,4 a 4, a 4, a 4, λ + a 4,4 D p@λd λ 4 +λ H a, a, a, a 4,4 L + λ H a, a, + a, a, a, a, a, a, + a, a, + a, a, a,4 a 4, a,4 a 4, a,4 a 4, + a, a 4,4 + a, a 4,4 + a, a 4,4 L + λ Ha, a, a, a, a, a, a, a, a, + a, a, a, + a, a, a, a, a, a, + a,4 a, a 4, a, a,4 a 4, + a,4 a, a 4, a, a,4 a 4, a,4 a, a 4, + a, a,4 a 4, + a,4 a, a 4, a, a,4 a 4, a,4 a, a 4, a,4 a, a 4, + a, a,4 a 4, + a, a,4 a 4, + a, a, a 4,4 a, a, a 4,4 + a, a, a 4,4 + a, a, a 4,4 a, a, a 4,4 a, a, a 4,4 L +Ha,4 a, a, a 4, a, a,4 a, a 4, a,4 a, a, a 4, + a, a,4 a, a 4, + a, a, a,4 a 4, a, a, a,4 a 4, a,4 a, a, a 4, + a, a,4 a, a 4, + a,4 a, a, a 4, a, a,4 a, a 4, a, a, a,4 a 4, + a, a, a,4 a 4, + a,4 a, a, a 4, a, a,4 a, a 4, a,4 a, a, a 4, + a, a,4 a, a 4, + a, a, a,4 a 4, a, a, a,4 a 4, a, a, a, a 4,4 + a, a, a, a 4,4 + a, a, a, a 4,4 a, a, a, a 4,4 a, a, a, a 4,4 + a, a, a, a 4,4 L There exis exacly n roos (no necessarily disinc) of a polynomial of degree n. Each roo l can be subsiued ino equaion () o obain an underdeermined sysem of equaions ha has a corresponding nonrivial soluion vecor X. If l is real, a real eigenvecor X can be consruced. For emphasis, we sae he following definiions. Definiion (Eigenvalue). If A is and n n real marix, hen is n eigenvalues l, l,..., l n are he real and complex roos of he characerisic polynomial

14 Eigen_vv.nb 4 p HlL de HA -lil. Definiion (Eigenvecor). If l is an eigenvalue of A and he nonzero vecor V has he propery ha AV lv hen V is called an eigenvecor of A corresponding o he eigenvalue l. Togeher, his eigenvalue l and eigenvecor V is called an eigenpair l, V. The characerisic polynomial p HlL H-L n Il n + c l n- + c l n c n- l + c n- l + c n M can be facored in he form p HlL H-L n Hl-l L m Hl-l L m... Il -l j M m j... Hl -l mk- L m k- Hl-l mk L m k where m j is called he mulipliciy of he eigenvalue l j. The sum of he mulipliciies of all eigenvalues is n; ha is, n m + m m j m k- + m k. The nex hree resuls concern he exisence of eigenvecors. Theorem (Corresponding Eigenvecors). Suppose ha A is and n n square marix. (a) For each disinc eigenvalue l here exiss a leas one eigenvecor V corresponding o l. (b) If l has mulipliciy r, hen here exis a mos r lin-

15 Eigen_vv.nb 5 early independen eigenvecors V, V,..., V r ha correspond o l. Theorem (Linearly Independen Eigenvecors). Suppose ha A is and n n square marix. If he eigenvalues l, l,..., l k are disinc and l, V ; l, V ;...; l k, V k are he k eigenpairs, hen 8V, V,..., V k < is a se of k linearly independen vecors. Theorem (Complee Se of Eigenvecors). Suppose ha A is and n n square marix. If he eigenvalues of A are all disinc, hen here exis n nearly independen eigenvecors V, V,..., V n. Finding eigenpairs by hand compuaions is usually done in he following manner. The eigenvalue l of mulipliciy r is subsiued ino he equaion HA -lil V. Then Gaussian eliminaion can be performed o obain he row reduced echelon form, which will involve n-k equaions in n unknowns, where k r. Hence here are k free variables o choose. The free variables can be seleced in a judicious manner o produce k linearly independen soluion vecors V, V,..., V k ha correspond o l.

16 Eigen_vv.nb 6 NewonRaphson@x_, max_d : ModuleB8<, k ; p N@xD; Prin@"p ", PaddedForm@p, 86, 6<D, ", f@p D ", NumberForm@f@pD, 6DD; p p; WhileB k < max, p p; p p f@pd f'@pd ; k k + ; Prin@"p" k, " ", PaddedForm@p, 86, 6<D, ", f@", "p" k, "D ", NumberForm@f@pD, 6DD; F; Prin@" p ", NumberForm@p, 6D D; Prin@" p ±", Abs@p pd D; Prin@"f@pD ", NumberForm@f@pD, 6DD; F Example. Find he eigenvalues and eigenvecors of he marix A K O. Soluion. A ; I IdeniyMarix@D; M A λi ; p@λ_d De@MD; solse Solve@p@λD, λd; Prin@" A ", MarixForm@ A DD; Prin@" M ", MarixForm@ M DD; Prin@"p@λD De@MD ", p@λdd; Prin@"Solve p@λd ge"d; Prin@TableForm@solseDD; A K O M K λ λ O p@λd De@MD λ+λ Solve p@λd ge λ λ +

17 Eigen_vv.nb 7 i ; λ i ; B 8, <; b Pariion@B, D; Needs@"LinearAlgebra`MarixManipulaion`"D; M AppendRows@M, bd; Prin@"The augmened marix M is"d; Prin@"M" i, " ", MarixForm@MDD; M ReplaceAll@M, λ λ i D; M AppendRows@M, bd; Prin@"Subsiue ", "λ" i, " ", λ i D; Prin@"The augmened marix M is"d; Prin@"M" i, " ", MarixForm@MDD; Prin@"The row reduced echelon form is"d; Prin@MarixForm@ RowReduce@ MD DD The augmened marix M is M K λ λ O Subsiue λ The augmened marix M is M The row reduced echelon form is This is equivalen o he linear sysem x + x Se x and solve for x, and ge he eigenvecor V ; Verify he eigenpair.

18 Eigen_vv.nb 8 Prin@"A ", MarixForm@ADD; Prin@"λ" i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " H", λ i, "L", MarixForm@V i D, " ", MarixForm@λ i V i D, " ", ExpandAll@MarixForm@λ i V i DDD; Prin@ExpandAll@A.V i D ExpandAll@λ i V i DD; A K O λ V Does A V λ V? A V K O + + λ V H L J N True

19 Eigen_vv.nb 9 i ; λ i + ; B 8, <; b Pariion@B, D; Needs@"LinearAlgebra`MarixManipulaion`"D; M AppendRows@M, bd; Prin@"The augmened marix M is"d; Prin@"M" i, " ", MarixForm@MDD; M ReplaceAll@M, λ λ i D; M AppendRows@M, bd; Prin@"Subsiue ", "λ" i, " ", λ i D; Prin@"The augmened marix M is"d; Prin@"M" i, " ", MarixForm@MDD; Prin@"The row reduced echelon form is"d; Prin@MarixForm@ RowReduce@ MD DD The augmened marix M is M K λ λ O Subsiue λ + The augmened marix M is M The row reduced echelon form is This is equivalen o he linear sysem x x Se x and solve for x, and ge he eigenvecor V ; Verify he eigenpair.

20 Eigen_vv.nb ", i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " H", λ i, "L", MarixForm@V i D, " ", MarixForm@λ i V i D, " ", ExpandAll@MarixForm@λ i V i DDD; Prin@ExpandAll@A.V i D ExpandAll@λ i V i DD; A K O λ + V Does A V λ V? A V K O + + λ V H + L J + N True Remark. Newon's mehod can be used o find he roos of he characerisic polynomial. For he firs eigenvalue. f@x_d p@xd; Prin@"p@xD ", p@xdd; NewonRaphson@.5, 4D; p@xd x+ x p.5, f@p D.5 p , f@p D p , f@p D p , f@p D p , f@p 4 D p p ± f@pd Which is an approximaion o he eigenvalue

21 Eigen_vv.nb " ", λ, " ", D,7DD; λ For he second eigenvalue. ", 6D; x+ x p.5, f@p D.75 p.5, f@p D.65 p , f@p D p , f@p D p , f@p 4 D p , f@p 5 D p , f@p 6 D. p p ±.587 f@pd. Which is an approximaion o he eigenvalue Prin@"λ", " ", λ, " ", NumberForm@N@λ D,7DD; λ Free Variables When he linear sysem is underdeermined, we needed o inroduce free variables in he proper locaion. The following subrouine will rearrange he equaions and inroduce free variables in he locaion hey are needed. Then all ha is needed o do is find he row reduced echelon form a second ime. This is done a he end of he nex example.

22 Eigen_vv.nb : ModuleA8c, i, k, L, M M, m, n, Z<, n Dimensions@MD PT ; m Dimensions@MD PT ; L 8, s, r, q, p, u, v, w, z, y, x<; Z Table@, 8m<D; c ; For@i, i n, i++, If@M Pi,iT, For@k n, i < k, k, M PkT M Pk T D; D; D; For@i n, i, i, If@M Pi,iT, M PiT Z; M Pi,iT ; M Pi,mT L PcT ; c c + ; D; D; Reurn@MDE Example. Find he eigenvalues and eigenvecors of he marix - A -. - Soluion. Find he characerisic polynomial and he eigenvalues.

23 Eigen_vv.nb A ; n Lengh@AD; I n IdeniyMarix@nD; M A λi n ; p@λ_d De@A λi n D; solse Solve@p@λD, λd; For@i, i n, i++, λ i solse Pi,,T ;D ; Prin@" A ", MarixForm@ADD; Prin@"A λ", "I" n, " ", MarixForm@AD, " λ", MarixForm@I n DD; Prin@"A λ", "I" n, " ", MarixForm@MDD; Prin@"The characerisic polynomial is"d; Prin@"p@λD»A λ I n»"d; Prin@"p@λD ", p@λdd; q@λ_d Facor@p@λDD; If@No@p@λD q@λdd, Prin@"p@λD ", q@λddd; Prin@"To find he eigenvalues of he marix A"D; Prin@"Solve ", p@λd D; A A λi λ A λi λ λ λ The characerisic polynomial is p@λd»a λ I n» p@λd 6 λ+6 λ λ p@λd H +λlh +λlh +λl To find he eigenvalues of he marix A Solve 6 λ+6 λ λ Le us plo p@λd 6 λ+6 λ λ and see where he roos are locaed

24 Eigen_vv.nb 4 Needs@"Graphics`Colors`"D Plo@p@λD, 8λ,,.5`<, PloSyle MagenaD Prin@"p@λD ", p@λdd; p@λd 6 λ+6 λ λ Alhough his example has been "cooked up" so ha he values are simple, we should be aware ha a roo finding mehod could be employed o find he eigenvalues. For illusraion, we can use he Newon-Raphson mehod. f@x_d p@xd;

25 Eigen_vv.nb 5 NewonRaphson@., 6D; p., f@p D p , f@p D p , f@p D p , f@p D p , f@p 4 D p , f@p 5 D p 6., f@p 6 D. p. p ±4. 4 f@pd. NewonRaphson@., 4D; p., f@p D.9 p , f@p D p.974, f@p D p , f@p D p 4., f@p 4 D. p. p ± f@pd. NewonRaphson@., 5D; p., f@p D p , f@p D p , f@p D p , f@p D p 4.96, f@p 4 D p , f@p 5 D p p ±9.6 f@pd

26 Eigen_vv.nb 6 Since we have solved for roos in previous modules, we will concenrae our effor on solving for he eigenvecors. Firs, we shall auomae he procedure for finding he roos of he characerisic polynomial, which is one way o find he eigenvalues. A ; n Lengh@AD; I n IdeniyMarix@nD; M A λi n ; p@λ_d De@A λi n D; solse Solve@p@λD, λd; For@i, i n, i++, λ i solse Pi,,T ;D ; Prin@" A ", MarixForm@ADD; Prin@"A λ", "I" n, " ", MarixForm@AD, " λ", MarixForm@I n DD; Prin@"A λ", "I" n, " ", MarixForm@MDD; Prin@"The characerisic polynomial is"d; Prin@"p@λD»A λ I n»"d; Prin@"p@λD ", p@λdd; q@λ_d Facor@p@λDD; If@No@p@λD q@λdd, Prin@"p@λD ", q@λddd; Prin@"To find he eigenvalues of he marix A"D; Prin@"Solve ", p@λd D; Prin@"Ge"D; For@i, i n, i++, Prin@" ", "λ" i, " ", λ i, " ", Chop@N@λ i DDD D; A A λi λ A λi λ λ λ The characerisic polynomial is p@λd»a λ I n» p@λd 6 λ+6 λ λ p@λd H +λlh +λlh +λl To find he eigenvalues of he marix A

27 Eigen_vv.nb 7 Solve 6 λ+6 λ λ Ge λ. λ. λ. Invesigae he eigen-pair l,v i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x <; B 8,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ Solve he equaion A X A X x x x The augmened marix is M The row reduced echelon form for M is Inroduce he free variables and find he eigenvecor.

28 Eigen_vv.nb 8 Prin@"Inroduce he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables Find he reduced row echelon form The eigenvecor is in he las column V Verify he eigenpair.

29 Eigen_vv.nb 9 Prin@"A ", MarixForm@ADD; Prin@"λ" i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " ", λ i, MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ V Does A V λ V? A V λ V True Invesigae he eigen-pair l,v

30 Eigen_vv.nb i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x <; B 8,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ Solve he equaion A X A X x x x The augmened marix is M The row reduced echelon form for M is Inroduce he free variables and find he eigenvecor.

31 Eigen_vv.nb he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables Find he reduced row echelon form The eigenvecor is in he las column V Verify he eigenpair.

32 Eigen_vv.nb ", i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " ", λ i, MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ V Does A V λ V? A V λ V True Invesigae he eigen-pair l,v

33 Eigen_vv.nb i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x <; B 8,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ Solve he equaion A X A X The augmened marix M x x is M The row reduced echelon form for M is Inroduce he free variables and find he eigenvecor.

34 Eigen_vv.nb 4 Prin@"Inroduce he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables Find he reduced row echelon form The eigenvecor is in he las column V Verify he eigenpair.

35 Eigen_vv.nb 5 Prin@"A ", MarixForm@ADD; Prin@"λ" i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " ", λ i, MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ V Does A V λ V? A V λ V True The hree eigen-pairs are: Prin@"A ", MarixForm@ADD; For@i, i, i++, Prin@"λ" i, " ", λ i, ", ", "V" i, " ", MarixForm@V i DD; D; A λ, V λ, V λ, V We can compare his wih he resuls obained using Mahemai-

36 Eigen_vv.nb 6 ca's Eigensysem procedure. sol Eigensysem@AD; n Lengh@AD; Prin@"A ", MarixForm@ADD; For@i, i n, i++, Prin@"λ" i, " ", sol P,iT, ", ", "V" i, " ", MarixForm@sol P,iT DD; D; A λ, V λ, V λ, V Example 4. Find he eigenvalues and eigenvecors of he marix - A Soluion 4. Find he characerisic polynomial and he eigenvalues.

37 Eigen_vv.nb 7 A ; n Lengh@AD; I n IdeniyMarix@nD; M A λi n ; p@λ_d De@A λi n D; solse Solve@p@λD, λd; For@i, i n, i++, λ i solse Pi,,T ;D ; Prin@" A ", MarixForm@ADD; Prin@"A λ", "I" n, " ", MarixForm@AD, " λ", MarixForm@I n DD; Prin@"A λ", "I" n, " ", MarixForm@MDD; Prin@"The characerisic polynomial is"d; Prin@"p@λD»A λ I n»"d; Prin@"p@λD ", p@λdd; q@λ_d Facor@p@λDD; If@No@p@λD q@λdd, Prin@"p@λD ", q@λddd; Prin@"To find he eigenvalues of he marix A"D; Prin@"Solve ", p@λd D; Prin@"Ge"D; For@i, i n, i++, Prin@" ", "λ" i, " ", λ i, " ", Chop@N@λ i DDD D; A A λi λ A λi λ λ λ The characerisic polynomial is p@λd»a λ I n» p@λd 4 9 λ+6 λ λ p@λd H 4 +λlh +λl To find he eigenvalues of he marix A Solve 4 9 λ+6 λ λ Ge λ. λ. λ 4 4.

38 Eigen_vv.nb 8 Invesigae he eigen-pairs l,v and l,v. i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x <; B 8,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ Solve he equaion A X A X The augmened marix M x x is M The row reduced echelon form for M is Inroduce he free variables and find he eigenvecor.

39 Eigen_vv.nb 9 Prin@"Inroduce he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables s Find he reduced row echelon form s s The eigenvecor is in he las column V s s The eigenvalue is repeaed, and here are wo linearly independen eigenvecors. Invesigae he eigen-pairs l,v and l,v. W V i ; Prin@"W ", MarixForm@WDD; W s s For V, se s in W and ge λ λ ; V i ReplaceAll@W, 8s <D; Prin@"V" i, " ", MarixForm@V i DD; V Verify he eigenpair.

40 Eigen_vv.nb 4 Prin@"A ", MarixForm@ADD; Prin@"λ" i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " ", λ i, MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ V Does A V λ V? A V λ V True For V, se in W and ge i ; λ i λ ; V i ReplaceAll@W, 8 <D; Prin@"V" i, " ", MarixForm@V i DD; V s s Verify he eigenpair.

41 Eigen_vv.nb 4 Prin@"A ", MarixForm@ADD; Prin@"λ" i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " ", λ i, MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ V s s Does A V λ V? A V s s s s λ V s s s s True Invesigae he eigen-pair l,v

42 Eigen_vv.nb 4 i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x <; B 8,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ 4 Solve he equaion A X A X The augmened marix M x x is M The row reduced echelon form for M is Inroduce he free variables and find he eigenvecor.

43 Eigen_vv.nb 4 Prin@"Inroduce he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables Find he reduced row echelon form The eigenvecor is in he las column V Verify he eigenpair.

44 Eigen_vv.nb 44 ", i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " ", λ i, MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ 4 V Does A V λ V? A V λ V 4 True I was good forune ha he hree eigenvecors are linearly independen. Prin@"A ", MarixForm@ADD; For@i, i, i++, Prin@"λ" i, " ", λ i, ", ", "V" i, " ", MarixForm@V i DD; D; A λ, V λ, V λ 4, V s s

45 Eigen_vv.nb 45 We can compare his wih he resuls obained using Mahemaicas Eigensysem procedure. sol n Prin@"A ", For@i, i n, i++, Prin@"λ" i, " ", sol P,iT, ", ", "V" i, " ", MarixForm@sol P,iT DD; D; A λ 4, V λ, V λ, V Example 5. Find he eigenvalues and eigenvecors of he marix A Soluion 5. Find he characerisic polynomial and he eigenvalues.

46 Eigen_vv.nb 46 A ; n Lengh@AD; I n IdeniyMarix@nD; M A λi n ; p@λ_d De@A λi n D; solse Solve@p@λD, λd; For@i, i n, i++, λ i solse Pi,,T ;D ; Prin@" A ", MarixForm@ADD; Prin@"A λ", "I" n, " ", MarixForm@AD, " λ", MarixForm@I n DD; Prin@"A λ", "I" n, " ", MarixForm@MDD; Prin@"The characerisic polynomial is"d; Prin@"p@λD»A λ I n»"d; Prin@"p@λD ", p@λdd; q@λ_d Facor@p@λDD; If@No@p@λD q@λdd, Prin@"p@λD ", q@λddd; Prin@"To find he eigenvalues of he marix A"D; Prin@"Solve ", p@λd D; Prin@"Ge"D; For@i, i n, i++, Prin@" ", "λ" i, " ", λ i, " ", Chop@N@λ i DDD D; A A λi λ A λi λ λ λ The characerisic polynomial is p@λd»a λ I n» p@λd 8 λ λ λ p@λd H +λli + λ+λ M To find he eigenvalues of he marix A Solve 8 λ λ λ Ge λ λ

47 Eigen_vv.nb 47 λ. Invesigae he eigen-pair l,v i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x <; B 8,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ Solve he equaion A X A X + The augmened marix M x x is M + The row reduced echelon form for M is Inroduce he free variables and find he eigenvecor.

48 Eigen_vv.nb 48 he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables Find he reduced row echelon form J N J 5 N The eigenvecor is in he las column V J N J 5 N In his case he eigenvecor will have a nicer appearance if we replace wih. V i V i ; Prin@"V" i, " ", MarixForm@V i DD; V H L H 5 L Verify he eigenpair.

49 Eigen_vv.nb 49 ", i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " H", λ i, "L", MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ V H L H 5 L Does A V λ V? A V λ V True H L H L H 5 L H L H 5 L H + 9 L H L H 9 L H + 9 L H L H 9 L Invesigae he eigen-pair l,v

50 Eigen_vv.nb 5 i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x <; B 8,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ + Solve he equaion A X A X The augmened marix M x x is M + The row reduced echelon form for M is Inroduce he free variables and find he eigenvecor.

51 Eigen_vv.nb 5 Prin@"Inroduce he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables Find he reduced row echelon form J 6 9 N J 5 + N The eigenvecor is in he las column V J 6 9 N J 5 + N In his case he eigenvecor will have a nicer appearance if we replace wih. V i V i ; Prin@"V" i, " ", MarixForm@V i DD; V H 6 9 L H + 5 L Verify he eigenpair.

52 Eigen_vv.nb 5 Prin@"A ", MarixForm@ADD; Prin@"λ" i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " H", λ i, "L", MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ + V H 6 9 L H + 5 L Does A V λ V? A V λ V True H + L H 6 9 L H + 5 L H 6 9 L H + 5 L H 9 L H 4 4 L H + 9 L H 9 L H 4 4 L H + 9 L Invesigae he eigen-pair l,v

53 Eigen_vv.nb 5 i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x <; B 8,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ Solve he equaion A X A X The augmened marix M x x is M + The row reduced echelon form for M is Inroduce he free variables and find he eigenvecor.

54 Eigen_vv.nb 54 he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables Find he reduced row echelon form The eigenvecor is in he las column V Verify he eigenpair.

55 Eigen_vv.nb 55 ", i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " ", λ i, MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ V Does A V λ V? A V λ V True The hree eigen-pairs are: Prin@"A ", MarixForm@ADD; For@i, i, i++, Prin@"λ" i, " ", λ i, ", ", "V" i, " ", MarixForm@V i DD; D; A λ, V λ +, V H L H 5 L H 6 9 L H + 5 L λ, V We can compare his wih he resuls obained using Mahemaicas

56 Eigen_vv.nb 56 Eigensysem procedure. sol n Prin@"A ", For@i, i n, i++, Prin@"λ" i, " ", sol P,iT, ", ", "V" i, " ", MarixForm@sol P,iT DD; D; A λ +, V λ, V λ, V Example 6. Find he eigenvalues and eigenvecors of he marix - A. - Do his by consrucing he characerisic polynomial and finding is roos, and compare wih Mahemaica's Eigenvalues procedure. Soluion 6. Find he characerisic polynomial and he eigenvalues.

57 Eigen_vv.nb 57 A ; n Lengh@AD; I n IdeniyMarix@nD; M A λi n ; p@λ_d De@A λi n D; solse Solve@p@λD, λd; For@i, i n, i++, λ i solse Pi,,T ;D ; Prin@" A ", MarixForm@ADD; Prin@"A λ", "I" n, " ", MarixForm@AD, " λ", MarixForm@I n DD; Prin@"A λ", "I" n, " ", MarixForm@MDD; Prin@"The characerisic polynomial is"d; Prin@"p@λD»A λ I n»"d; Prin@"p@λD ", p@λdd; q@λ_d Facor@p@λDD; If@No@p@λD q@λdd, Prin@"p@λD ", q@λddd; Prin@"To find he eigenvalues of he marix A"D; Prin@"Solve ", p@λd D; Prin@"Ge"D; For@i, i n, i++, Prin@" ", "λ" i, " ", λ i, " ", Chop@N@λ i DDD D; A A λi 4 λ A λi 4 λ λ λ λ The characerisic polynomial is p@λd»a λ I n» p@λd 5 4 λ+7 λ 6 λ +λ 4 p@λd I λ+λ MI5 λ+λ M To find he eigenvalues of he marix A Solve 5 4 λ+7 λ 6 λ +λ 4 Ge

58 Eigen_vv.nb 58 λ J N λ J + N λ J N λ 4 J + N Invesigae he eigen-pair l,v i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x,x 4 <; B 8,,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ J N Solve he equaion A X A X + J + N + J + N + J + N + J + N x x x x 4 The augmened marix is

59 Eigen_vv.nb 59 M + J + N + J + N + J + N + J + N The row reduced echelon form for M is + J + N Inroduce he free variables and find he eigenvecor. Prin@"Inroduce he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables + J + N Find he reduced row echelon form J + N J + N The eigenvecor is in he las column V J + J + N N In his case he eigenvecor will have a nicer appearance if we

60 Eigen_vv.nb 6 replace wih. V i V i ; Prin@"V" i, " ", MarixForm@V i DD; V J + 4 J + N N Verify he eigenpair.

61 Eigen_vv.nb 6 Prin@"A ", MarixForm@ADD; Prin@"λ" i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " H", λ i, "L", MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ J N J + N V 4 J + N Does A V λ V? A V J + 4 J + N N 4 J + 8 J + J + 4 J + N N N N λ V H J NL J + 4 J + N N J NJ + N J N J NJ + N J N True Invesigae he eigen-pair l,v

62 Eigen_vv.nb 6 i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x,x 4 <; B 8,,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ J + N Solve he equaion A X A X + J N + J N + J N + J N x x x x 4 The augmened marix is M + J + N + J + N + J + N + J + N The row reduced echelon form for M is

63 Eigen_vv.nb 6 J N Inroduce he free variables and find he eigenvecor. Prin@"Inroduce he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables J N Find he reduced row echelon form J + N J + N The eigenvecor is in he las column V J + N J + N In his case he eigenvecor will have a nicer appearance if we replace wih.

64 Eigen_vv.nb 64 V i V i ; Prin@"V" i, " ", MarixForm@V i DD; V J + N 4 J + N Verify he eigenpair.

65 Eigen_vv.nb 65 ", i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " H", λ i, "L", MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ J + N J + N V 4 J + N Does A V λ V? A V J + N 4 J + N 4 + J + N 8+ J + N + J + N 4+ J + N λ V H J + NL J + N 4 J + N J + NJ + N J + N J + NJ + N J + N True Invesigae he eigen-pair l,v

66 Eigen_vv.nb 66 i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x,x 4 <; B 8,,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ J N Solve he equaion A X A X + J + N + J + N + J + N + J + N x x x x 4 The augmened marix is M + J + N + J + N + J + N + J + N The row reduced echelon form for M is

67 Eigen_vv.nb 67 J + N Inroduce he free variables and find he eigenvecor. Prin@"Inroduce he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables J + N Find he reduced row echelon form J + N The eigenvecor is in he las column V J + N In his case he eigenvecor will have a nicer appearance if we replace wih. V i V i ; Prin@"V" i, " ", MarixForm@V i DD; V J + N

68 Eigen_vv.nb 68 Verify he eigenpair. ", i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " ", λ i, MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ J N V J + N Does A V λ V? A V J + N 6 J + 4 J + N N λ V J N J + N J NJ + N J N True Invesigae he eigen-pair l 4,V 4

69 Eigen_vv.nb 69 i 4; A i ReplaceAll@M, λ λ i D; vars 8x,x,x,x 4 <; B 8,,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ 4 J + N Solve he equaion A 4 X A 4 X + J N + J N + J N + J N x x x x 4 The augmened marix M is M 4 + J + N + J + N + J + N + J + N The row reduced echelon form for M 4 is

70 Eigen_vv.nb 7 J N Inroduce he free variables and find he eigenvecor. Prin@"Inroduce he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables J N Find he reduced row echelon form J + N The eigenvecor is in he las column V 4 J + N In his case he eigenvecor will have a nicer appearance if we replace wih. V i V i ; Prin@"V" i, " ", MarixForm@V i DD; V 4 J + N Verify he eigenpair.

71 Eigen_vv.nb 7 Prin@"A ", MarixForm@ADD; Prin@"λ" i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " ", λ i, MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ 4 J + N V 4 J + N Does A V 4 λ 4 V 4? A V 4 J + N 6 + J + 4+ J + N N λ 4 V 4 J + N J + N J + NJ + N J + N True The four eigen-pairs are:

72 Eigen_vv.nb 7 Prin@"A ", MarixForm@ADD; For@i, i 4, i++, Prin@"λ" i, " ", λ i, ", ", "V" i, " ", MarixForm@V i DD; D; A λ J N, V J + 4 J + N N λ J + N, V λ J N, V λ 4 J + N, V 4 J + N 4 J + N J + N J + N We can compare his wih he resuls obained using Mahemaicas Eigensysem procedure.

73 Eigen_vv.nb 7 sol Eigensysem@AD; n Lengh@AD; Prin@"A ", MarixForm@ADD; For@i, i n, i++, Prin@"λ" i, " ", sol P,iT, ", ", "V" i, " ", MarixForm@sol P,iT DD; D; A λ J + N, V + J + N λ J N, V + J N λ J + N, V λ 4 J N, V J + + J N N Example 7. Find he eigenvalues and eigenvecors of he marix A. Soluion 7. Find he characerisic polynomial and he eigenvalues.

74 Eigen_vv.nb 74 A ; n Lengh@AD; I n IdeniyMarix@nD; M A λi n ; p@λ_d De@A λi n D; solse Solve@p@λD, λd; For@i, i n, i++, λ i solse Pi,,T ;D ; Prin@" A ", MarixForm@ADD; Prin@"A λ", "I" n, " ", MarixForm@AD, " λ", MarixForm@I n DD; Prin@"A λ", "I" n, " ", MarixForm@MDD; Prin@"The characerisic polynomial is"d; Prin@"p@λD»A λ I n»"d; Prin@"p@λD ", p@λdd; q@λ_d Facor@p@λDD; If@No@p@λD q@λdd, Prin@"p@λD ", q@λddd; Prin@"To find he eigenvalues of he marix A"D; Prin@"Solve ", p@λd D; Prin@"Ge"D; For@i, i n, i++, Prin@" ", "λ" i, " ", λ i, " ", Chop@N@λ i DDD D; A A λi 5 λ A λi 5 λ λ λ λ λ The characerisic polynomial is p@λd»a λ I n» p@λd 6 5 λ+56 λ 6 λ + λ 4 λ 5 p@λd H +λlh +λlh +λli 4 λ+λ M

75 Eigen_vv.nb 75 To find he eigenvalues of he marix A Solve 6 5 λ+56 λ 6 λ + λ 4 λ 5 Ge λ. λ. λ. λ λ Invesigae he eigen-pair l,v

76 Eigen_vv.nb 76 i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x,x 4,x 5 <; B 8,,,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ Solve he equaion A X A X x x x x 4 x 5 The augmened marix is M The row reduced echelon form for M is Inroduce he free variables and find he eigenvecor.

77 Eigen_vv.nb 77 he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables Find he reduced row echelon form The eigenvecor is in he las column V Verify he eigenpair.

78 Eigen_vv.nb 78 ", i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " ", λ i, MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ V Does A V λ V? A V λ V True Invesigae he eigen-pair l,v

79 Eigen_vv.nb 79 i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x,x 4,x 5 <; B 8,,,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ Solve he equaion A X A X x x x x 4 x 5 The augmened marix is M The row reduced echelon form for M is Inroduce he free variables and find he eigenvecor.

80 Eigen_vv.nb 8 Prin@"Inroduce he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables Find he reduced row echelon form The eigenvecor is in he las column V Verify he eigenpair.

81 Eigen_vv.nb 8 Prin@"A ", MarixForm@ADD; Prin@"λ" i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " ", λ i, MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ V Does A V λ V? A V λ V True Invesigae he eigen-pair l,v

82 Eigen_vv.nb 8 i ; A i ReplaceAll@M, λ λ i D; vars 8x,x,x,x 4,x 5 <; B 8,,,, <; Needs@"LinearAlgebra`MarixManipulaion`"D; M i AppendRows@A i, Pariion@B, DD; RM i RowReduce@ M i D; Needs@"LinearAlgebra`MarixManipulaion`"D; Prin@"For he eigenvalue ", "λ" i, " ", λ i D; Prin@"Solve he equaion ", "A" i, " X "D; Prin@"A" i, " X ", MarixForm@A i D MarixForm@varsD, " ", MarixForm@BDD; Prin@"The augmened marix ", "M" i, is"d; Prin@" ", "M" i, " ", MarixForm@M DD; Prin@"The row reduced echelon form for ", "M" i, " is"d; Prin@" ", MarixForm@ RM i DD; For he eigenvalue λ Solve he equaion A X A X The augmened marix M x x x x 4 x is M The row reduced echelon form for M is Inroduce he free variables and find he eigenvecor.

83 Eigen_vv.nb 8 Prin@"Inroduce he free variables"d; FM i FreeVariables@RM i D; Prin@MarixForm@FM i DD; Prin@"Find he reduced row echelon form"d; SM i RowReduce@ FM i D; Prin@MarixForm@SM i DD; Prin@"The eigenvecor is in he las column"d; V i TakeColumns@SM i, D; Prin@"V" i, " ", MarixForm@V i DD; Inroduce he free variables Find he reduced row echelon form The eigenvecor is in he las column V Verify he eigenpair.

84 Eigen_vv.nb 84 ", i, " ", λ i D; Prin@"V" i, " ", MarixForm@V i DD; Prin@"Does ", "A ", "V" i, " ", "λ" i, "V" i, "?"D; Prin@"A ", "V" i, " ", MarixForm@AD, MarixForm@V i D, " ", MarixForm@A.V i DD; Prin@"λ" i, "V" i, " ", λ i, MarixForm@V i D, " ", MarixForm@λ i V i DD; Prin@ExpandAll@A.V i λ i V i DD; A λ V Does A V λ V? A V λ V True Invesigae he eigen-pair l 4,V 4

Math 315: Linear Algebra Solutions to Assignment 6

Math 315: Linear Algebra Solutions to Assignment 6 Mah 35: Linear Algebra s o Assignmen 6 # Which of he following ses of vecors are bases for R 2? {2,, 3, }, {4,, 7, 8}, {,,, 3}, {3, 9, 4, 2}. Explain your answer. To generae he whole R 2, wo linearly independen

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations

Concourse Math Spring 2012 Worked Examples: Matrix Methods for Solving Systems of 1st Order Linear Differential Equations Concourse Mah 80 Spring 0 Worked Examples: Marix Mehods for Solving Sysems of s Order Linear Differenial Equaions The Main Idea: Given a sysem of s order linear differenial equaions d x d Ax wih iniial

More information

Application 5.4 Defective Eigenvalues and Generalized Eigenvectors

Application 5.4 Defective Eigenvalues and Generalized Eigenvectors Applicaion 5.4 Defecive Eigenvalues and Generalized Eigenvecors The goal of his applicaion is he soluion of he linear sysems like where he coefficien marix is he exoic 5-by-5 marix x = Ax, (1) 9 11 21

More information

Math 334 Fall 2011 Homework 11 Solutions

Math 334 Fall 2011 Homework 11 Solutions Dec. 2, 2 Mah 334 Fall 2 Homework Soluions Basic Problem. Transform he following iniial value problem ino an iniial value problem for a sysem: u + p()u + q() u g(), u() u, u () v. () Soluion. Le v u. Then

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

MATH 2050 Assignment 9 Winter Do not need to hand in. 1. Find the determinant by reducing to triangular form for the following matrices.

MATH 2050 Assignment 9 Winter Do not need to hand in. 1. Find the determinant by reducing to triangular form for the following matrices. MATH 2050 Assignmen 9 Winer 206 Do no need o hand in Noe ha he final exam also covers maerial afer HW8, including, for insance, calculaing deerminan by row operaions, eigenvalues and eigenvecors, similariy

More information

The Eigenvalue Problems - 8.8

The Eigenvalue Problems - 8.8 The Eigenvalue Problems - 8.8. Definiion of Eigenvalues and Eigenvecors: Le A be an n! n marix. A scalar s said o be an eigenvalue of A if he linear sysem Av!v has a nonzero soluion vecor v. The soluion

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004 ODEs II, Lecure : Homogeneous Linear Sysems - I Mike Raugh March 8, 4 Inroducion. In he firs lecure we discussed a sysem of linear ODEs for modeling he excreion of lead from he human body, saw how o ransform

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Exercises: Similarity Transformation

Exercises: Similarity Transformation Exercises: Similariy Transformaion Problem. Diagonalize he following marix: A [ 2 4 Soluion. Marix A has wo eigenvalues λ 3 and λ 2 2. Since (i) A is a 2 2 marix and (ii) i has 2 disinc eigenvalues, we

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

After the completion of this section the student. Theory of Linear Systems of ODEs. Autonomous Systems. Review Questions and Exercises

After the completion of this section the student. Theory of Linear Systems of ODEs. Autonomous Systems. Review Questions and Exercises Chaper V ODE V.5 Sysems of Ordinary Differenial Equaions 45 V.5 SYSTEMS OF FIRST ORDER LINEAR ODEs Objecives: Afer he compleion of his secion he suden - should recall he definiion of a sysem of linear

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore

Solutions of Sample Problems for Third In-Class Exam Math 246, Spring 2011, Professor David Levermore Soluions of Sample Problems for Third In-Class Exam Mah 6, Spring, Professor David Levermore Compue he Laplace ransform of f e from is definiion Soluion The definiion of he Laplace ransform gives L[f]s

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differenial Equaions 5. Examples of linear differenial equaions and heir applicaions We consider some examples of sysems of linear differenial equaions wih consan coefficiens y = a y +... + a

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations Second Order Linear Differenial Equaions Second order linear equaions wih consan coefficiens; Fundamenal soluions; Wronskian; Exisence and Uniqueness of soluions; he characerisic equaion; soluions of homogeneous

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

Math 1. Two-Hours Exam December 10, 2017.

Math 1. Two-Hours Exam December 10, 2017. Mah. Two-Hours Exam December, 7. JE/JKL..7 Problem resar;wih(linearalgebra): Given he inhomogeneous linear sysem of equaions lign:=x-*x+3*x3=a^+*a-3; lign x x 3 x3 = a a 3 lign:=x+*x-*x3=a^+3; lign x x

More information

Chapter Three Systems of Linear Differential Equations

Chapter Three Systems of Linear Differential Equations Chaper Three Sysems of Linear Differenial Equaions In his chaper we are going o consier sysems of firs orer orinary ifferenial equaions. These are sysems of he form x a x a x a n x n x a x a x a n x n

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality Marix Versions of Some Refinemens of he Arihmeic-Geomeric Mean Inequaliy Bao Qi Feng and Andrew Tonge Absrac. We esablish marix versions of refinemens due o Alzer ], Carwrigh and Field 4], and Mercer 5]

More information

Linear Dynamic Models

Linear Dynamic Models Linear Dnamic Models and Forecasing Reference aricle: Ineracions beween he muliplier analsis and he principle of acceleraion Ouline. The sae space ssem as an approach o working wih ssems of difference

More information

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems. Mah 2250-004 Week 4 April 6-20 secions 7.-7.3 firs order sysems of linear differenial equaions; 7.4 mass-spring sysems. Mon Apr 6 7.-7.2 Sysems of differenial equaions (7.), and he vecor Calculus we need

More information

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence MATH 433/533, Fourier Analysis Secion 6, Proof of Fourier s Theorem for Poinwise Convergence Firs, some commens abou inegraing periodic funcions. If g is a periodic funcion, g(x + ) g(x) for all real x,

More information

System of Linear Differential Equations

System of Linear Differential Equations Sysem of Linear Differenial Equaions In "Ordinary Differenial Equaions" we've learned how o solve a differenial equaion for a variable, such as: y'k5$e K2$x =0 solve DE yx = K 5 2 ek2 x C_C1 2$y''C7$y

More information

THE MATRIX-TREE THEOREM

THE MATRIX-TREE THEOREM THE MATRIX-TREE THEOREM 1 The Marix-Tree Theorem. The Marix-Tree Theorem is a formula for he number of spanning rees of a graph in erms of he deerminan of a cerain marix. We begin wih he necessary graph-heoreical

More information

Γ(h)=0 h 0. Γ(h)=cov(X 0,X 0-h ). A stationary process is called white noise if its autocovariance

Γ(h)=0 h 0. Γ(h)=cov(X 0,X 0-h ). A stationary process is called white noise if its autocovariance A family, Z,of random vecors : Ω R k defined on a probabiliy space Ω, A,P) is called a saionary process if he mean vecors E E =E M = M k E and he auocovariance marices are independen of. k cov, -h )=E

More information

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX J Korean Mah Soc 45 008, No, pp 479 49 THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX Gwang-yeon Lee and Seong-Hoon Cho Reprined from he Journal of he

More information

Then. 1 The eigenvalues of A are inside R = n i=1 R i. 2 Union of any k circles not intersecting the other (n k)

Then. 1 The eigenvalues of A are inside R = n i=1 R i. 2 Union of any k circles not intersecting the other (n k) Ger sgorin Circle Chaper 9 Approimaing Eigenvalues Per-Olof Persson persson@berkeley.edu Deparmen of Mahemaics Universiy of California, Berkeley Mah 128B Numerical Analysis (Ger sgorin Circle) Le A be

More information

non -negative cone Population dynamics motivates the study of linear models whose coefficient matrices are non-negative or positive.

non -negative cone Population dynamics motivates the study of linear models whose coefficient matrices are non-negative or positive. LECTURE 3 Linear/Nonnegaive Marix Models x ( = Px ( A= m m marix, x= m vecor Linear sysems of difference equaions arise in several difference conexs: Linear approximaions (linearizaion Perurbaion analysis

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3 and d = c b - b c c d = c b - b c c This process is coninued unil he nh row has been compleed. The complee array of coefficiens is riangular. Noe ha in developing he array an enire row may be divided or

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Kinematics and kinematic functions

Kinematics and kinematic functions Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables and vice versa Direc Posiion

More information

Chapter 3 Boundary Value Problem

Chapter 3 Boundary Value Problem Chaper 3 Boundary Value Problem A boundary value problem (BVP) is a problem, ypically an ODE or a PDE, which has values assigned on he physical boundary of he domain in which he problem is specified. Le

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Echocardiography Project and Finite Fourier Series

Echocardiography Project and Finite Fourier Series Echocardiography Projec and Finie Fourier Series 1 U M An echocardiagram is a plo of how a porion of he hear moves as he funcion of ime over he one or more hearbea cycles If he hearbea repeas iself every

More information

LAPLACE TRANSFORM AND TRANSFER FUNCTION

LAPLACE TRANSFORM AND TRANSFER FUNCTION CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dep. of Chemical and Biological Engineering 5-1 Road Map of he Lecure V Laplace Transform and Transfer funcions

More information

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function Elecronic Journal of Qualiaive Theory of Differenial Equaions 13, No. 3, 1-11; hp://www.mah.u-szeged.hu/ejqde/ Exisence of posiive soluion for a hird-order hree-poin BVP wih sign-changing Green s funcion

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F. Trench. SIAM J. Matrix Anal. Appl. 11 (1990),

SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F. Trench. SIAM J. Matrix Anal. Appl. 11 (1990), SPECTRAL EVOLUTION OF A ONE PARAMETER EXTENSION OF A REAL SYMMETRIC TOEPLITZ MATRIX* William F Trench SIAM J Marix Anal Appl 11 (1990), 601-611 Absrac Le T n = ( i j ) n i,j=1 (n 3) be a real symmeric

More information

Second Order Linear Differential Equations

Second Order Linear Differential Equations Second Order Linear Differenial Equaions Second order linear equaions wih consan coefficiens; Fundamenal soluions; Wronskian; Exisence and Uniqueness of soluions; he characerisic equaion; soluions of homogeneous

More information

Let ( α, β be the eigenvector associated with the eigenvalue λ i

Let ( α, β be the eigenvector associated with the eigenvalue λ i ENGI 940 4.05 - Sabiliy Analysis (Linear) Page 4.5 Le ( α, be he eigenvecor associaed wih he eigenvalue λ i of he coefficien i i) marix A Le c, c be arbirary consans. a b c d Case of real, disinc, negaive

More information

MTH Feburary 2012 Final term PAPER SOLVED TODAY s Paper

MTH Feburary 2012 Final term PAPER SOLVED TODAY s Paper MTH401 7 Feburary 01 Final erm PAPER SOLVED TODAY s Paper Toal Quesion: 5 Mcqz: 40 Subjecive quesion: 1 4 q of 5 marks 4 q of 3 marks 4 q of marks Guidelines: Prepare his file as I included all pas papers

More information

Radical Expressions. Terminology: A radical will have the following; a radical sign, a radicand, and an index.

Radical Expressions. Terminology: A radical will have the following; a radical sign, a radicand, and an index. Radical Epressions Wha are Radical Epressions? A radical epression is an algebraic epression ha conains a radical. The following are eamples of radical epressions + a Terminology: A radical will have he

More information

Math Week 15: Section 7.4, mass-spring systems. These are notes for Monday. There will also be course review notes for Tuesday, posted later.

Math Week 15: Section 7.4, mass-spring systems. These are notes for Monday. There will also be course review notes for Tuesday, posted later. Mah 50-004 Week 5: Secion 7.4, mass-spring sysems. These are noes for Monday. There will also be course review noes for Tuesday, posed laer. Mon Apr 3 7.4 mass-spring sysems. Announcemens: Warm up exercise:

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

Basilio Bona ROBOTICA 03CFIOR 1

Basilio Bona ROBOTICA 03CFIOR 1 Indusrial Robos Kinemaics 1 Kinemaics and kinemaic funcions Kinemaics deals wih he sudy of four funcions (called kinemaic funcions or KFs) ha mahemaically ransform join variables ino caresian variables

More information

11!Hí MATHEMATICS : ERDŐS AND ULAM PROC. N. A. S. of decomposiion, properly speaking) conradics he possibiliy of defining a counably addiive real-valu

11!Hí MATHEMATICS : ERDŐS AND ULAM PROC. N. A. S. of decomposiion, properly speaking) conradics he possibiliy of defining a counably addiive real-valu ON EQUATIONS WITH SETS AS UNKNOWNS BY PAUL ERDŐS AND S. ULAM DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER Communicaed May 27, 1968 We shall presen here a number of resuls in se heory concerning

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

Distance Between Two Ellipses in 3D

Distance Between Two Ellipses in 3D Disance Beween Two Ellipses in 3D David Eberly Magic Sofware 6006 Meadow Run Cour Chapel Hill, NC 27516 eberly@magic-sofware.com 1 Inroducion An ellipse in 3D is represened by a cener C, uni lengh axes

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Theory of! Partial Differential Equations!

Theory of! Partial Differential Equations! hp://www.nd.edu/~gryggva/cfd-course/! Ouline! Theory o! Parial Dierenial Equaions! Gréar Tryggvason! Spring 011! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n

We just finished the Erdős-Stone Theorem, and ex(n, F ) (1 1/(χ(F ) 1)) ( n Lecure 3 - Kövari-Sós-Turán Theorem Jacques Versraëe jacques@ucsd.edu We jus finished he Erdős-Sone Theorem, and ex(n, F ) ( /(χ(f ) )) ( n 2). So we have asympoics when χ(f ) 3 bu no when χ(f ) = 2 i.e.

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Announcements: Warm-up Exercise:

Announcements: Warm-up Exercise: Fri Apr 13 7.1 Sysems of differenial equaions - o model muli-componen sysems via comparmenal analysis hp//en.wikipedia.org/wiki/muli-comparmen_model Announcemens Warm-up Exercise Here's a relaively simple

More information

Theory of! Partial Differential Equations-I!

Theory of! Partial Differential Equations-I! hp://users.wpi.edu/~grear/me61.hml! Ouline! Theory o! Parial Dierenial Equaions-I! Gréar Tryggvason! Spring 010! Basic Properies o PDE!! Quasi-linear Firs Order Equaions! - Characerisics! - Linear and

More information

SOLUTIONS TO ECE 3084

SOLUTIONS TO ECE 3084 SOLUTIONS TO ECE 384 PROBLEM 2.. For each sysem below, specify wheher or no i is: (i) memoryless; (ii) causal; (iii) inverible; (iv) linear; (v) ime invarian; Explain your reasoning. If he propery is no

More information

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov

Stationary Distribution. Design and Analysis of Algorithms Andrei Bulatov Saionary Disribuion Design and Analysis of Algorihms Andrei Bulaov Algorihms Markov Chains 34-2 Classificaion of Saes k By P we denoe he (i,j)-enry of i, j Sae is accessible from sae if 0 for some k 0

More information

Bernoulli numbers. Francesco Chiatti, Matteo Pintonello. December 5, 2016

Bernoulli numbers. Francesco Chiatti, Matteo Pintonello. December 5, 2016 UNIVERSITÁ DEGLI STUDI DI PADOVA, DIPARTIMENTO DI MATEMATICA TULLIO LEVI-CIVITA Bernoulli numbers Francesco Chiai, Maeo Pinonello December 5, 206 During las lessons we have proved he Las Ferma Theorem

More information

Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1.

Robotics I. April 11, The kinematics of a 3R spatial robot is specified by the Denavit-Hartenberg parameters in Tab. 1. Roboics I April 11, 017 Exercise 1 he kinemaics of a 3R spaial robo is specified by he Denavi-Harenberg parameers in ab 1 i α i d i a i θ i 1 π/ L 1 0 1 0 0 L 3 0 0 L 3 3 able 1: able of DH parameers of

More information

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED

0.1 MAXIMUM LIKELIHOOD ESTIMATION EXPLAINED 0.1 MAXIMUM LIKELIHOOD ESTIMATIO EXPLAIED Maximum likelihood esimaion is a bes-fi saisical mehod for he esimaion of he values of he parameers of a sysem, based on a se of observaions of a random variable

More information

INDEX. Transient analysis 1 Initial Conditions 1

INDEX. Transient analysis 1 Initial Conditions 1 INDEX Secion Page Transien analysis 1 Iniial Condiions 1 Please inform me of your opinion of he relaive emphasis of he review maerial by simply making commens on his page and sending i o me a: Frank Mera

More information

Model Reduction for Dynamical Systems Lecture 6

Model Reduction for Dynamical Systems Lecture 6 Oo-von-Guericke Universiä Magdeburg Faculy of Mahemaics Summer erm 07 Model Reducion for Dynamical Sysems ecure 6 v eer enner and ihong Feng Max lanck Insiue for Dynamics of Complex echnical Sysems Compuaional

More information

2. Nonlinear Conservation Law Equations

2. Nonlinear Conservation Law Equations . Nonlinear Conservaion Law Equaions One of he clear lessons learned over recen years in sudying nonlinear parial differenial equaions is ha i is generally no wise o ry o aack a general class of nonlinear

More information

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS

2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS Andrei Tokmakoff, MIT Deparmen of Chemisry, 2/22/2007 2-17 2.3 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS The mahemaical formulaion of he dynamics of a quanum sysem is no unique. So far we have described

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

CHAPTER 12 DIRECT CURRENT CIRCUITS

CHAPTER 12 DIRECT CURRENT CIRCUITS CHAPTER 12 DIRECT CURRENT CIUITS DIRECT CURRENT CIUITS 257 12.1 RESISTORS IN SERIES AND IN PARALLEL When wo resisors are conneced ogeher as shown in Figure 12.1 we said ha hey are conneced in series. As

More information

Analyze patterns and relationships. 3. Generate two numerical patterns using AC

Analyze patterns and relationships. 3. Generate two numerical patterns using AC envision ah 2.0 5h Grade ah Curriculum Quarer 1 Quarer 2 Quarer 3 Quarer 4 andards: =ajor =upporing =Addiional Firs 30 Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 andards: Operaions and Algebraic Thinking

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis

Chapter #1 EEE8013 EEE3001. Linear Controller Design and State Space Analysis Chaper EEE83 EEE3 Chaper # EEE83 EEE3 Linear Conroller Design and Sae Space Analysis Ordinary Differenial Equaions.... Inroducion.... Firs Order ODEs... 3. Second Order ODEs... 7 3. General Maerial...

More information

Sections 2.2 & 2.3 Limit of a Function and Limit Laws

Sections 2.2 & 2.3 Limit of a Function and Limit Laws Mah 80 www.imeodare.com Secions. &. Limi of a Funcion and Limi Laws In secion. we saw how is arise when we wan o find he angen o a curve or he velociy of an objec. Now we urn our aenion o is in general

More information

Ordinary Differential Equations

Ordinary Differential Equations Lecure 22 Ordinary Differenial Equaions Course Coordinaor: Dr. Suresh A. Karha, Associae Professor, Deparmen of Civil Engineering, IIT Guwahai. In naure, mos of he phenomena ha can be mahemaically described

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes Some common engineering funcions 2.7 Inroducion This secion provides a caalogue of some common funcions ofen used in Science and Engineering. These include polynomials, raional funcions, he modulus funcion

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

The following report makes use of the process from Chapter 2 in Dr. Cumming s thesis.

The following report makes use of the process from Chapter 2 in Dr. Cumming s thesis. Zaleski 1 Joseph Zaleski Mah 451H Final Repor Conformal Mapping Mehods and ZST Hele Shaw Flow Inroducion The Hele Shaw problem has been sudied using linear sabiliy analysis and numerical mehods, bu a novel

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is UNIT IMPULSE RESPONSE, UNIT STEP RESPONSE, STABILITY. Uni impulse funcion (Dirac dela funcion, dela funcion) rigorously defined is no sricly a funcion, bu disribuion (or measure), precise reamen requires

More information

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow 1 KEY Mah 4 Miderm I Fall 8 secions 1 and Insrucor: Sco Glasgow Please do NOT wrie on his eam. No credi will be given for such work. Raher wrie in a blue book, or on our own paper, preferabl engineering

More information

Mark Scheme (Results) January 2011

Mark Scheme (Results) January 2011 Mark (Resuls) January 0 GCE GCE Furher Pure Mahemaics FP (6667) Paper Edexcel Limied. Regisered in England and Wales No. 4496750 Regisered Office: One90 High Holborn, London WCV 7BH Edexcel is one of he

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Solutions for homework 12

Solutions for homework 12 y Soluions for homework Secion Nonlinear sysems: The linearizaion of a nonlinear sysem Consider he sysem y y y y y (i) Skech he nullclines Use a disincive marking for each nullcline so hey can be disinguished

More information

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0.

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0. PHYSICS 20 UNIT 1 SCIENCE MATH WORKSHEET NAME: A. Sandard Noaion Very large and very small numbers are easily wrien using scienific (or sandard) noaion, raher han decimal (or posiional) noaion. Sandard

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

Math From Scratch Lesson 34: Isolating Variables

Math From Scratch Lesson 34: Isolating Variables Mah From Scrach Lesson 34: Isolaing Variables W. Blaine Dowler July 25, 2013 Conens 1 Order of Operaions 1 1.1 Muliplicaion and Addiion..................... 1 1.2 Division and Subracion.......................

More information

Outline of Topics. Analysis of ODE models with MATLAB. What will we learn from this lecture. Aim of analysis: Why such analysis matters?

Outline of Topics. Analysis of ODE models with MATLAB. What will we learn from this lecture. Aim of analysis: Why such analysis matters? of Topics wih MATLAB Shan He School for Compuaional Science Universi of Birmingham Module 6-3836: Compuaional Modelling wih MATLAB Wha will we learn from his lecure Aim of analsis: Aim of analsis. Some

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

Linear Control System EE 711. Design. Lecture 8 Dr. Mostafa Abdel-geliel

Linear Control System EE 711. Design. Lecture 8 Dr. Mostafa Abdel-geliel Linear Conrol Sysem EE 7 MIMO Sae Space Analysis and Design Lecure 8 Dr. Mosafa Abdel-geliel Course Conens Review Sae Space SS modeling and analysis Sae feed back design Oupu feedback design Observer design

More information

2 Some Property of Exponential Map of Matrix

2 Some Property of Exponential Map of Matrix Soluion Se for Exercise Session No8 Course: Mahemaical Aspecs of Symmeries in Physics, ICFP Maser Program for M 22nd, January 205, a Room 235A Lecure by Amir-Kian Kashani-Poor email: kashani@lpensfr Exercise

More information

Bifurcation Analysis of a Stage-Structured Prey-Predator System with Discrete and Continuous Delays

Bifurcation Analysis of a Stage-Structured Prey-Predator System with Discrete and Continuous Delays Applied Mahemaics 4 59-64 hp://dx.doi.org/.46/am..4744 Published Online July (hp://www.scirp.org/ournal/am) Bifurcaion Analysis of a Sage-Srucured Prey-Predaor Sysem wih Discree and Coninuous Delays Shunyi

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information