Biological Pattern Formation with Cellular Neural Networks

Size: px
Start display at page:

Download "Biological Pattern Formation with Cellular Neural Networks"

Transcription

1 CNNA 96: Fourth / E lnternational Workshop on Cellular Neural Networks and their Applications, Seville, Spain, June 24-26, 1996 CNN;~ Biological Pattern Formation with Cellular Neural Networks Gianluca Sett;* and Patrick Thirad * Department of Electronics (DEIS) University of Bologna, Viale Risorgimento 2, Bologna, Italy. gsetti@deis.unibo.it Department of Electrical Engineering Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland. thiran@circ.de.epfl.ch ABSTRACT: The ability of the conventional, simple Cellular Neural Network (CNN) model to form spatial and spatia-temporal patterns has been recently highlighted [l, 21. This paper continues this investigation, by studying new properties of pattern formation, and their application to modeling of biological pattern forming systems. 1 Introduction In the last few decades a lot of attention has been devoted to the study of pattern formation in the fields of physics, chemistry and, especially biology. Already in 1952, Turing [3] proposed a model to explain the morphogenesis process. Another well-known nonlinear second-order reaction-diffusion model is the Gierer-Meinhardt system [4] 8A t = F(A,B)+DAV2A i?b at = G(A,B)+D~v~B where A and B are the chemicals concentrations of the so-called activator and inhibitor, F(.) and G(.) are nonlinear functions and DA and DB are respective diffusion coefficients. The activator provides the initial instability necessary to create the pattern if the spatial domain has reached a certain size, while the inhibitor eventually supplies stability once the spatial pattern is formed. Both chemicals diffuse spatially, but, in order to stabilitse the pattern, it is necessary that the inhibitor diffuses much faster than the activator (DE >> DA). Lattice dynamical systems, namely large arrays of coupled nonlinear dynamical systems, in which each cell is typically described by a second or third order continuous-time system [6], can also realize activator-inhibitor schemes. Recently, the ability to form both spatial and spatio-temporal patterns has been highlighted in the case of CNNs [l, 21, even when the initial simple Chua & Yang model is used [5]. Our aim, in the present paper, is to continue in this line of investigation, for an autonomous CNN described by with initial condition xi,j(o), time- and space-independent bias I and without any input. The template coefficients Ar,, are space-invariant in this paper, and f(x) = ( I C x - ll)/z. The output of a cell Cij, defined as yi,, = f(xi,,), is thus always bounded: ly,,jl 5 1. A cell Ci,j such that -1 5 xi,, 5 1 will called a linear cell or linear pixel and will be represented by a gray square in the W96/$ IEEE. 279

2 MODELLING OF BIOLOGICAL SYSTEMS ' figures. If it does not operate in the linear zone, it will be called a saturated cell or satuyated pzzel and will be represented by a black square if zi,j > 1 and a white square if xi,j < Pattern formation properties of CNNs A correct spatial discretization of the reaction-diffusion model (1) would results in a lattice of second order systems. We will see however that a number of patteras explained by (1) can be obtained with (2), although the CNN is only made of simpler first order cells. 2.1 One dimensional CNNs A complete characterization of all patterns that can be created by a CNN made a an infinite number of cells is only available up to now for the template [l] A = [6 p SI. (3) Since the A template is symmetric, the CNN is completely stable [5]. Take s > 0. The case Ip- 1 > 2s is not very interesting, as it yields either that the origin is globally asymptotically stable (if p - 1 < -2s), or on the contrary, that any binary sequence of saturated outputs corresponds to a stable equilibrium (if p - 1 > 2s). The case Ip - 11 < 2s leads however to much more interesting structures, as the stable equilibria appear as a succession of strings of at least two adjacent saturated cells, separated by boundaries of B linear cells, where B is the integer satisfying q-2 < B < 1)-1 with q =?r/[?r-arc cos((p-l)/2s)]. With fixed zero-valued Dirichlet boundary conditions and a finite number of cells N, the origin is globally asymptotically stable as long as the length of the array N < q - 1, but unstable when N 2 1, so that a pattern will be created. One of the most useful techniques employed in the study of pattern formation is the mode decompe sition of the linearized system near the origin [4, 71. Defining a convolution mask by p-1 for i=o otherwise the linearized CNN system around the origin can be written as (4) &i(t) = ai * xi(t) (5) where * denotes spatial convolution. Now, if one considers the Discrete Space Fourier Transform (DSFT) of both members of Eq. (4), one gets &(t) = dn%n(t), (6) where Zln is the Discrete Space Fourier Transform (DSFT) of the convolution mask (4), namely When the initial condition is a random perturbation around the origin, the modes, whose gain Bn is positive, will grow in time, contrary to the modes for which the gain is negative. The coupling induces therefore the instability necessary for the unstable spatial modes to grow, whereas the nonlinearity eventually supplies the stability necessary to the pattern formation. The absence of inhibition restricts however the types of pattrns that can be created. Although the considered spatial frequency approach is exact only when all cells are linear, it gives results that can be valid also for the final steady state of the nonlinear system [

3 2.2 Two dimensional CNNs For a 2-dim. CNN of NI x Nz cells described by a general 3 x 3 isotropic template A = [! ;,I, it becomes much more difficult to characterize the complete set of stable patterns. It is however easy to identify three types of motifs that can appear in a stable pattern [l], namely plain, constant patches, if and only if p s + 4r > 0; checkerboard patches, if and only if p - 1-4s + 4r > 0; and vertical and horizontal stripes, if and only if p - 1-4r > 0. The overall pattern will depend on the ability of the motifs to form stable boundaries between them. Again, only patterns with unregular patches of various sizes can be obtained when the nearest-neighbour connections s, r are positive. Although these are found on many animals, the reaction-diffusion model (1) allows a much wider variety of patterns, thanks to a fast diffusing inhibitor. To take this aspect into account, we must use a 5 x 5 template, whose nearest neighbor interactions are positive (local activation) but whose second nearest neighbor interactions are negative (long range inhibition). A rigorous analysis becomes complex to carry out in general cases, but a lot of insight on the pattern formation properties can be obtained by using the spectral approach introduced in the Section 2.1. Defining the convolution mask in the 2-dim. case ai,j as extension of mask definition (4) to the present case, and following similar procedure, one obtains that the system solution can be expressed as Ial,n,(t) = Za,,a2(O)eZn1*nat, where iin,,n, is the 2-dim. DSFT of aij. Similar consideration about the modes stability can be therefore extended to this case. Even in the 2-dim. case, the result of the approximated spectral analysis can be in perfect agreement with the one obtained with a nonlinear analysis; namely, if one consider template (8) with s = 1 and p = r = 0, only the first of the previous inequalities is satisfied, so that patches are the only stable motif that can be formed by the CNN. This perfectly correspond to the spectral analysis result, since in this case the DSFT of (8) shows a lowpass characteristic. The local activation and long range inhibition appearing in our 5 x 5 template make it equivalent to a band-pass filter. Supposing that the coupling associated with a particular template has provided the necessary instability of spatial frequency, three qualitative epochs can be observed in the dynamics of pattern formation [l]: 1) Linear system leading to noise shaping. 2) Local separation of modes into regions of saturated cells. After some time, most cells get saturated, and form regions of one of the three motifs mentioned above. 3) Boundary negoliatzon leading to a globally stable pattern. The last step is, depending on the template, a long process during which the boundaries shapes between the regionally stable motifs are modified. When one unstable mode dominates the others and when the regionally stable patches can form stable boundaries, most of the pattern formation starting from small random initial conditions occurs in the first epoch, and can therefore be well described by this spectral approach. 3 Biological patterns Some of the most spectacular biological patterns that can be well described by a reaction-diffusion mechanism are mammalian coat patterns [I. Thanks to the spatial frequency approach considered in the previous Section, it is possible to design the template parameters in order to isolate a single motif in the pattern that is obtained. For animal coat markings, these are plain patches, stripes and spots. A typical phenomenon encountered in many spotted animals (especially felines) is a transition from spots, on the main body of the animal, to stripes, on its tail. The leopard, the cheetah, the genet show this feature, that is even present in the common cat (see Fig 2). Such a transition can be obtained with a CNN by using the 5 x 5 template [ A= , (9)

4 MODELLING OF BIOLOGICAL SYSTEMS Figure 1: DSFT of the convolution mask corresponding to (a): the A template (9) and (b): to A template (10) whose corresponding DSFT, presented in Fig. 3 (a), has an annulus of unstable modes ensuring a spatial bandpass filter behavior. In fact, by taking a space-varying input bias Ii,j = -(j - 1)(Ni - 1) for an NI x N2 as well, one can obtain a transition between squiggles and spots [2]. However, this is perhaps less biologically plausible, as there is no reason why an external signal woulc affect specific parts of the embryo and not others during the development of its coat marking. The explanation that is usually provided in biology is that the pattern is governed by the geometry of the reaction-diffusion domain 171, in other words by the boundary conditions. The development of spots requires a large domain, whereas a narrow cylinder, that mimic the terminal part of the tail, enforces the creation of stripes. The same behaviour can be obtained by using template (9) (an similar ones) with a bias, if a CNN with the proper array layout and the proper boundary conditions is considered. Fig. 3 shows the result of a simulation computed using a CNN composed by 7 blocks of 20 to 20 x 4 cells, connected togheter in order to approximate a tail shape. Boundary conditions have been chosen as periodic (top and down) and reflective (left and right), and the initial consitions as random with uniform distribution between (-0.1,O.l). One other typical marking coat is the one of the tiger, as reported in Fig. 4. As can be seen stripe patterns are present both in the tail and in the body, but they are characterized by a different thickness and, sometimes, orientation. Moreover in the body part the stripes some sort of stripe bifurcation is also present. The achievement of a similar result with a CNN, has been possible by using the 5 x 5 template A = [ : 0 0 ; :], with the bias I = As can be seen from the DSFT of the correspondent convolution mask, a CNN with template (10) acts, contrary to the previous examples, as a non isotropic filter, namely as a lowpass filter in one direction and as a bandpass in the second one. The results of the simulations of a CNN with 60 cells in the body part and a tail composed by four blocks of 20 x M cells (M = 10,8,6,4) is shown in Fig. 5. Initial conditions were again small random values, while the boundary conditions are periodic (up and down) and serwvalued Dirichlet (left and right). 282

5 Figure 2: A common cat showing a striped tail (and even legs) and a spotted body (left -from a picture by Yann Artbus - Bertrand), and a typical leopard tail (middle: pre-natal, right: adult - from [7]). Figure 3: Pattern generated from random initial conditions with uniform distribution between (-0.1,O.l) by using space-invariant template (9) and a bias I = The transition from spots to stripes is only dictated by the boundary conditions, that are periodic (up and down) and reflective (left and right). One-dimensional templates can also produce similar patterns as the one encountered on some seashells, where the temporal development of the pattern is somehow recorded as the shell growth and the pattern formation occur simultaneously. Symmetric templates, with positive nearest neighbor and negative second nearest neighbor interactions, can create periodic patterns in space, which result in lines parallel to the direction of growth of the shell (see Chapter 2 of [SI), while anti-symmetric templates can create travelling waves [2], which account for oblique lines with respect to direction of growth (see Chapter 3 of [SI). Much more complex patterns, that sometimes need one activator and two inhibitors instead of one, can however be found (travelling waves in two opposite directions, annihilating each other) and may be too complex to create with the simple model (2). It is of course an open question to determine what pattern complexity this model can create. 283

6 MODELLING OF BIOLOGICAL SYSTEMS Figure 4: Typical coat marking of a tiger: note how stripes are present both in the tail and in the body. - from [7]. Figure 5: Pattern generated from random initial conditions with uniform distribution between (-0.1,O.l) by using the space-invariant template (10) and bias I = The boundary conditions are periodic (up and down) and Dirichlet with zero value (left and right). References [l] P. Thiran, K. R. Crounse, L. 0. Chua and M. Hasler: Pattern formation properties of Autonomous Cellular Neural Networks, IEEE Bansactions on Circuits and Systems I, CAS-42, pp , [2] [3] [4] [5] [6] [7] [8] K. R. Crounse, P. Thiran, G. Setti and L. 0. Chua: Characterization and Dynamics of Pattern Formation in Cellular Neural Networks, Int. J. Bzf. Chaos, to appear, A. M. Turing: The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London, 237(B), pp , H. Meinhardt, Models of Biological Pattern Formation, Academic Press, London, L.O. Chua and L. Yang, Cellular Neural Networks: Theory, IEEE Pansactions on Circuits and Systems, vol. CAS-35, pp ,1988. L. Goras and L. 0. Chua: Turing Patterns in CNNs - Part 11: Equation and Behaviors, ZEEE Trans. Circuits Syst-I, CAS-42, pp , Oct J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, H. Meinhardt, The Algorathmic Beauty of Sea Shells, Springer-Verlag, Berlin,

DESIGNING CNN GENES. Received January 23, 2003; Revised April 2, 2003

DESIGNING CNN GENES. Received January 23, 2003; Revised April 2, 2003 Tutorials and Reviews International Journal of Bifurcation and Chaos, Vol. 13, No. 10 (2003 2739 2824 c World Scientific Publishing Company DESIGNING CNN GENES MAKOTO ITOH Department of Information and

More information

Fundamentals of Bio-architecture SUMMARY

Fundamentals of Bio-architecture SUMMARY Fundamentals of Bio-architecture SUMMARY Melik Demirel, PhD *Pictures and tables in this lecture notes are copied from Internet sources for educational use only. Can order increase without breaking 2 nd

More information

Digital Reaction-Diffusion System A Foundation of Bio-Inspired Texture Image Processing

Digital Reaction-Diffusion System A Foundation of Bio-Inspired Texture Image Processing 1909 PAPER Special Section on Digital Signal Processing Digital Reaction-Diffusion System A Foundation of Bio-Inspired Texture Image Processing Koichi ITO a), Student Member, Takafumi AOKI, Regular Member,

More information

Systems Biology Across Scales: A Personal View XXIII. Spatial Patterns in Biology: Turing mechanism. Sitabhra Sinha IMSc Chennai

Systems Biology Across Scales: A Personal View XXIII. Spatial Patterns in Biology: Turing mechanism. Sitabhra Sinha IMSc Chennai Systems Biology Across Scales: A Personal View XXIII. Spatial Patterns in Biology: Turing mechanism Sitabhra Sinha IMSc Chennai The magnificent patterns of Dr Turing Question: How to explain the development

More information

DESYNCHRONIZATION TRANSITIONS IN RINGS OF COUPLED CHAOTIC OSCILLATORS

DESYNCHRONIZATION TRANSITIONS IN RINGS OF COUPLED CHAOTIC OSCILLATORS Letters International Journal of Bifurcation and Chaos, Vol. 8, No. 8 (1998) 1733 1738 c World Scientific Publishing Company DESYNCHRONIZATION TRANSITIONS IN RINGS OF COUPLED CHAOTIC OSCILLATORS I. P.

More information

Spontaneous pattern formation in Turing systems

Spontaneous pattern formation in Turing systems Facultat de Física, Universitat de Barcelona, Diagonal 6, 88 Barcelona, Spain. Abstract: We give a general description of pattern forming systems and describe the linear stability analysis that allows

More information

Turing mechanism for patterning

Turing mechanism for patterning Turing mechanism for patterning Hyun Youk Delft University of Technology (Dated: July 23, 2018). I. MAIN IDEA OF THE TURING MECHANISM The Turing mechanism for spatial-pattern formation describes a uniformly

More information

PULSE-COUPLED networks (PCNs) of integrate-and-fire

PULSE-COUPLED networks (PCNs) of integrate-and-fire 1018 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 5, SEPTEMBER 2004 Grouping Synchronization in a Pulse-Coupled Network of Chaotic Spiking Oscillators Hidehiro Nakano, Student Member, IEEE, and Toshimichi

More information

On the Dynamics of a Class of Cellular Neural Networks

On the Dynamics of a Class of Cellular Neural Networks On the Dynamics of a Class of Cellular eural etworks Liviu Goraş, Romeo Ghinea, Tiberiu Dinu Teodorescu and Emilian David Gh. Asachi Technical University of Iasi, Faculty of Electronics and Telecommunications,

More information

STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS

STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS International Journal of Bifurcation and Chaos, Vol 9, No 11 (1999) 19 4 c World Scientific Publishing Company STUDY OF SYNCHRONIZED MOTIONS IN A ONE-DIMENSIONAL ARRAY OF COUPLED CHAOTIC CIRCUITS ZBIGNIEW

More information

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008 CD2dBS-v2 Convergence dynamics of 2-dimensional isotropic and anisotropic Bak-Sneppen models Burhan Bakar and Ugur Tirnakli Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey

More information

SELF-ORGANIZATION IN NONRECURRENT COMPLEX SYSTEMS

SELF-ORGANIZATION IN NONRECURRENT COMPLEX SYSTEMS Letters International Journal of Bifurcation and Chaos, Vol. 10, No. 5 (2000) 1115 1125 c World Scientific Publishing Company SELF-ORGANIZATION IN NONRECURRENT COMPLEX SYSTEMS PAOLO ARENA, RICCARDO CAPONETTO,

More information

Curvature effect on patterning dynamics on spherical membranes

Curvature effect on patterning dynamics on spherical membranes Università degli studi di Padova Dipartimento di Fisica e Astronomia Galileo Galilei Corso di Laurea in Fisica Tesi di Laurea Curvature effect on patterning dynamics on spherical membranes Candidato: Relatore:

More information

Chapter 2 Simplicity in the Universe of Cellular Automata

Chapter 2 Simplicity in the Universe of Cellular Automata Chapter 2 Simplicity in the Universe of Cellular Automata Because of their simplicity, rules of cellular automata can easily be understood. In a very simple version, we consider two-state one-dimensional

More information

Simulation of cell-like self-replication phenomenon in a two-dimensional hybrid cellular automata model

Simulation of cell-like self-replication phenomenon in a two-dimensional hybrid cellular automata model Simulation of cell-like self-replication phenomenon in a two-dimensional hybrid cellular automata model Takeshi Ishida Nippon Institute of Technology ishida06@ecoinfo.jp Abstract An understanding of the

More information

Oscillatory Turing Patterns in a Simple Reaction-Diffusion System

Oscillatory Turing Patterns in a Simple Reaction-Diffusion System Journal of the Korean Physical Society, Vol. 50, No. 1, January 2007, pp. 234 238 Oscillatory Turing Patterns in a Simple Reaction-Diffusion System Ruey-Tarng Liu and Sy-Sang Liaw Department of Physics,

More information

Heat Equation and its applications in imaging processing and mathematical biology

Heat Equation and its applications in imaging processing and mathematical biology Heat Equation and its applications in imaging processing and mathematical biology Yongzhi Xu Department of Mathematics University of Louisville Louisville, KY 40292 1. Introduction System of heat equations

More information

CELLULAR NEURAL NETWORKS & APPLICATIONS TO IMAGE PROCESSING. Vedat Tavsanoglu School of EEIE SOUTH BANK UNIVERSITY LONDON UK

CELLULAR NEURAL NETWORKS & APPLICATIONS TO IMAGE PROCESSING. Vedat Tavsanoglu School of EEIE SOUTH BANK UNIVERSITY LONDON UK CELLULAR NEURAL NETWORKS & APPLICATIONS TO IMAGE PROCESSING Vedat Tavsanoglu School of EEIE SOUTH BANK UNIVERSITY LONDON UK Outline What is CNN? Architecture of CNN Analogue Computing with CNN Advantages

More information

CONTROLLING CHAOS. Sudeshna Sinha. The Institute of Mathematical Sciences Chennai

CONTROLLING CHAOS. Sudeshna Sinha. The Institute of Mathematical Sciences Chennai CONTROLLING CHAOS Sudeshna Sinha The Institute of Mathematical Sciences Chennai Sinha, Ramswamy and Subba Rao: Physica D, vol. 43, p. 118 Sinha, Physics Letts. A vol. 156, p. 475 Ramswamy, Sinha, Gupte:

More information

Spectral Methods for Reaction Diffusion Systems

Spectral Methods for Reaction Diffusion Systems WDS'13 Proceedings of Contributed Papers, Part I, 97 101, 2013. ISBN 978-80-7378-250-4 MATFYZPRESS Spectral Methods for Reaction Diffusion Systems V. Rybář Institute of Mathematics of the Academy of Sciences

More information

A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon

A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon A New Circuit for Generating Chaos and Complexity: Analysis of the Beats Phenomenon DONATO CAFAGNA, GIUSEPPE GRASSI Diparnto Ingegneria Innovazione Università di Lecce via Monteroni, 73 Lecce ITALY Abstract:

More information

Cellular neural network modelling of soft tissue dynamics for surgical simulation

Cellular neural network modelling of soft tissue dynamics for surgical simulation Technology and Health Care 25 (2017) S337 S344 DOI 10.3233/THC-171337 IOS Press S337 Cellular neural network modelling of soft tissue dynamics for surgical simulation Jinao Zhang a,, Yongmin Zhong a, Julian

More information

Diffusion, Reaction, and Biological pattern formation

Diffusion, Reaction, and Biological pattern formation Diffusion, Reaction, and Biological pattern formation Morphogenesis and positional information How do cells know what to do? Fundamental questions How do proteins in a cell segregate to front or back?

More information

The Chemical Basis of Morphogenesis

The Chemical Basis of Morphogenesis The Chemical Basis of Morphogenesis A. M. Turing Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 237, No. 641. (Aug. 14, 1952), pp. 37-72. Early Life: The

More information

Optimal Shape and Topology of Structure Searched by Ants Foraging Behavior

Optimal Shape and Topology of Structure Searched by Ants Foraging Behavior ISSN 0386-1678 Report of the Research Institute of Industrial Technology, Nihon University Number 83, 2006 Optimal Shape and Topology of Structure Searched by Ants Foraging Behavior Kazuo MITSUI* ( Received

More information

Breakdown of Pattern Formation in Activator-Inhibitor Systems and Unfolding of a Singular Equilibrium

Breakdown of Pattern Formation in Activator-Inhibitor Systems and Unfolding of a Singular Equilibrium Breakdown of Pattern Formation in Activator-Inhibitor Systems and Unfolding of a Singular Equilibrium Izumi Takagi (Mathematical Institute, Tohoku University) joint work with Kanako Suzuki (Institute for

More information

Patterns of synchrony in lattice dynamical systems

Patterns of synchrony in lattice dynamical systems INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 18 (2005) 2193 2209 NONLINEARITY doi:10.1088/0951-7715/18/5/016 Patterns of synchrony in lattice dynamical systems Fernando Antoneli 1, Ana Paula S Dias 2,

More information

Activator-Inhibitor Systems

Activator-Inhibitor Systems Activator-Inhibitor Systems Activator-Inhibitor Systems Sabine Pilari P. Kazzer, S. Pilari, M. Schulz (FU Berlin) Pattern Formation July 16, 2007 1 / 21 Activator-Inhibitor Systems Activator-Inhibitor

More information

Anti-synchronization of a new hyperchaotic system via small-gain theorem

Anti-synchronization of a new hyperchaotic system via small-gain theorem Anti-synchronization of a new hyperchaotic system via small-gain theorem Xiao Jian( ) College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China (Received 8 February 2010; revised

More information

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry

Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry Math 345 Intro to Math Biology Lecture 19: Models of Molecular Events and Biochemistry Junping Shi College of William and Mary, USA Molecular biology and Biochemical kinetics Molecular biology is one of

More information

March 9, :18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Morfu2v2 EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA

March 9, :18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Morfu2v2 EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA March 9, 2007 10:18 Int J. Bifurcation and Chaos/INSTRUCTION FILE Int J. Bifurcation and Chaos Submission Style EFFECT OF NOISE AND STRUCTURAL INHOMOGENEITIES IN REACTION DIFFUSION MEDIA S. Morfu Laboratoire

More information

Introduction LECTURE 1

Introduction LECTURE 1 LECTURE 1 Introduction The source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in

More information

AN ELECTRIC circuit containing a switch controlled by

AN ELECTRIC circuit containing a switch controlled by 878 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 7, JULY 1999 Bifurcation of Switched Nonlinear Dynamical Systems Takuji Kousaka, Member, IEEE, Tetsushi

More information

A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats

A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats A New Dynamic Phenomenon in Nonlinear Circuits: State-Space Analysis of Chaotic Beats DONATO CAFAGNA, GIUSEPPE GRASSI Diparnto Ingegneria Innovazione Università di Lecce via Monteroni, 73 Lecce ITALY giuseppe.grassi}@unile.it

More information

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011 Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L16. Neural processing in Linear Systems: Temporal and Spatial Filtering C. D. Hopkins Sept. 21, 2011 The Neural

More information

Superposition of modes in a caricature of a model for morphogenesis. Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA

Superposition of modes in a caricature of a model for morphogenesis. Department of Mathematics, University of Utah, Salt Lake City, UT 84112, USA J. Math. Biol. (1990) 28:307-315,Journal of Mathematical Biology Springer-Verlag 1990 Superposition of modes in a caricature of a model for morphogenesis P. K. Maini Department of Mathematics, University

More information

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Robert Kozma rkozma@memphis.edu Computational Neurodynamics Laboratory, Department of Computer Science 373 Dunn

More information

Bidirectional Coupling of two Duffing-type Circuits

Bidirectional Coupling of two Duffing-type Circuits Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 4-6, 7 45 Bidirectional Coupling of two Duffing-type Circuits Ch. K. VOLOS, I.

More information

arxiv:chao-dyn/ v1 5 Mar 1996

arxiv:chao-dyn/ v1 5 Mar 1996 Turbulence in Globally Coupled Maps M. G. Cosenza and A. Parravano Centro de Astrofísica Teórica, Facultad de Ciencias, Universidad de Los Andes, A. Postal 26 La Hechicera, Mérida 5251, Venezuela (To appear,

More information

SINGLE-ELECTRON CIRCUITS PERFORMING DENDRITIC PATTERN FORMATION WITH NATURE-INSPIRED CELLULAR AUTOMATA

SINGLE-ELECTRON CIRCUITS PERFORMING DENDRITIC PATTERN FORMATION WITH NATURE-INSPIRED CELLULAR AUTOMATA International Journal of Bifurcation and Chaos, Vol. 7, No. (7) 365 3655 c World Scientific Publishing Company SINGLE-ELECTRON CIRCUITS PERFORMING DENDRITIC PATTERN FORMATION WITH NATURE-INSPIRED CELLULAR

More information

Quantum Spiral Theory

Quantum Spiral Theory Quantum Spiral Theory Suraj Kumar surajkumar600s@gmail.com Abstract In this paper we have tried to describe a gauge group for gravitational potential associated with the elementary particle as described

More information

Behaviour of simple population models under ecological processes

Behaviour of simple population models under ecological processes J. Biosci., Vol. 19, Number 2, June 1994, pp 247 254. Printed in India. Behaviour of simple population models under ecological processes SOMDATTA SINHA* and S PARTHASARATHY Centre for Cellular and Molecular

More information

A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN

A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN Journal of Circuits, Systems, and Computers, Vol. 11, No. 1 (22) 1 16 c World Scientific Publishing Company A SYSTEMATIC PROCEDURE FOR SYNCHRONIZING HYPERCHAOS VIA OBSERVER DESIGN GIUSEPPE GRASSI Dipartimento

More information

Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and Application to Secure Communication

Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and Application to Secure Communication 976 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 44, NO. 10, OCTOBER 1997 Impulsive Stabilization for Control and Synchronization of Chaotic Systems: Theory and

More information

Growth models for cells in the chemostat

Growth models for cells in the chemostat Growth models for cells in the chemostat V. Lemesle, J-L. Gouzé COMORE Project, INRIA Sophia Antipolis BP93, 06902 Sophia Antipolis, FRANCE Valerie.Lemesle, Jean-Luc.Gouze@sophia.inria.fr Abstract A chemostat

More information

A Low-Error Statistical Fixed-Width Multiplier and Its Applications

A Low-Error Statistical Fixed-Width Multiplier and Its Applications A Low-Error Statistical Fixed-Width Multiplier and Its Applications Yuan-Ho Chen 1, Chih-Wen Lu 1, Hsin-Chen Chiang, Tsin-Yuan Chang, and Chin Hsia 3 1 Department of Engineering and System Science, National

More information

Pattern formation and Turing instability

Pattern formation and Turing instability Pattern formation and Turing instability. Gurarie Topics: - Pattern formation through symmetry breaing and loss of stability - Activator-inhibitor systems with diffusion Turing proposed a mechanism for

More information

A CNN APPROACH TO BRAIN-LIKE CHAOS-PERIODICITY TRANSITIONS

A CNN APPROACH TO BRAIN-LIKE CHAOS-PERIODICITY TRANSITIONS International Journal of Bifurcation and Chaos, Vol. 8, No. 11 (1998) 2263 2278 c World Scientific Publishing Company A CNN APPROACH TO BRAIN-LIKE CHAOS-PERIODICITY TRANSITIONS ALBERTO P. MUÑUZURI, JOHAN

More information

Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model

Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model Iranian Journal of Mathematical Chemistry, Vol. 6, No. 1, March 2015, pp. 81 92 IJMC Dynamical Behavior And Synchronization Of Chaotic Chemical Reactors Model HOSSEIN KHEIRI 1 AND BASHIR NADERI 2 1 Faculty

More information

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington Image Filtering Slides, adapted from Steve Seitz and Rick Szeliski, U.Washington The power of blur All is Vanity by Charles Allen Gillbert (1873-1929) Harmon LD & JuleszB (1973) The recognition of faces.

More information

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fourth Edition Richard Haberman Department of Mathematics Southern Methodist University PEARSON Prentice Hall PEARSON

More information

Complex Dynamics of a Memristor Based Chua s Canonical Circuit

Complex Dynamics of a Memristor Based Chua s Canonical Circuit Complex Dynamics of a Memristor Based Chua s Canonical Circuit CHRISTOS K. VOLOS Department of Mathematics and Engineering Sciences Univ. of Military Education - Hellenic Army Academy Athens, GR6673 GREECE

More information

Deep Learning: Approximation of Functions by Composition

Deep Learning: Approximation of Functions by Composition Deep Learning: Approximation of Functions by Composition Zuowei Shen Department of Mathematics National University of Singapore Outline 1 A brief introduction of approximation theory 2 Deep learning: approximation

More information

Cellular Automata. Jason Frank Mathematical Institute

Cellular Automata. Jason Frank Mathematical Institute Cellular Automata Jason Frank Mathematical Institute WISM484 Introduction to Complex Systems, Utrecht University, 2015 Cellular Automata Game of Life: Simulator: http://www.bitstorm.org/gameoflife/ Hawking:

More information

FREQUENTLY ASKED QUESTIONS February 21, 2017

FREQUENTLY ASKED QUESTIONS February 21, 2017 FREQUENTLY ASKED QUESTIONS February 21, 2017 Content Questions How do you place a single arsenic atom with the ratio 1 in 100 million? Sounds difficult to get evenly spread throughout. Yes, techniques

More information

arxiv: v1 [nlin.ao] 19 May 2017

arxiv: v1 [nlin.ao] 19 May 2017 Feature-rich bifurcations in a simple electronic circuit Debdipta Goswami 1, and Subhankar Ray 2, 1 Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA

More information

A SYSTEMATIC APPROACH TO GENERATING n-scroll ATTRACTORS

A SYSTEMATIC APPROACH TO GENERATING n-scroll ATTRACTORS International Journal of Bifurcation and Chaos, Vol. 12, No. 12 (22) 297 2915 c World Scientific Publishing Company A SYSTEMATIC APPROACH TO ENERATIN n-scroll ATTRACTORS UO-QUN ZHON, KIM-FUN MAN and UANRON

More information

Design of a discrete-time CNN using 1-dimensional chaos circuits with controllable nonlinear functions

Design of a discrete-time CNN using 1-dimensional chaos circuits with controllable nonlinear functions Paper Design of a discrete-time CNN using 1-dimensional chaos circuits with controllable nonlinear functions Member Kei EGUCHI (Kumamoto National College of Technology) Non-member Yasukazu SEIKI (Kumamoto

More information

Gaussian-Shaped Circularly-Symmetric 2D Filter Banks

Gaussian-Shaped Circularly-Symmetric 2D Filter Banks Gaussian-Shaped Circularly-Symmetric D Filter Bans ADU MATEI Faculty of Electronics and Telecommunications Technical University of Iasi Bldv. Carol I no.11, Iasi 756 OMAIA Abstract: - In this paper we

More information

The Dynamics of Reaction-Diffusion Patterns

The Dynamics of Reaction-Diffusion Patterns The Dynamics of Reaction-Diffusion Patterns Arjen Doelman (Leiden) (Rob Gardner, Tasso Kaper, Yasumasa Nishiura, Keith Promislow, Bjorn Sandstede) STRUCTURE OF THE TALK - Motivation - Topics that won t

More information

Synchronous oscillations in biological systems are inevitable yet enigmatic

Synchronous oscillations in biological systems are inevitable yet enigmatic Coupling hair follicle cycles to produce oscillating patterns Megan Jeans, Rice University Mentor: G. Bard Ermentrout, University of Pittsburgh June 6 th, 2006 Introduction Synchronous oscillations in

More information

Local Affine Approximators for Improving Knowledge Transfer

Local Affine Approximators for Improving Knowledge Transfer Local Affine Approximators for Improving Knowledge Transfer Suraj Srinivas & François Fleuret Idiap Research Institute and EPFL {suraj.srinivas, francois.fleuret}@idiap.ch Abstract The Jacobian of a neural

More information

Error Spectrum Shaping and Vector Quantization. Jon Dattorro Christine Law

Error Spectrum Shaping and Vector Quantization. Jon Dattorro Christine Law Error Spectrum Shaping and Vector Quantization Jon Dattorro Christine Law in partial fulfillment of the requirements for EE392c Stanford University Autumn 1997 0. Introduction We view truncation noise

More information

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 10: Coupled Systems. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 10: Coupled Systems. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part II: Biology Applications Lecture 10: Coupled Systems. Ilya Potapov Mathematics Department, TUT Room TD325 Foreword In order to model populations of physical/biological

More information

Antimonotonicity in Chua s Canonical Circuit with a Smooth Nonlinearity

Antimonotonicity in Chua s Canonical Circuit with a Smooth Nonlinearity Antimonotonicity in Chua s Canonical Circuit with a Smooth Nonlinearity IOANNIS Μ. KYPRIANIDIS & MARIA Ε. FOTIADOU Physics Department Aristotle University of Thessaloniki Thessaloniki, 54124 GREECE Abstract:

More information

Image encryption based on the tracking control Hindmarsh-Rose system via Genesio-Tesi system

Image encryption based on the tracking control Hindmarsh-Rose system via Genesio-Tesi system ISSN 1746-7659, England, UK Journal of Information and Computing Science Vol. 1, No., 017, pp.13-19 Image encryption based on the tracking control Hindmarsh-Rose system via Genesio-Tesi system Keming Tang

More information

POSITIVE REALNESS OF A TRANSFER FUNCTION NEITHER IMPLIES NOR IS IMPLIED BY THE EXTERNAL POSITIVITY OF THEIR ASSOCIATE REALIZATIONS

POSITIVE REALNESS OF A TRANSFER FUNCTION NEITHER IMPLIES NOR IS IMPLIED BY THE EXTERNAL POSITIVITY OF THEIR ASSOCIATE REALIZATIONS POSITIVE REALNESS OF A TRANSFER FUNCTION NEITHER IMPLIES NOR IS IMPLIED BY THE EXTERNAL POSITIVITY OF THEIR ASSOCIATE REALIZATIONS Abstract This letter discusses the differences in-between positive realness

More information

Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator

Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator Indian Journal of Pure & Applied Physics Vol. 47, November 2009, pp. 823-827 Experimental and numerical realization of higher order autonomous Van der Pol-Duffing oscillator V Balachandran, * & G Kandiban

More information

Quantum Spiral Theory

Quantum Spiral Theory Quantum Spiral Theory Suraj Kumar Vivek Prakash Verma, 71 Sudarshan Nagar, Annapurna Road, Indore, M.P., India -452009 Abstract Email: surajkumar600s@gmail.com In this paper we have tried to describe a

More information

Synchronization of Two Chaotic Duffing type Electrical Oscillators

Synchronization of Two Chaotic Duffing type Electrical Oscillators Proceedings of the 0th WSEAS International Conference on CIRCUITS, Vouliagmeni, Athens, Greece, July 0-, 006 (pp79-84) Synchronization of Two Chaotic Duffing type Electrical Oscillators Ch. K. VOLOS, I.

More information

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS International Journal of Bifurcation and Chaos, Vol. 12, No. 6 (22) 1417 1422 c World Scientific Publishing Company CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS JINHU LÜ Institute of Systems

More information

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS

A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS International Journal of Bifurcation and Chaos, Vol. 18, No. 5 (2008) 1567 1577 c World Scientific Publishing Company A MINIMAL 2-D QUADRATIC MAP WITH QUASI-PERIODIC ROUTE TO CHAOS ZERAOULIA ELHADJ Department

More information

Wavelet de-noising for blind source separation in noisy mixtures.

Wavelet de-noising for blind source separation in noisy mixtures. Wavelet for blind source separation in noisy mixtures. Bertrand Rivet 1, Vincent Vigneron 1, Anisoara Paraschiv-Ionescu 2 and Christian Jutten 1 1 Institut National Polytechnique de Grenoble. Laboratoire

More information

Learning Cellular Automaton Dynamics with Neural Networks

Learning Cellular Automaton Dynamics with Neural Networks Learning Cellular Automaton Dynamics with Neural Networks N H Wulff* and J A Hertz t CONNECT, the Niels Bohr Institute and Nordita Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark Abstract We have trained

More information

Mathematical Biology - Lecture 1 - general formulation

Mathematical Biology - Lecture 1 - general formulation Mathematical Biology - Lecture 1 - general formulation course description Learning Outcomes This course is aimed to be accessible both to masters students of biology who have a good understanding of the

More information

SYNCHRONIZATION IN SMALL-WORLD DYNAMICAL NETWORKS

SYNCHRONIZATION IN SMALL-WORLD DYNAMICAL NETWORKS International Journal of Bifurcation and Chaos, Vol. 12, No. 1 (2002) 187 192 c World Scientific Publishing Company SYNCHRONIZATION IN SMALL-WORLD DYNAMICAL NETWORKS XIAO FAN WANG Department of Automation,

More information

Space-Time Kernels. Dr. Jiaqiu Wang, Dr. Tao Cheng James Haworth University College London

Space-Time Kernels. Dr. Jiaqiu Wang, Dr. Tao Cheng James Haworth University College London Space-Time Kernels Dr. Jiaqiu Wang, Dr. Tao Cheng James Haworth University College London Joint International Conference on Theory, Data Handling and Modelling in GeoSpatial Information Science, Hong Kong,

More information

CHATTERING-FREE SMC WITH UNIDIRECTIONAL AUXILIARY SURFACES FOR NONLINEAR SYSTEM WITH STATE CONSTRAINTS. Jian Fu, Qing-Xian Wu and Ze-Hui Mao

CHATTERING-FREE SMC WITH UNIDIRECTIONAL AUXILIARY SURFACES FOR NONLINEAR SYSTEM WITH STATE CONSTRAINTS. Jian Fu, Qing-Xian Wu and Ze-Hui Mao International Journal of Innovative Computing, Information and Control ICIC International c 2013 ISSN 1349-4198 Volume 9, Number 12, December 2013 pp. 4793 4809 CHATTERING-FREE SMC WITH UNIDIRECTIONAL

More information

I/O monotone dynamical systems. Germán A. Enciso University of California, Irvine Eduardo Sontag, Rutgers University May 25 rd, 2011

I/O monotone dynamical systems. Germán A. Enciso University of California, Irvine Eduardo Sontag, Rutgers University May 25 rd, 2011 I/O monotone dynamical systems Germán A. Enciso University of California, Irvine Eduardo Sontag, Rutgers University May 25 rd, 2011 BEFORE: Santa Barbara, January 2003 Having handed to me a photocopied

More information

Compactlike Kink Solutions in Reaction Diffusion Systems. Abstract

Compactlike Kink Solutions in Reaction Diffusion Systems. Abstract Compactlike Kink Solutions in Reaction Diffusion Systems J.C. Comte Physics Department, University of Crete and Foundation for Research and Technology-Hellas P. O. Box 2208, 71003 Heraklion, Crete, Greece

More information

Turing Instabilities and Patterns Near a Hopf Bifurcation

Turing Instabilities and Patterns Near a Hopf Bifurcation Turing Instabilities and Patterns Near a Hopf Bifurcation Rui Dilão Grupo de Dinâmica Não-Linear, Instituto Superior Técnico, Av. Rovisco Pais, 49- Lisboa, Portugal. and Institut des Hautes Études Scientifiques,

More information

Study on Proportional Synchronization of Hyperchaotic Circuit System

Study on Proportional Synchronization of Hyperchaotic Circuit System Commun. Theor. Phys. (Beijing, China) 43 (25) pp. 671 676 c International Academic Publishers Vol. 43, No. 4, April 15, 25 Study on Proportional Synchronization of Hyperchaotic Circuit System JIANG De-Ping,

More information

DESIGN OF MULTI-DIMENSIONAL DERIVATIVE FILTERS. Eero P. Simoncelli

DESIGN OF MULTI-DIMENSIONAL DERIVATIVE FILTERS. Eero P. Simoncelli Published in: First IEEE Int l Conf on Image Processing, Austin Texas, vol I, pages 790--793, November 1994. DESIGN OF MULTI-DIMENSIONAL DERIVATIVE FILTERS Eero P. Simoncelli GRASP Laboratory, Room 335C

More information

Period Doubling Cascade in Diffusion Flames

Period Doubling Cascade in Diffusion Flames Period Doubling Cascade in Diffusion Flames Milan Miklavčič Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA Combustion Theory and Modelling 11 No 1 (2007), 103-112 Abstract

More information

THE problem of phase noise and its influence on oscillators

THE problem of phase noise and its influence on oscillators IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 54, NO. 5, MAY 2007 435 Phase Diffusion Coefficient for Oscillators Perturbed by Colored Noise Fergal O Doherty and James P. Gleeson Abstract

More information

Multi-Scroll Chaotic Attractors in SC-CNN via Hyperbolic Tangent Function

Multi-Scroll Chaotic Attractors in SC-CNN via Hyperbolic Tangent Function electronics Article Multi-Scroll Chaotic Attractors in SC-CNN via Hyperbolic Tangent Function Enis Günay, * and Kenan Altun ID Department of Electrical and Electronics Engineering, Erciyes University,

More information

Automated Segmentation of Low Light Level Imagery using Poisson MAP- MRF Labelling

Automated Segmentation of Low Light Level Imagery using Poisson MAP- MRF Labelling Automated Segmentation of Low Light Level Imagery using Poisson MAP- MRF Labelling Abstract An automated unsupervised technique, based upon a Bayesian framework, for the segmentation of low light level

More information

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 121 125 c International Academic Publishers Vol. 42, No. 1, July 15, 2004 Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized

More information

Synchrony in Lattice Differential Equations

Synchrony in Lattice Differential Equations 1 Synchrony in Lattice ifferential Equations Fernando ntoneli epartment of pplied Mathematics, University of São Paulo São Paulo, SP 05508-090, razil E-mail: antoneli@imeuspbr na Paula S ias entro de Matemática,

More information

Nonlinear dynamics & chaos BECS

Nonlinear dynamics & chaos BECS Nonlinear dynamics & chaos BECS-114.7151 Phase portraits Focus: nonlinear systems in two dimensions General form of a vector field on the phase plane: Vector notation: Phase portraits Solution x(t) describes

More information

SUMMARY OF PH.D. THESIS DYNAMICS OF NON-LINEAR PHYSICAL SYSTEMS

SUMMARY OF PH.D. THESIS DYNAMICS OF NON-LINEAR PHYSICAL SYSTEMS UNIVERSITY OF CRAIOVA FACULTY OF PHYSICS SUMMARY OF PH.D. THESIS DYNAMICS OF NON-LINEAR PHYSICAL SYSTEMS PhD STUDENT: RODICA AURELIA CIMPOIAŞU Ph.D. Supervisor: Prof. Dr. OLIVIU GHERMAN CRAIOVA, MAI 2006

More information

Secure Communication Using H Chaotic Synchronization and International Data Encryption Algorithm

Secure Communication Using H Chaotic Synchronization and International Data Encryption Algorithm Secure Communication Using H Chaotic Synchronization and International Data Encryption Algorithm Gwo-Ruey Yu Department of Electrical Engineering I-Shou University aohsiung County 840, Taiwan gwoyu@isu.edu.tw

More information

A Complete Stability Analysis of Planar Discrete-Time Linear Systems Under Saturation

A Complete Stability Analysis of Planar Discrete-Time Linear Systems Under Saturation 710 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL 48, NO 6, JUNE 2001 A Complete Stability Analysis of Planar Discrete-Time Linear Systems Under Saturation Tingshu

More information

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics Chapter 23 Predicting Chaos We have discussed methods for diagnosing chaos, but what about predicting the existence of chaos in a dynamical system. This is a much harder problem, and it seems that the

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

Chaos in Modified CFOA-Based Inductorless Sinusoidal Oscillators Using a Diode

Chaos in Modified CFOA-Based Inductorless Sinusoidal Oscillators Using a Diode Chaotic Modeling and Simulation CMSIM) 1: 179-185, 2013 Chaos in Modified CFOA-Based Inductorless Sinusoidal Oscillators Using a iode Buncha Munmuangsaen and Banlue Srisuchinwong Sirindhorn International

More information

Reaction diffusion processes on random and scale-free networks

Reaction diffusion processes on random and scale-free networks Reaction diffusion processes on random and scale-free networks arxiv:cond-mat/4464v1 [cond-mat.stat-mech] 27 Apr 24 Subhasis Banerjee, Shrestha Basu Mallik and Indrani Bose Department of Physics, Bose

More information

A simple electronic circuit to demonstrate bifurcation and chaos

A simple electronic circuit to demonstrate bifurcation and chaos A simple electronic circuit to demonstrate bifurcation and chaos P R Hobson and A N Lansbury Brunel University, Middlesex Chaos has generated much interest recently, and many of the important features

More information

MS: Nonlinear Wave Propagation in Singular Perturbed Systems

MS: Nonlinear Wave Propagation in Singular Perturbed Systems MS: Nonlinear Wave Propagation in Singular Perturbed Systems P. van Heijster: Existence & stability of 2D localized structures in a 3-component model. Y. Nishiura: Rotational motion of traveling spots

More information

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON APPLIED PARTIAL DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fifth Edition Richard Haberman Southern Methodist University PEARSON Boston Columbus Indianapolis New York San Francisco

More information