11 a 12 a 13 a 21 a 22 a b 12 b 13 b 21 b 22 b b 11 a 12 + b 12 a 13 + b 13 a 21 + b 21 a 22 + b 22 a 23 + b 23

Size: px
Start display at page:

Download "11 a 12 a 13 a 21 a 22 a b 12 b 13 b 21 b 22 b b 11 a 12 + b 12 a 13 + b 13 a 21 + b 21 a 22 + b 22 a 23 + b 23"

Transcription

1 Chapter 2 (3 3) Matrices The methods used described in the previous chapter for solving sets of linear equations are equally applicable to 3 3 matrices. The algebra becomes more drawn out for larger matrices, so the usefulness compact matrix notation is obvious, and the visualisation of the geometrical properties of matrices becomes increasingly important matrix operations Matrix addition is exactly analogous to that in 2 2 matrices in the last chapter. We simply add the matrices element by element A = a 11 a 12 a 13 a 21 a 22 a 23 (2.1) a 31 a 32 a 33 B = b 11 b 12 b 13 b 21 b 22 b 23 (2.2) b 31 b 32 b 33 A + B = a 11 + b 11 a 12 + b 12 a 13 + b 13 a 21 + b 21 a 22 + b 22 a 23 + b 23. (2.3) a 31 + b 31 a 32 + b 32 a 33 + b 33 Matrix multiplication is also analogous, for example we obtain the first element by multiplying the elements in the row of the first matrix by the corresponding elements in the column of the second matrix. If we form the product AB from the matrices given above then we obtain AB = a 11b 11 + a 12 b 21 + a 13 b 31 a 11 b 12 + a 12 b 22 + a 13 b 32 a 11 b 13 + a 12 b 23 + a 13 b 33 a 21 b 11 + a 22 b 21 + a 23 b 31 a 21 b 12 + a 22 b 22 + a 23 b 32 a 21 b 13 + a 22 b 23 + a 23 b 33. (2.4) a 31 b 11 + a 32 b 21 + a 33 b 31 a 31 b 12 + a 32 b 22 + a 33 b 32 a 31 b 13 + a 32 b 23 + a 33 b Networks We can use the 3 3 matrix to describe a linear system with 3 inputs and 3 outputs, just as we discussed in the previous chapter for 2 2 matrices. The inputs and outputs here may again be the voltages, currents, displacements etc. This is illustrated in the figure below. 12

2 CHAPTER 2. (3 3) MATRICES 13 Inputs x 1 Outputs y 1 x 2 A y 2 x 3 y 3 The connection between the inputs and outputs can be described by a system of linear equations These equations can be rewritten in matrix form Y = y 1 y 2 = a 11 a 12 a 13 a 21 a 22 a 23 y 3 a 31 a 32 a 33 y 1 = a 11 x 1 + a 12 x 2 + a 13 x 3 (2.5) y 2 = a 21 x 1 + a 22 x 2 + a 23 x 3 (2.6) y 3 = a 31 x 1 + a 32 x 2 + a 33 x 3. (2.7) x 1 x 2 x 3 = AX (2.8) We can then put these systems in parallel or in series in the same way as discussed in the previous chapter. 2.3 Simultaneous Equations Consider now a system of 3 linear equations such as x + y + z = 1 (2.9) 3x 2y + z = 3 (2.10) x + 4y z = 17. (2.11) We would like to solve this system of equations for x, y and z. Is this always possible? Graphically each one of these equations is represented by a plane. We wish to know if these planes intersect at a point (x, y, z) which is the solution for which we are looking. Compared with the 2 dimensional case there are many more circumstances; all three planes might be parallel,

3 CHAPTER 2. (3 3) MATRICES 14 two planes might be parallel and the third intersect them in two lines that never cross, the planes may intersect in three lines that never cross, all three planes may intersect in a single line, finally the planes intersect at a point, the solution! It is clear from these many scenarios that we must be more careful when looking into whether we have a solution. Notice that although we are looking at the same problem of solving a set of linear

4 CHAPTER 2. (3 3) MATRICES 15 equations, the problem is much richer in 3 dimensions than in 2. This is usually the case in physics: low dimensional problems are generally easier to solve and less complicated than the same problem in higher dimensions. We can now use the same algorithms as we did in 2 dimensions to solve this problem. Consider the general set of 3 linear equations a 11 a 12 a 13 x c 1 a 21 a 22 a 23 y = c 2 (2.12) a 31 a 32 a 33 z c 3 Gaussian Elimination The algorithm for Gaussian elimination proceeds by using the first equation to eliminate x from the remaining two equations: xa 11 + ya 12 + za 13 = c 1 (2.13) xa 21 + ya 22 + za 23 = c 2 (2.14) xa 31 + ya 32 + za 33 = c 3 (2.15) y(a 22 a 11 a 12 a 21 ) + z(a 23 a 11 a 13 a 21 ) = a 11 c 2 a 21 c 1 (2.16) y(a 32 a 11 a 12 a 31 ) + z(a 33 a 11 a 13 a 31 ) = a 11 c 3 a 31 c 1. (2.17) We can then eliminate y from the previous one. z [(a 33 a 11 a 13 a 31 )(a 22 a 11 a 12 a 21 ) (a 23 a 11 a 13 a 21 )(a 32 a 11 a 12 a 31 )] = (2.18) [(a 11 c 3 a 31 c 1 )(a 22 a 11 a 12 a 21 ) (a 11 c 2 a 21 c 1 )(a 32 a 11 a 12 a 31 )] (2.19) This rather complicated equation can be simplified to give z = c 1(a 21 a 32 a 22 a 31 ) c 2 (a 11 a 32 a 31 a 12 ) + c 3 (a 11 a 22 a 21 a 12 ) a 11 (a 22 a 33 a 23 a 32 ) a 12 (a 21 a 33 a 31 a 23 ) + a 13 (a 21 a 32 a 31 a 22 ). (2.20) There are similar long expressions for the solutions y and z. Cramer s Rule The long expressions for the solution in the previous section can be written more concisely if we define the determinant of a 3 3 matrix. a 11 a 12 a 13 deta = a 21 a 22 a 23 a 31 a 32 a 33 = a 11(a 22 a 33 a 23 a 32 ) a 12 (a 21 a 33 a 31 a 23 ) + a 13 (a 21 a 32 a 31 a 22 ). (2.21) This may seem like a complicated expression, but it can be expressed in terms of 2 2 determinants, which makes it easier to remember. a deta = a 22 a a 32 a 33 a 12 a 21 a 23 a 31 a 33 + a 13 a 21 a 22 a 31 a 32 (2.22) We perform this expansion by first choosing a row and writing down the first element. By covering up the rest of the row and column of that element we get the 2 2 determinant for this element. We

5 CHAPTER 2. (3 3) MATRICES 16 then repeat this for the rest of the elements in the row. However, the sign infront of the element must alternate according to the following pattern (2.23) This expansion method can be performed using any row or column as a basis for the expansion. Determinants can be manipulated in a similar way to matrices. We can add or subtract a multiple one row from another without changing the result. We can also add or subtract a multiple of one column from another without changing the result. If two rows are swapped around then the determinant changes sign. Similarly if two columns are swapped then the determinant changes sign. With this compact notation of the determinant we can use Cramer s rule to write down the solution to the 3 3 matrix problem 1 c 1 a 12 a 13 x = det A c 2 a 22 a 23 (2.24) c 3 a 32 a 33 1 a 11 c 1 a 13 y = det A a 21 c 2 a 23 (2.25) a 31 c 3 a 33 1 a 11 a 12 c 1 z = det A a 11 a 22 c 2 (2.26) a 31 a 32 c 3 You should check, by expanding the determinant, that this give the same solution as in the previous section. Note that no solution exists for the case deta = 0. This corresponds one of the cases described above where the planes either do not intersect at all, or do not intersect at a unique point. Matrix Inverse We can also calculate a solution by calculating the inverse of the matrix A and then writing X = A 1 C. Forming the inverse is a little more complicated for a 3 3 matrix. We must first calculate what is known as the matrix of cofactors cofa. To calculate this we cover up the associated row and column of an element, then compute the determinant of the remaining 2 2 matrix that is left. We then write down the result multiplied by the sign according to , (2.27) or alternatively ( 1) i+j where i and j are the indexes of the row and column respectively. Once we have computed this matrix, we can calculate the matrix inverse from A 1 = 1 deta (cofa)t (2.28) where the superscript T denotes the transpose of the matrix i.e. swapping the rows and columns around. Note that this algorithm works for the 2 2 matrix case, but is much simpler there.

6 CHAPTER 2. (3 3) MATRICES 17 Example of 3 3 matrix inverse Consider the matrix A = (2.29) To calculate the matrix of cofactors for this we start with the row 1 column 1 element, and cover up the remaining elements in its row and column: (2.30) The determinant we calculate from the remaining 4 elements is = 2 (2.31) so the row 1 column 1 element of our cofactor matrix is 2. For the next element we perform the same trick: (2.32) We are left with the determinant = 1 (2.33) so the row 1 column 2 element for our cofactor matrix is 1 (note the extra 1 factor here as ( 1) 1+2 = 1). We continue this process for the remaining elements in the matrix to produce cofa = (2.34) Now, the determinant of our matrix A is 6. To form the inverse we need the transpose of cofa divided by det A i.e. A 1 = (2.35) You should check that if we multiply this by A then the result is the identity matrix Geometric interpretation The 3 3 matrix can be interpreted as a linear transformation of 3 dimensional space, taking a point (x, y, z) to its image point point (x, y, z ) according to the rule x = a 11 x + a 12 y + a 13 z (2.36) y = a 21 x + a 22 y + a 23 z (2.37) z = a 31 x + a 32 y + a 33 z (2.38)

7 CHAPTER 2. (3 3) MATRICES 18 There are various deformations just as in the 2 dimensional case, but now we have more freedom. For example, we can still define a rotation matrix in the same way, but we have the freedom to choose the axis about which this rotation occurs, for example a rotation about the z axis is R z = whereas a rotation about the x axis is R x = cosθ sinθ 0 sin θ cosθ cosθ sin θ 0 sin θ cosθ, (2.39). (2.40) Examples of matrices in physics: Liquid Crystalline order parameter In soft condensed matter, the ordering of molecules is important to calculate the macroscopic properties of a material. The average orientation of rod-like molecules is encoded in the order parameter Q. This is a matrix that is defined so that Q = 0 for a disordered system, and Q 0 for an ordered case. Order parameters are important for understanding a phase transition e.g. the liquid-gas transition. It is carefully defined so that it has zero trace. The trace of a matrix is simply the sum of the diagonal components e.g. tra = a 11 + a 22 + a 33. (2.41) The energy of a system of rods can be defined in terms of Q, and in equilibrium the system adopts the value of Q corresponding to the minimum energy. In the problems you can calculate the energy of a liquid crystalline system using this matrix Q. 2.5 Problems 1A. If A = A. If P = illustrate? and B =, and Q = find A + B, A B, B A, AB and BA., then find QP, and PQ. What does this 3A. If C is the 3 by 3 square matrix C = Find the square of this martrix C 2 = CC, i.e., multiply C by itself. What do you notice about the matrix C 2? 4A. Find the value of the determinant of the following matrices, and state which of them can be inverted.

8 CHAPTER 2. (3 3) MATRICES 19 (a) (b) (c) B. Form the co-factor matrix of Q = Calculate the determinant of Q. Form Q by transposing the cofactor matrix and dividing it by the determinant. Verify that QQ 1 = Q 1 Q = 1. 6B. Find the reciprocal matrix of and verify that AA 1 = A 1 A = 1. A A. Consider the 2 sets of 3 simultaneous linear equations and x + 2y 2z = 5 2x 2y 2z = 6 x + 2y = 7 2x 2y 4z = 3 x + 3y + 4z = 4 x 2y 3z = 10 One of these two sets of equations has a solution, the other is not soluble. Which one? You do not need to try to solve both sets of equations to find the answer. Just consider the matrix method of solving sets of simultaneous linear equations and look for a necessary condition for this method to work. 8B. Consider the set of 3 simultaneous linear equations 2x + y + 3z = 4 x + y z = 6 y + 2z = 1 Write down the 3 by 3 matrix of coefficients O, and the column matrix of right-hand sides R. Then solve for x, y, and z using matrices.

9 CHAPTER 2. (3 3) MATRICES 20 9C. Solve the following equations by matrix methods (a) (b) 4x 3y + z = 11 2x + y 4z = 1 x + 2y 2z = 1 x + 5y + 3z = 1 5x + y z = 2 x + 2y + z = 3 10A. Find the rotation matrix R such that y = Rx represents an anticlockwise rotation about the z-axis through an angle of π/2 radians. 11A. The free energy of a liquid crystal is expressed as a power series expansion in terms of a matrix Q as follows F = atr[q 2 ] + btr[q 3 ] + c ( tr[q 2 ] ) Calculate the free energy for following matrix Q Q = 2S 0 0 S S Make a rough sketch of F(S) you have calculated for the two cases (i) a = 1, b = 1, c = 1, and 0.5 < S < 1 (ii) a = 1, b = 1, c = 1, and 0.5 < S < 1.

Elementary maths for GMT

Elementary maths for GMT Elementary maths for GMT Linear Algebra Part 2: Matrices, Elimination and Determinant m n matrices The system of m linear equations in n variables x 1, x 2,, x n a 11 x 1 + a 12 x 2 + + a 1n x n = b 1

More information

7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Outcomes

7.4. The Inverse of a Matrix. Introduction. Prerequisites. Learning Outcomes The Inverse of a Matrix 7.4 Introduction In number arithmetic every number a 0has a reciprocal b written as a or such that a ba = ab =. Similarly a square matrix A may have an inverse B = A where AB =

More information

Lesson 3. Inverse of Matrices by Determinants and Gauss-Jordan Method

Lesson 3. Inverse of Matrices by Determinants and Gauss-Jordan Method Module 1: Matrices and Linear Algebra Lesson 3 Inverse of Matrices by Determinants and Gauss-Jordan Method 3.1 Introduction In lecture 1 we have seen addition and multiplication of matrices. Here we shall

More information

Methods for Solving Linear Systems Part 2

Methods for Solving Linear Systems Part 2 Methods for Solving Linear Systems Part 2 We have studied the properties of matrices and found out that there are more ways that we can solve Linear Systems. In Section 7.3, we learned that we can use

More information

MATH 211 review notes

MATH 211 review notes MATH 211 review notes Notes written by Mark Przepiora 1 Determinants 1. Let A = 3 1 1 2 1 2 5 2 1 (a) Compute det(a). Solution: To find the determinant, we expand along the first row. det(a) = 2 1 1 2

More information

Matrices and Vectors

Matrices and Vectors Matrices and Vectors James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 11, 2013 Outline 1 Matrices and Vectors 2 Vector Details 3 Matrix

More information

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to:

MAC Module 3 Determinants. Learning Objectives. Upon completing this module, you should be able to: MAC 2 Module Determinants Learning Objectives Upon completing this module, you should be able to:. Determine the minor, cofactor, and adjoint of a matrix. 2. Evaluate the determinant of a matrix by cofactor

More information

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education MTH 3 Linear Algebra Study Guide Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education June 3, ii Contents Table of Contents iii Matrix Algebra. Real Life

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21

ENGR-1100 Introduction to Engineering Analysis. Lecture 21 ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

a11 a A = : a 21 a 22

a11 a A = : a 21 a 22 Matrices The study of linear systems is facilitated by introducing matrices. Matrix theory provides a convenient language and notation to express many of the ideas concisely, and complicated formulas are

More information

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p Math Bootcamp 2012 1 Review of matrix algebra 1.1 Vectors and rules of operations An p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the

More information

Elementary Linear Algebra

Elementary Linear Algebra Matrices J MUSCAT Elementary Linear Algebra Matrices Definition Dr J Muscat 2002 A matrix is a rectangular array of numbers, arranged in rows and columns a a 2 a 3 a n a 2 a 22 a 23 a 2n A = a m a mn We

More information

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices

Matrices Gaussian elimination Determinants. Graphics 2009/2010, period 1. Lecture 4: matrices Graphics 2009/2010, period 1 Lecture 4 Matrices m n matrices Matrices Definitions Diagonal, Identity, and zero matrices Addition Multiplication Transpose and inverse The system of m linear equations in

More information

1 Matrices and Systems of Linear Equations. a 1n a 2n

1 Matrices and Systems of Linear Equations. a 1n a 2n March 31, 2013 16-1 16. Systems of Linear Equations 1 Matrices and Systems of Linear Equations An m n matrix is an array A = (a ij ) of the form a 11 a 21 a m1 a 1n a 2n... a mn where each a ij is a real

More information

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat

Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Materials engineering Collage \\ Ceramic & construction materials department Numerical Analysis \\Third stage by \\ Dalya Hekmat Linear Algebra Lecture 2 1.3.7 Matrix Matrix multiplication using Falk s

More information

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2 Final Review Sheet The final will cover Sections Chapters 1,2,3 and 4, as well as sections 5.1-5.4, 6.1-6.2 and 7.1-7.3 from chapters 5,6 and 7. This is essentially all material covered this term. Watch

More information

Quiz ) Locate your 1 st order neighbors. 1) Simplify. Name Hometown. Name Hometown. Name Hometown.

Quiz ) Locate your 1 st order neighbors. 1) Simplify. Name Hometown. Name Hometown. Name Hometown. Quiz 1) Simplify 9999 999 9999 998 9999 998 2) Locate your 1 st order neighbors Name Hometown Me Name Hometown Name Hometown Name Hometown Solving Linear Algebraic Equa3ons Basic Concepts Here only real

More information

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BUSINESS MATHEMATICS / MATHEMATICAL ANALYSIS

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BUSINESS MATHEMATICS / MATHEMATICAL ANALYSIS SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BUSINESS MATHEMATICS / MATHEMATICAL ANALYSIS Unit Six Moses Mwale e-mail: moses.mwale@ictar.ac.zm BBA 120 Business Mathematics Contents Unit 6: Matrix Algebra

More information

Linear Algebra: Lecture Notes. Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway

Linear Algebra: Lecture Notes. Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway Linear Algebra: Lecture Notes Dr Rachel Quinlan School of Mathematics, Statistics and Applied Mathematics NUI Galway November 6, 23 Contents Systems of Linear Equations 2 Introduction 2 2 Elementary Row

More information

Linear Algebra 1 Exam 1 Solutions 6/12/3

Linear Algebra 1 Exam 1 Solutions 6/12/3 Linear Algebra 1 Exam 1 Solutions 6/12/3 Question 1 Consider the linear system in the variables (x, y, z, t, u), given by the following matrix, in echelon form: 1 2 1 3 1 2 0 1 1 3 1 4 0 0 0 1 2 3 Reduce

More information

Determinants and Scalar Multiplication

Determinants and Scalar Multiplication Properties of Determinants In the last section, we saw how determinants interact with the elementary row operations. There are other operations on matrices, though, such as scalar multiplication, matrix

More information

Review from Bootcamp: Linear Algebra

Review from Bootcamp: Linear Algebra Review from Bootcamp: Linear Algebra D. Alex Hughes October 27, 2014 1 Properties of Estimators 2 Linear Algebra Addition and Subtraction Transpose Multiplication Cross Product Trace 3 Special Matrices

More information

Introduction to Determinants

Introduction to Determinants Introduction to Determinants For any square matrix of order 2, we have found a necessary and sufficient condition for invertibility. Indeed, consider the matrix The matrix A is invertible if and only if.

More information

1300 Linear Algebra and Vector Geometry

1300 Linear Algebra and Vector Geometry 1300 Linear Algebra and Vector Geometry R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca May-June 2017 Matrix Inversion Algorithm One payoff from this theorem: It gives us a way to invert matrices.

More information

Inverses and Determinants

Inverses and Determinants Engineering Mathematics 1 Fall 017 Inverses and Determinants I begin finding the inverse of a matrix; namely 1 4 The inverse, if it exists, will be of the form where AA 1 I; which works out to ( 1 4 A

More information

ENGI 9420 Lecture Notes 2 - Matrix Algebra Page Matrix operations can render the solution of a linear system much more efficient.

ENGI 9420 Lecture Notes 2 - Matrix Algebra Page Matrix operations can render the solution of a linear system much more efficient. ENGI 940 Lecture Notes - Matrix Algebra Page.0. Matrix Algebra A linear system of m equations in n unknowns, a x + a x + + a x b (where the a ij and i n n a x + a x + + a x b n n a x + a x + + a x b m

More information

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II

MAC Learning Objectives. Learning Objectives (Cont.) Module 10 System of Equations and Inequalities II MAC 1140 Module 10 System of Equations and Inequalities II Learning Objectives Upon completing this module, you should be able to 1. represent systems of linear equations with matrices. 2. transform a

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline

ENGR-1100 Introduction to Engineering Analysis. Lecture 21. Lecture outline ENGR-1100 Introduction to Engineering Analysis Lecture 21 Lecture outline Procedure (algorithm) for finding the inverse of invertible matrix. Investigate the system of linear equation and invertibility

More information

MAT 1332: CALCULUS FOR LIFE SCIENCES. Contents. 1. Review: Linear Algebra II Vectors and matrices Definition. 1.2.

MAT 1332: CALCULUS FOR LIFE SCIENCES. Contents. 1. Review: Linear Algebra II Vectors and matrices Definition. 1.2. MAT 1332: CALCULUS FOR LIFE SCIENCES JING LI Contents 1 Review: Linear Algebra II Vectors and matrices 1 11 Definition 1 12 Operations 1 2 Linear Algebra III Inverses and Determinants 1 21 Inverse Matrices

More information

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column

Formula for the inverse matrix. Cramer s rule. Review: 3 3 determinants can be computed expanding by any row or column Math 20F Linear Algebra Lecture 18 1 Determinants, n n Review: The 3 3 case Slide 1 Determinants n n (Expansions by rows and columns Relation with Gauss elimination matrices: Properties) Formula for the

More information

MATH 1553, C. JANKOWSKI MIDTERM 3

MATH 1553, C. JANKOWSKI MIDTERM 3 MATH 1553, C JANKOWSKI MIDTERM 3 Name GT Email @gatechedu Write your section number (E6-E9) here: Please read all instructions carefully before beginning Please leave your GT ID card on your desk until

More information

Math 240 Calculus III

Math 240 Calculus III The Calculus III Summer 2015, Session II Wednesday, July 8, 2015 Agenda 1. of the determinant 2. determinants 3. of determinants What is the determinant? Yesterday: Ax = b has a unique solution when A

More information

MATRIX DETERMINANTS. 1 Reminder Definition and components of a matrix

MATRIX DETERMINANTS. 1 Reminder Definition and components of a matrix MATRIX DETERMINANTS Summary Uses... 1 1 Reminder Definition and components of a matrix... 1 2 The matrix determinant... 2 3 Calculation of the determinant for a matrix... 2 4 Exercise... 3 5 Definition

More information

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices.

MATH 2050 Assignment 8 Fall [10] 1. Find the determinant by reducing to triangular form for the following matrices. MATH 2050 Assignment 8 Fall 2016 [10] 1. Find the determinant by reducing to triangular form for the following matrices. 0 1 2 (a) A = 2 1 4. ANS: We perform the Gaussian Elimination on A by the following

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

MATH 1210 Assignment 4 Solutions 16R-T1

MATH 1210 Assignment 4 Solutions 16R-T1 MATH 1210 Assignment 4 Solutions 16R-T1 Attempt all questions and show all your work. Due November 13, 2015. 1. Prove using mathematical induction that for any n 2, and collection of n m m matrices A 1,

More information

REFRESHER. William Stallings

REFRESHER. William Stallings BASIC MATH REFRESHER William Stallings Trigonometric Identities...2 Logarithms and Exponentials...4 Log Scales...5 Vectors, Matrices, and Determinants...7 Arithmetic...7 Determinants...8 Inverse of a Matrix...9

More information

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions.

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. Review for Exam. Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. x + y z = 2 x + 2y + z = 3 x + y + (a 2 5)z = a 2 The augmented matrix for

More information

MA 138 Calculus 2 with Life Science Applications Matrices (Section 9.2)

MA 138 Calculus 2 with Life Science Applications Matrices (Section 9.2) MA 38 Calculus 2 with Life Science Applications Matrices (Section 92) Alberto Corso albertocorso@ukyedu Department of Mathematics University of Kentucky Friday, March 3, 207 Identity Matrix and Inverse

More information

Algebraic. techniques1

Algebraic. techniques1 techniques Algebraic An electrician, a bank worker, a plumber and so on all have tools of their trade. Without these tools, and a good working knowledge of how to use them, it would be impossible for them

More information

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics

MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam. Topics MATH 213 Linear Algebra and ODEs Spring 2015 Study Sheet for Midterm Exam This study sheet will not be allowed during the test Books and notes will not be allowed during the test Calculators and cell phones

More information

4. Determinants.

4. Determinants. 4. Determinants 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 2 2 determinant 4.1. Determinants; Cofactor Expansion Determinants of 2 2 and 3 3 Matrices 3 3 determinant 4.1.

More information

CHAPTER 7: Systems and Inequalities

CHAPTER 7: Systems and Inequalities (Exercises for Chapter 7: Systems and Inequalities) E.7.1 CHAPTER 7: Systems and Inequalities (A) means refer to Part A, (B) means refer to Part B, etc. (Calculator) means use a calculator. Otherwise,

More information

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Michaelmas Term 2015 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Michaelmas Term 2015 1 / 10 Row expansion of the determinant Our next goal is

More information

det(ka) = k n det A.

det(ka) = k n det A. Properties of determinants Theorem. If A is n n, then for any k, det(ka) = k n det A. Multiplying one row of A by k multiplies the determinant by k. But ka has every row multiplied by k, so the determinant

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices Matrices A. Fabretti Mathematics 2 A.Y. 2015/2016 Table of contents Matrix Algebra Determinant Inverse Matrix Introduction A matrix is a rectangular array of numbers. The size of a matrix is indicated

More information

Linear Algebra Primer

Linear Algebra Primer Introduction Linear Algebra Primer Daniel S. Stutts, Ph.D. Original Edition: 2/99 Current Edition: 4//4 This primer was written to provide a brief overview of the main concepts and methods in elementary

More information

M.A.P. Matrix Algebra Procedures. by Mary Donovan, Adrienne Copeland, & Patrick Curry

M.A.P. Matrix Algebra Procedures. by Mary Donovan, Adrienne Copeland, & Patrick Curry M.A.P. Matrix Algebra Procedures by Mary Donovan, Adrienne Copeland, & Patrick Curry This document provides an easy to follow background and review of basic matrix definitions and algebra. Because population

More information

CHAPTER 8: Matrices and Determinants

CHAPTER 8: Matrices and Determinants (Exercises for Chapter 8: Matrices and Determinants) E.8.1 CHAPTER 8: Matrices and Determinants (A) means refer to Part A, (B) means refer to Part B, etc. Most of these exercises can be done without a

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Topic 15 Notes Jeremy Orloff

Topic 15 Notes Jeremy Orloff Topic 5 Notes Jeremy Orloff 5 Transpose, Inverse, Determinant 5. Goals. Know the definition and be able to compute the inverse of any square matrix using row operations. 2. Know the properties of inverses.

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

Matrices. Chapter Definitions and Notations

Matrices. Chapter Definitions and Notations Chapter 3 Matrices 3. Definitions and Notations Matrices are yet another mathematical object. Learning about matrices means learning what they are, how they are represented, the types of operations which

More information

LECTURE 12: SOLUTIONS TO SIMULTANEOUS LINEAR EQUATIONS. Prof. N. Harnew University of Oxford MT 2012

LECTURE 12: SOLUTIONS TO SIMULTANEOUS LINEAR EQUATIONS. Prof. N. Harnew University of Oxford MT 2012 LECTURE 12: SOLUTIONS TO SIMULTANEOUS LINEAR EQUATIONS Prof. N. Harnew University of Oxford MT 2012 1 Outline: 12. SOLUTIONS TO SIMULTANEOUS LINEAR EQUATIONS 12.1 Methods used to solve for unique solution

More information

Lecture 8: Determinants I

Lecture 8: Determinants I 8-1 MATH 1B03/1ZC3 Winter 2019 Lecture 8: Determinants I Instructor: Dr Rushworth January 29th Determinants via cofactor expansion (from Chapter 2.1 of Anton-Rorres) Matrices encode information. Often

More information

A Review of Matrix Analysis

A Review of Matrix Analysis Matrix Notation Part Matrix Operations Matrices are simply rectangular arrays of quantities Each quantity in the array is called an element of the matrix and an element can be either a numerical value

More information

Eigenvalues and Eigenvectors: An Introduction

Eigenvalues and Eigenvectors: An Introduction Eigenvalues and Eigenvectors: An Introduction The eigenvalue problem is a problem of considerable theoretical interest and wide-ranging application. For example, this problem is crucial in solving systems

More information

9 Appendix. Determinants and Cramer s formula

9 Appendix. Determinants and Cramer s formula LINEAR ALGEBRA: THEORY Version: August 12, 2000 133 9 Appendix Determinants and Cramer s formula Here we the definition of the determinant in the general case and summarize some features Then we show how

More information

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra

Section 1.1 System of Linear Equations. Dr. Abdulla Eid. College of Science. MATHS 211: Linear Algebra Section 1.1 System of Linear Equations College of Science MATHS 211: Linear Algebra (University of Bahrain) Linear System 1 / 33 Goals:. 1 Define system of linear equations and their solutions. 2 To represent

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

TOPIC III LINEAR ALGEBRA

TOPIC III LINEAR ALGEBRA [1] Linear Equations TOPIC III LINEAR ALGEBRA (1) Case of Two Endogenous Variables 1) Linear vs. Nonlinear Equations Linear equation: ax + by = c, where a, b and c are constants. 2 Nonlinear equation:

More information

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511)

GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) GAUSSIAN ELIMINATION AND LU DECOMPOSITION (SUPPLEMENT FOR MA511) D. ARAPURA Gaussian elimination is the go to method for all basic linear classes including this one. We go summarize the main ideas. 1.

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

1 Matrices and matrix algebra

1 Matrices and matrix algebra 1 Matrices and matrix algebra 1.1 Examples of matrices A matrix is a rectangular array of numbers and/or variables. For instance 4 2 0 3 1 A = 5 1.2 0.7 x 3 π 3 4 6 27 is a matrix with 3 rows and 5 columns

More information

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes

22.3. Repeated Eigenvalues and Symmetric Matrices. Introduction. Prerequisites. Learning Outcomes Repeated Eigenvalues and Symmetric Matrices. Introduction In this Section we further develop the theory of eigenvalues and eigenvectors in two distinct directions. Firstly we look at matrices where one

More information

Linear Algebra Primer

Linear Algebra Primer Linear Algebra Primer D.S. Stutts November 8, 995 Introduction This primer was written to provide a brief overview of the main concepts and methods in elementary linear algebra. It was not intended to

More information

Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds

Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds Linear Algebra Tutorial for Math3315/CSE3365 Daniel R. Reynolds These notes are meant to provide a brief introduction to the topics from Linear Algebra that will be useful in Math3315/CSE3365, Introduction

More information

HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION)

HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION) HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION) PROFESSOR STEVEN MILLER: BROWN UNIVERSITY: SPRING 2007 1. CHAPTER 1: MATRICES AND GAUSSIAN ELIMINATION Page 9, # 3: Describe

More information

Digital Workbook for GRA 6035 Mathematics

Digital Workbook for GRA 6035 Mathematics Eivind Eriksen Digital Workbook for GRA 6035 Mathematics November 10, 2014 BI Norwegian Business School Contents Part I Lectures in GRA6035 Mathematics 1 Linear Systems and Gaussian Elimination........................

More information

HW2 Solutions

HW2 Solutions 8.024 HW2 Solutions February 4, 200 Apostol.3 4,7,8 4. Show that for all x and y in real Euclidean space: (x, y) 0 x + y 2 x 2 + y 2 Proof. By definition of the norm and the linearity of the inner product,

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3]. Appendix : A Very Brief Linear ALgebra Review Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics Very often in this course we study the shapes

More information

Math 315: Linear Algebra Solutions to Assignment 7

Math 315: Linear Algebra Solutions to Assignment 7 Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are

More information

Chapter 1. Linear Equations

Chapter 1. Linear Equations Chapter 1. Linear Equations We ll start our study of linear algebra with linear equations. Lost of parts of mathematics rose out of trying to understand the solutions of different types of equations. Linear

More information

Linear Algebra V = T = ( 4 3 ).

Linear Algebra V = T = ( 4 3 ). Linear Algebra Vectors A column vector is a list of numbers stored vertically The dimension of a column vector is the number of values in the vector W is a -dimensional column vector and V is a 5-dimensional

More information

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Matrix Arithmetic Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

More information

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010 A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 00 Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics

More information

NOTES FOR LINEAR ALGEBRA 133

NOTES FOR LINEAR ALGEBRA 133 NOTES FOR LINEAR ALGEBRA 33 William J Anderson McGill University These are not official notes for Math 33 identical to the notes projected in class They are intended for Anderson s section 4, and are 2

More information

EC5555 Economics Masters Refresher Course in Mathematics September 2014

EC5555 Economics Masters Refresher Course in Mathematics September 2014 EC5555 Economics Masters Refresher Course in Mathematics September 4 Lecture Matri Inversion and Linear Equations Ramakanta Patra Learning objectives. Matri inversion Matri inversion and linear equations

More information

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes.

Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes. Vectors and matrices: matrices (Version 2) This is a very brief summary of my lecture notes Matrices and linear equations A matrix is an m-by-n array of numbers A = a 11 a 12 a 13 a 1n a 21 a 22 a 23 a

More information

STEP Support Programme. STEP 2 Matrices Topic Notes

STEP Support Programme. STEP 2 Matrices Topic Notes STEP Support Programme STEP 2 Matrices Topic Notes Definitions............................................. 2 Manipulating Matrices...................................... 3 Transformations.........................................

More information

Math 320, spring 2011 before the first midterm

Math 320, spring 2011 before the first midterm Math 320, spring 2011 before the first midterm Typical Exam Problems 1 Consider the linear system of equations 2x 1 + 3x 2 2x 3 + x 4 = y 1 x 1 + 3x 2 2x 3 + 2x 4 = y 2 x 1 + 2x 3 x 4 = y 3 where x 1,,

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Corrected Version, 7th April 013 Comments to the author at keithmatt@gmail.com Chapter 1 LINEAR EQUATIONS 1.1

More information

Determinants Chapter 3 of Lay

Determinants Chapter 3 of Lay Determinants Chapter of Lay Dr. Doreen De Leon Math 152, Fall 201 1 Introduction to Determinants Section.1 of Lay Given a square matrix A = [a ij, the determinant of A is denoted by det A or a 11 a 1j

More information

The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices

The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices The Laplace Expansion Theorem: Computing the Determinants and Inverses of Matrices David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative

More information

MATH 2030: EIGENVALUES AND EIGENVECTORS

MATH 2030: EIGENVALUES AND EIGENVECTORS MATH 2030: EIGENVALUES AND EIGENVECTORS Determinants Although we are introducing determinants in the context of matrices, the theory of determinants predates matrices by at least two hundred years Their

More information

sum of squared error.

sum of squared error. IT 131 MATHEMATCS FOR SCIENCE LECTURE NOTE 6 LEAST SQUARES REGRESSION ANALYSIS and DETERMINANT OF A MATRIX Source: Larson, Edwards, Falvo (2009): Elementary Linear Algebra, Sixth Edition You will now look

More information

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02)

Linear Algebra (part 1) : Matrices and Systems of Linear Equations (by Evan Dummit, 2016, v. 2.02) Linear Algebra (part ) : Matrices and Systems of Linear Equations (by Evan Dummit, 206, v 202) Contents 2 Matrices and Systems of Linear Equations 2 Systems of Linear Equations 2 Elimination, Matrix Formulation

More information

Math Computation Test 1 September 26 th, 2016 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge!

Math Computation Test 1 September 26 th, 2016 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge! Math 5- Computation Test September 6 th, 6 Debate: Computation vs. Theory Whatever wins, it ll be Huuuge! Name: Answer Key: Making Math Great Again Be sure to show your work!. (8 points) Consider the following

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Chapter 2 Notes, Linear Algebra 5e Lay

Chapter 2 Notes, Linear Algebra 5e Lay Contents.1 Operations with Matrices..................................1.1 Addition and Subtraction.............................1. Multiplication by a scalar............................ 3.1.3 Multiplication

More information

TBP MATH33A Review Sheet. November 24, 2018

TBP MATH33A Review Sheet. November 24, 2018 TBP MATH33A Review Sheet November 24, 2018 General Transformation Matrices: Function Scaling by k Orthogonal projection onto line L Implementation If we want to scale I 2 by k, we use the following: [

More information

a s 1.3 Matrix Multiplication. Know how to multiply two matrices and be able to write down the formula

a s 1.3 Matrix Multiplication. Know how to multiply two matrices and be able to write down the formula Syllabus for Math 308, Paul Smith Book: Kolman-Hill Chapter 1. Linear Equations and Matrices 1.1 Systems of Linear Equations Definition of a linear equation and a solution to a linear equations. Meaning

More information

Chapter 9: Systems of Equations and Inequalities

Chapter 9: Systems of Equations and Inequalities Chapter 9: Systems of Equations and Inequalities 9. Systems of Equations Solve the system of equations below. By this we mean, find pair(s) of numbers (x, y) (if possible) that satisfy both equations.

More information

Linear Algebra and Vector Analysis MATH 1120

Linear Algebra and Vector Analysis MATH 1120 Faculty of Engineering Mechanical Engineering Department Linear Algebra and Vector Analysis MATH 1120 : Instructor Dr. O. Philips Agboola Determinants and Cramer s Rule Determinants If a matrix is square

More information

Vector/Matrix operations. *Remember: All parts of HW 1 are due on 1/31 or 2/1

Vector/Matrix operations. *Remember: All parts of HW 1 are due on 1/31 or 2/1 Lecture 4: Topics: Linear Algebra II Vector/Matrix operations Homework: HW, Part *Remember: All parts of HW are due on / or / Solving Axb Row reduction method can be used Simple operations on equations

More information