Electricity and Magnetism Magnetic Field from Moving Charges

Size: px
Start display at page:

Download "Electricity and Magnetism Magnetic Field from Moving Charges"

Transcription

1 Electricity and Magnetism Magnetic Field from Moving Charges Lana Sheridan De Anza College Nov 17, 2015

2 Last time force on a wire with a current in a B-field torque on a wire loop in a B-field motors relating a current loop to a magnet magnetic dipole moment torque and potential energy of magnetic dipole magnetism of matter

3 Overview magnetic fields from moving charges magnetic fields around current-carrying wires forces between parallel wires Gauss s law

4 Magnetic fields from moving charges and currents We are now moving into chapter 29. Anything with a magnet moment creates a magnetic field. This is a logical consequence of Newton s third law.

5 Magnetic fields from moving charges A moving charge will interact with other magnetic poles. This is because it has a magnetic field of its own. The field for a moving charge is given by the Biot-Savart Law: B = µ 0 q v ˆr 4π r 2

6 Magnetic fields from moving charges B = µ 0 q v ˆr 4π r 2 1 Figure from rakeshkapoor.us.

7 Magnetic fields from currents B = µ 0 q v ˆr 4π r 2 We can deduce from this what the magnetic field do to the current in a small piece of wire is. Current is made up of moving charges! q v = q s t = q s = I s t We can replace q v in the equation above.

8 Magnetic fields from currents This element of current creates a magnetic field at P, into the page. current-length element a differential magnetic nt P. The green (the ) at the dot for point P db : is directed into the i ids θ ds ˆ r r P Current distribution db(into page) This is another version of the Biot-Savart Law: B seg = µ 0 I s ˆr 4π r 2 where B seg is the magnetic field from a small segment of wire, of length s.

9 mmation Magnetic fields from currents The magnetic field vector ecause of at any point is tangent to s a scalar, Magnetic field a circle. around a wire segment, viewed end-on: being the Wire with current into the page a current- (29-1) hat points constant, B B (29-2) the cross Fig The magnetic field lines produced by a current in a long straight wire

10 Magnetic fields from currents NETIC How FIELDS to determine DUE TO the CURRENTS direction of the field lines (right-hand rule): s the dia curig. 29-2, ld B : at erpend din of the ) If the o the ed rahe page, (a) B i (b) Here is a simple right-hand rule for finding the direction of the mag set up by a current-length element, such as a section of a long wire: B i The thumb is current's dire The fingers re the field vecto direction, whi tangent to a c Right-hand rule: Grasp the element in your right hand with your extended th

11 Magnetic field from a long straight wire The Biot-Savart Law, B seg = µ 0 I s ˆr 4π r 2 implies what the magnetic field is at a perpendicular distance R from an infinitely long straight wire: B = µ 0I 2πR (The proof requires some calculus.)

12 Force between 2 wires With two current carrying wires, each creates its own magnetic field: B = µ 0I 2πR The result is that the wires interact, much like two bar magnets producing magnetic fields would.

13 Force between 2 wires Currents in opposite directions repel, currents in the same direction attract. 1 Figure from salisbury.edu.

14 Force between 2 wires It is a bit more intuitive to think about the force per unit length on the wires (since longer wires will experience larger forces). The force per unit length on a wire due to another parallel wire at a distance d: F B l = µ 0I 1 I 2 2πd

15 Force between 2 wires It is a bit more intuitive to think about the force per unit length on the wires (since longer wires will experience larger forces). The force per unit length on a wire due to another parallel wire at a distance d: F B l = µ 0I 1 I 2 2πd Where does this come from? The force on a current carrying wire is: F = IL B

16 Force between 2 wires Suppose that wire a produces a field: B a = µ 0I a 770 CHAPTER 29 MAGNETIC 2πd FIELDS DUE TO CURRENTS The force on wire b is: The field due to a at the position of b creates a force on b. i a i b F ba Fig Two parallel wires carrying currents in the same direction attract each other. B : a is the magnetic field at wire b produced by the current in wire a. F : ba is the resulting force acting on wire b because it carries current in B : a. a L L d b B a (due to i a ) F = I b L µ 0I a 2πd sin(90 ) F B L = µ 0I a I b 2πd 29-3 Force Between Tw Two long parallel wires carrying shows two such wires, separated Let us analyze the forces on thes We seek first the force on w current produces a magnetic fie causes the force we seek. To fi direction of the field B : a at the sit wire b is, from Eq. 29-4, The curled straight right-hand down, as Fig shows. Now that we have the field Equation tells us that the nal magnetic field is L : B : a where is the length vector of t dicular to each other, and so with

17 Force between 2 wires 1 Figure from Stonebrook Physics ic.sunysb.edu.

18 10 6 g,and then launches it with a speed of 10km/s,all within 1ms.S rail Question guns may be used to launch materials into space from mining opera e Moon or an asteroid. The figure here shows three long, straight, parallel, equally spaced HECKPOINT 1 wires with identical currents either into or out of the page. Rank e figure thehere wires shows according three to long, thestraight, magnitude parallel, of theequally force on spaced each wires due towith iden rrents the either currents into or in out the of other the two page.rank wires, greatest the wires first. according to the magnitud e force on each due to the currents in the other two wires, greatest first. a b c A a, b, c 4 Ampere s Law B b, c, a an find C c, the b, net a electric field due to any distribution of charges by first w ifferential electric field de : due to a charge element and then summin ributions of de : from all the elements. However, if the distribution is co d, we may have to use a computer. Recall, however, that if the distrib 1 Halliday, Resnick, Walker, pg 771.

19 10 6 g,and then launches it with a speed of 10km/s,all within 1ms.S rail Question guns may be used to launch materials into space from mining opera e Moon or an asteroid. The figure here shows three long, straight, parallel, equally spaced HECKPOINT 1 wires with identical currents either into or out of the page. Rank e figure thehere wires shows according three to long, thestraight, magnitude parallel, of theequally force on spaced each wires due towith iden rrents the either currents into or in out the of other the two page.rank wires, greatest the wires first. according to the magnitud e force on each due to the currents in the other two wires, greatest first. a b c A a, b, c 4 Ampere s Law B b, c, a an find C c, the b, net a electric field due to any distribution of charges by first w ifferential electric field de : due to a charge element and then summin ributions of de : from all the elements. However, if the distribution is co d, we may have to use a computer. Recall, however, that if the distrib 1 Halliday, Resnick, Walker, pg 771.

20 Magnetic Permeability A constant we will need is: µ 0 = 4π 10 7 Tm/A µ 0 is called the magnetic permeability of free space. It arises when we look at magnetic fields because of our choice of SI units. Whenever we use µ 0 we assume we are considering the magnetic field to be in a vacuum or air. µ 0 is not the magnetic dipole moment µ! Another notation coincidence.

21 Definition of the Ampère (Amp) This relation: F B L = µ 0I 1 I 2 2πd gives us the formal definition of the Ampère. Ampère Unit Two long parallel wires separated by 1 m are said to each carry 1 A of current when the force per unit length on each wire is N/m.

22 Gauss s Law for Magnetic Fields There is more we can say about magnetic fields. When studying electric fields we used Gauss s law to understand the how the electric field looked around a point charge. There is also Gauss s law for magnetic fields, but it tells us something different about magnetic fields. Reminder about Gauss s law for electric fields...

23 ics in attaining this ctric Gauss s field E : of Law the for Electric Fields basic idea, we considered the Then we simplified dicular Gauss s components law relates the electric field across a closed surface (eg. a sphere) to the amount of net charge enclosed by the surface. save far more work matician and physing the fields de : of siders a hypothetical is Gaussian surface, s our calculations of distribution. For exse the sphere with a en, as we discuss in t that? Spherical Gaussian surface ian surface to the E field on a Gaussian s a limited example, lly outward from the ediately tells us that Fig A spherical Gaussian surface. If the electric field vectors are of uniform magnitude and point radially outward at all surface points,

24 Flux 726 Chapter 24 Gauss s Law A The number of field lines that go through the area A is the same as the number that go through area A. w u A w, Normal u S E From th coulomb lines pe If the through the norm that the cross th lar to th A 5,w. by w 5 areas ar

25 Reminder: Gauss s Law for Electric Fields Gauss s Law for Electric fields: Φ E = E da = q enc ɛ 0 The electric flux through a closed surface is equal to the charge enclosed by the surface, divided by ɛ 0. There is a similar expression for magnetic flux! First we must define magnetic flux, Φ B.

26 Magnetic(30.18) Flux Definition of magnetic flux field B S that makes an case is (30.19), then u and the he plane as in Figure aximum value). weber (Wb); 1 Wb 5 Magnetic flux plane is a agnetic to the plane. B S u S d A Figure The magnetic flux through an area element da is S B? d S A 5 B da cos u, where d S A is a vector perpendicular to the surface. The magnetic flux of a magnetic field through a surface A is Φ B = B A da S Units: Tm 2 If the surface is a flat plane and B is uniform, that just reduces to: Φ B = B A

27 Gauss s Law for Magnetic Fields Gauss s Law for magnetic fields.: B da = 0 Where the integral is taken over a closed surface A. (This is like a sum over the flux through many small areas.) We can interpret it as an assertion that magnetic monopoles do not exist. The magnetic field has no sources or sinks.

28 Gauss s Law for Magnetic Fields 32-3 INDUCED MAGNETIC FIELDS B da = PART 3 re complicated than does not enclose the Fig encloses no x through it is zero. nly the north pole of l S. However, a south ce because magnetic like one piece of the encloses a magnetic Surface II N B Surface I S tom faces and curved B of the uniform and and B are arbitrary of the magnetic flux

29 B-Field around a wire revisited Gauss s law will not help us find the strength of the B-field around a wire, or wires carrying current: the flux through any closed surface will be zero. Another law can: Ampère s Law.

30 Summary field from a moving charge field from a current force between two parallel wires Guass s law Homework Halliday, Resnick, Walker: PREVIOUS: Ch 28, Problems: 54, 55, 57, 61, 65 NEW: Ch 29, onward from page 783. Questions: 3; Problems: 1, 11, 21, 23

Electricity and Magnetism Force on Parallel Wires

Electricity and Magnetism Force on Parallel Wires Electricity and Magnetism Force on Parallel Wires Lana Sheridan De Anza College Mar 2, 2018 Last time Gauss s Law for magnetic fields Ampère s Law magnetic field around a straight wire solenoids Overview

More information

Electricity and Magnetism B-Fields from Moving Charges

Electricity and Magnetism B-Fields from Moving Charges Electricity and Magnetism B-Fields from Moving Charges Lana Sheridan De Anza College Feb 28, 2018 Last time force on a curved current carrying wire torque on a wire loop magnetic dipole moment Overview

More information

Electricity and Magnetism Electric Flux Gauss s Law

Electricity and Magnetism Electric Flux Gauss s Law Electricity and Magnetism Electric Flux Gauss s Law Lana heridan De Anza College Jan 18, 2018 Last time conductors in electric fields electric flux Overview electric flux Gauss s law Gauss s law applied

More information

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University

PHYS152 Lecture 8. Eunil Won Korea University. Ch 30 Magnetic Fields Due to Currents. Fundamentals of Physics by Eunil Won, Korea University PHYS152 Lecture 8 Ch 3 Magnetic Fields Due to Currents Eunil Won Korea University Calculating the Magnetic Field Due to a Current Recall that we had the formula for the electrostatic force: d E = 1 ɛ dq

More information

Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II

Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II Physics 212 Jonathan Dowling Lecture 27: MON 26 OCT Magnetic Fields Due to Currents II Jean-Baptiste Biot (1774-1862) Felix Savart (1791 1841) Electric Current: A Source of Magnetic Field Observation:

More information

Magnetic Fields due to Currents

Magnetic Fields due to Currents Observation: a current of moving charged particles produces a magnetic field around the current. Chapter 29 Magnetic Fields due to Currents Magnetic field due to a current in a long straight wire a current

More information

Magnetism. February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1

Magnetism. February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Magnetism February 27, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Force on a Current Carrying Wire! The magnitude of the magnetic force on a wire of length L carrying a current i is F = il

More information

Agenda for Today. Elements of Physics II. Forces on currents

Agenda for Today. Elements of Physics II. Forces on currents Forces on currents Physics 132: Lecture e 19 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create B-fields Adding magnetic fields

More information

Electricity and Magnetism. Motional EMF Faraday s Law

Electricity and Magnetism. Motional EMF Faraday s Law Electricity and Magnetism Ampère s Law Motional EMF Faraday s Law Lana heridan De Anza College Nov 19, 2015 Last time magnetic fields from moving charges magnetic fields around current-carrying wires forces

More information

Chapter 30. Sources of the Magnetic Field Amperes and Biot-Savart Laws

Chapter 30. Sources of the Magnetic Field Amperes and Biot-Savart Laws Chapter 30 Sources of the Magnetic Field Amperes and Biot-Savart Laws F B on a Charge Moving in a Magnetic Field Magnitude proportional to charge and speed of the particle Direction depends on the velocity

More information

Electricity and Magnetism Motion of a Charge in an E-field

Electricity and Magnetism Motion of a Charge in an E-field Electricity and Magnetism Motion of a Charge in an E-field Lana Sheridan De Anza College Oct 1, 2015 Last time E-field from many charges electric fields of charge distribution Overview motion of charges

More information

Ch 30 - Sources of Magnetic Field

Ch 30 - Sources of Magnetic Field Ch 30 - Sources of Magnetic Field Currents produce Magnetism? 1820, Hans Christian Oersted: moving charges produce a magnetic field. The direction of the field is determined using a RHR. Oersted (1820)

More information

Handout 8: Sources of magnetic field. Magnetic field of moving charge

Handout 8: Sources of magnetic field. Magnetic field of moving charge 1 Handout 8: Sources of magnetic field Magnetic field of moving charge Moving charge creates magnetic field around it. In Fig. 1, charge q is moving at constant velocity v. The magnetic field at point

More information

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go..

10/24/2012 PHY 102. (FAWOLE O.G.) Good day. Here we go.. Good day. Here we go.. 1 PHY102- GENERAL PHYSICS II Text Book: Fundamentals of Physics Authors: Halliday, Resnick & Walker Edition: 8 th Extended Lecture Schedule TOPICS: Dates Ch. 28 Magnetic Fields 12

More information

Chapter 30 Sources of the magnetic field

Chapter 30 Sources of the magnetic field Chapter 30 Sources of the magnetic field Force Equation Point Object Force Point Object Field Differential Field Is db radial? Does db have 1/r2 dependence? Biot-Savart Law Set-Up The magnetic field is

More information

Physics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8)

Physics 202, Lecture 13. Today s Topics. Magnetic Forces: Hall Effect (Ch. 27.8) Physics 202, Lecture 13 Today s Topics Magnetic Forces: Hall Effect (Ch. 27.8) Sources of the Magnetic Field (Ch. 28) B field of infinite wire Force between parallel wires Biot-Savart Law Examples: ring,

More information

Physics / Higher Physics 1A. Electricity and Magnetism Revision

Physics / Higher Physics 1A. Electricity and Magnetism Revision Physics / Higher Physics 1A Electricity and Magnetism Revision Electric Charges Two kinds of electric charges Called positive and negative Like charges repel Unlike charges attract Coulomb s Law In vector

More information

Elements of Physics II. Agenda for Today. Physics 201: Lecture 1, Pg 1

Elements of Physics II. Agenda for Today. Physics 201: Lecture 1, Pg 1 Forces on currents Physics 132: Lecture e 19 Elements of Physics II Agenda for Today Currents are moving charges Torque on current loop Torque on rotated loop Currents create B-fields Adding magnetic fields

More information

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT.

CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name: Electromagnetic

More information

Electromagnetics in Medical Physics

Electromagnetics in Medical Physics Electromagnetics in Medical Physics Part 4. Biomagnetism Tong In Oh Department of Biomedical Engineering Impedance Imaging Research Center (IIRC) Kyung Hee University Korea tioh@khu.ac.kr Dot Product (Scalar

More information

Magnetostatics III. P.Ravindran, PHY041: Electricity & Magnetism 1 January 2013: Magntostatics

Magnetostatics III. P.Ravindran, PHY041: Electricity & Magnetism 1 January 2013: Magntostatics Magnetostatics III Magnetization All magnetic phenomena are due to motion of the electric charges present in that material. A piece of magnetic material on an atomic scale have tiny currents due to electrons

More information

Magnetic Force Acting on a Current- Carrying Conductor IL B

Magnetic Force Acting on a Current- Carrying Conductor IL B Magnetic Force Acting on a Current- Carrying Conductor A segment of a current-carrying wire in a magnetic field. The magnetic force exerted on each charge making up the current is qvd and the net force

More information

Magnetic Fields Part 2: Sources of Magnetic Fields

Magnetic Fields Part 2: Sources of Magnetic Fields Magnetic Fields Part 2: Sources of Magnetic Fields Last modified: 08/01/2018 Contents Links What Causes a Magnetic Field? Moving Charges Right Hand Grip Rule Permanent Magnets Biot-Savart Law Magnetic

More information

Announcements This week:

Announcements This week: Announcements This week: Homework due Thursday March 22: Chapter 26 sections 3-5 + Chapter 27 Recitation on Friday March 23: Chapter 27. Quiz on Friday March 23: Homework, Lectures 12, 13 and 14 Properties

More information

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16 1 PHYS 104 2 ND semester 1439-1440 Dr. Nadyah Alanazi Lecture 16 2 Chapter 29 Magnetic Field 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a

More information

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is

Currents (1) Line charge λ (C/m) with velocity v : in time t, This constitutes a current I = λv (vector). Magnetic force on a segment of length dl is Magnetostatics 1. Currents 2. Relativistic origin of magnetic field 3. Biot-Savart law 4. Magnetic force between currents 5. Applications of Biot-Savart law 6. Ampere s law in differential form 7. Magnetic

More information

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics Magnetostatics Magnetic Fields We saw last lecture that some substances, particularly iron, possess a property we call magnetism that exerts forces on other magnetic materials We also saw that t single

More information

Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1

Ampere s Law. Outline. Objectives. BEE-Lecture Notes Anurag Srivastava 1 Outline Introduce as an analogy to Gauss Law. Define. Applications of. Objectives Recognise to be analogous to Gauss Law. Recognise similar concepts: (1) draw an imaginary shape enclosing the current carrying

More information

Chapter 21. Magnetism

Chapter 21. Magnetism Chapter 21 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

More information

1-1 Magnetism. q ν B.(1) = q ( ) (2)

1-1 Magnetism. q ν B.(1) = q ( ) (2) 1-1 Magnetism Magnets exert forces on each other just like charges. You can draw magnetic field lines just like you drew electric field lines. Magnetic north and south pole s behavior is not unlike electric

More information

Vector field and Inductance. P.Ravindran, PHY041: Electricity & Magnetism 19 February 2013: Vector Field, Inductance.

Vector field and Inductance. P.Ravindran, PHY041: Electricity & Magnetism 19 February 2013: Vector Field, Inductance. Vector field and Inductance Earth s Magnetic Field Earth s field looks similar to what we d expect if 11.5 there were a giant bar magnet imbedded inside it, but the dipole axis of this magnet is offset

More information

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Magnetism Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units.

INTRODUCTION MAGNETIC FIELD OF A MOVING POINT CHARGE. Introduction. Magnetic field due to a moving point charge. Units. Chapter 9 THE MAGNETC FELD ntroduction Magnetic field due to a moving point charge Units Biot-Savart Law Gauss s Law for magnetism Ampère s Law Maxwell s equations for statics Summary NTRODUCTON Last lecture

More information

Introduction to Electromagnetic Theory

Introduction to Electromagnetic Theory Introduction to Electromagnetic Theory Lecture topics Laws of magnetism and electricity Meaning of Maxwell s equations Solution of Maxwell s equations Electromagnetic radiation: wave model James Clerk

More information

The Basic Definition of Flux

The Basic Definition of Flux The Basic Definition of Flux Imagine holding a rectangular wire loop of area A in front of a fan. The volume of air flowing through the loop each second depends on the angle between the loop and the direction

More information

Chapter 27 Sources of Magnetic Field

Chapter 27 Sources of Magnetic Field Chapter 27 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Chapter 24: Magnetic Fields & Forces

Chapter 24: Magnetic Fields & Forces Chapter 24: Magnetic Fields & Forces We live in a magnetic field. The earth behaves almost as if a bar magnet were located near its center. The earth s axis of rotation and Magnetic axis are not the same

More information

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule.

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. iclicker Quiz (1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. a) True b) False Hint: pay attention to how

More information

Chapter 29: Magnetic Fields Due to Currents. PHY2049: Chapter 29 1

Chapter 29: Magnetic Fields Due to Currents. PHY2049: Chapter 29 1 Chapter 29: Magnetic Fields Due to Currents PHY2049: Chapter 29 1 Law of Magnetism Unlike the law of static electricity, comes in two pieces Piece 1: Effect of B field on moving charge r r F = qv B (Chapt.

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism The figure shows the path of a negatively charged particle in a region of a uniform magnetic field. Answer the following questions about this situation (in each case, we revert back

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents). Ampere s Law

More information

Elements of Physics II. Agenda for Today

Elements of Physics II. Agenda for Today Physics 132: Lecture e 18 Elements of Physics II Agenda for Today Magnets and the Magnetic Field Magnetic fields caused by charged particles B-field from a current-carrying wire Magnetic fields and forces

More information

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface.

Electric Flux. If we know the electric field on a Gaussian surface, we can find the net charge enclosed by the surface. Chapter 23 Gauss' Law Instead of considering the electric fields of charge elements in a given charge distribution, Gauss' law considers a hypothetical closed surface enclosing the charge distribution.

More information

General Physics II. Magnetism

General Physics II. Magnetism General Physics II Magnetism Bar magnet... two poles: N and S Like poles repel; Unlike poles attract. Bar Magnet Magnetic Field lines [B]: (defined in a similar way as electric field lines, direction and

More information

Chapter 29. Magnetic Fields due to Currentss

Chapter 29. Magnetic Fields due to Currentss Chapter 29 Magnetic Fields due to Currentss Refresher: The Magnetic Field Permanent bar magnets have opposite poles on each end, called north and south. Like poles repel; opposites attract. If a magnet

More information

Every magnet has a north pole and south pole.

Every magnet has a north pole and south pole. Magnets - Intro The lodestone is a naturally occurring mineral called magnetite. It was found to attract certain pieces of metal. o one knew why. ome early Greek philosophers thought the lodestone had

More information

Key Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect

Key Contents. Magnetic fields and the Lorentz force. Magnetic force on current. Ampere s law. The Hall effect Magnetic Fields Key Contents Magnetic fields and the Lorentz force The Hall effect Magnetic force on current The magnetic dipole moment Biot-Savart law Ampere s law The magnetic dipole field What is a

More information

Physics H. Instructor: Dr. Alaa Mahmoud

Physics H. Instructor: Dr. Alaa Mahmoud Physics 202 1436-1437 H Instructor: Dr. Alaa Mahmoud E-mail: alaa_y_emam@hotmail.com Chapter 28 magnetic Field Magnetic fingerprinting allows fingerprints to be seen on surfaces that otherwise would not

More information

CHAPTER 20 Magnetism

CHAPTER 20 Magnetism CHAPTER 20 Magnetism Units Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on Electric Charge Moving in a Magnetic

More information

Chapter 30. Sources of the Magnetic Field

Chapter 30. Sources of the Magnetic Field Chapter 30 Sources of the Magnetic Field CHAPTER OUTLNE 30.1 The Biot Savart Law 30.2 The Magnetic Force Between Two Parallel Conductors 30.3 Ampère s Law 30.4 The Magnetic Field of a Solenoid 30.5 Magnetic

More information

Last time. Gauss' Law: Examples (Ampere's Law)

Last time. Gauss' Law: Examples (Ampere's Law) Last time Gauss' Law: Examples (Ampere's Law) 1 Ampere s Law in Magnetostatics iot-savart s Law can be used to derive another relation: Ampere s Law The path integral of the dot product of magnetic field

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A

n Higher Physics 1B (Special) (PHYS1241) (6UOC) n Advanced Science n Double Degree (Science/Engineering) n Credit or higher in Physics 1A Physics in Session 2: I n Physics / Higher Physics 1B (PHYS1221/1231) n Science, dvanced Science n Engineering: Electrical, Photovoltaic,Telecom n Double Degree: Science/Engineering n 6 UOC n Waves n Physical

More information

Kirchhoff s rules, example

Kirchhoff s rules, example Kirchhoff s rules, example Magnets and Magnetism Poles of a magnet are the ends where objects are most strongly attracted. Two poles, called north and south Like poles repel each other and unlike poles

More information

1. ELECTRIC CHARGES AND FIELDS

1. ELECTRIC CHARGES AND FIELDS 1. ELECTRIC CHARGES AND FIELDS 1. What are point charges? One mark questions with answers A: Charges whose sizes are very small compared to the distance between them are called point charges 2. The net

More information

Electricity and Magnetism Eddy Currents Faraday s Law and Electric Field

Electricity and Magnetism Eddy Currents Faraday s Law and Electric Field Electricity and Magnetism Eddy Currents Faraday s Law and Electric Field Lana heridan De Anza College Mar 8, 2018 Last time Lenz s law applying Faraday s law in problems technological applications Overview

More information

CH 19-1 Magnetic Field

CH 19-1 Magnetic Field CH 19-1 Magnetic Field Important Ideas A moving charged particle creates a magnetic field everywhere in space around it. If the particle has a velocity v, then the magnetic field at this instant is tangent

More information

Dr. Todd Satogata (ODU/Jefferson Lab) Wednesday, March

Dr. Todd Satogata (ODU/Jefferson Lab)   Wednesday, March Vector pointing OUT of page Vector pointing IN to page University Physics 227N/232N Ch: 26-27: Magnetism and Magnetic Induction Lab this Friday, Mar 21: Ohms Law and DC RC Circuits So NO QUIZ this Friday!

More information

3: Gauss s Law July 7, 2008

3: Gauss s Law July 7, 2008 3: Gauss s Law July 7, 2008 3.1 Electric Flux In order to understand electric flux, it is helpful to take field lines very seriously. Think of them almost as real things that stream out from positive charges

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents), Ampere s Law is introduced

More information

Magnetic Fields due to Currents

Magnetic Fields due to Currents s s Water, fire, air and dirt, [freaking] magnets, how do they work? - Insane Clown Posse David J. Starling Penn State Hazleton PHYS 212 Moving charges are affected by magnetic fields: F B = q v B But

More information

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge.

r r 1 r r 1 2 = q 1 p = qd and it points from the negative charge to the positive charge. MP204, Important Equations page 1 Below is a list of important equations that we meet in our study of Electromagnetism in the MP204 module. For your exam, you are expected to understand all of these, and

More information

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes B for a Long, Straight Conductor, Special Case If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes μ I B = o 2πa B for a Curved Wire Segment Find the field at point

More information

Electrics. Electromagnetism

Electrics. Electromagnetism Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an

More information

Lecture 28. PHYC 161 Fall 2016

Lecture 28. PHYC 161 Fall 2016 Lecture 28 PHYC 161 Fall 2016 CPS 27-1 At which point is the magnitude of the magnetic field the largest? A. B. C. D E. Yes, back to flux, which means back to surface integrals. Magnetic Flux We can define

More information

Biot-Savart. The equation is this:

Biot-Savart. The equation is this: Biot-Savart When a wire carries a current, this current produces a magnetic field in the vicinity of the wire. One way of determining the strength and direction of this field is with the Law of Biot-Savart.

More information

March 11. Physics 272. Spring Prof. Philip von Doetinchem

March 11. Physics 272. Spring Prof. Philip von Doetinchem Physics 272 March 11 Spring 2014 http://www.phys.hawaii.edu/~philipvd/pvd_14_spring_272_uhm.html Prof. Philip von Doetinchem philipvd@hawaii.edu Phys272 - Spring 14 - von Doetinchem - 32 Summary Magnetic

More information

Magnetism is associated with charges in motion (currents):

Magnetism is associated with charges in motion (currents): Electrics Electromagnetism Electromagnetism Magnetism is associated with charges in motion (currents): microscopic currents in the atoms of magnetic materials. macroscopic currents in the windings of an

More information

Calculus Relationships in AP Physics C: Electricity and Magnetism

Calculus Relationships in AP Physics C: Electricity and Magnetism C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

More information

Magnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law.

Magnetic Fields. or I in the filed. ! F = q! E. ! F = q! v! B. q! v. Charge q as source. Current I as source. Gauss s Law. Ampere s Law. Magnetic Fields Charge q as source Gauss s Law Electric field E F = q E Faraday s Law Ampere-Maxwell Law Current I as source Magnetic field B Ampere s Law F = q v B Force on q in the field Force on q v

More information

Chapter 5. Magnetostatics

Chapter 5. Magnetostatics Chapter 5. Magnetostatics 5.1 The Lorentz Force Law 5.1.1 Magnetic Fields Consider the forces between charges in motion Attraction of parallel currents and Repulsion of antiparallel ones: How do you explain

More information

A = Qinside. E d. Today: fundamentals of how currents generate magnetic fields 10/7/15 2 LECTURE 14. Our Study of Magnetism

A = Qinside. E d. Today: fundamentals of how currents generate magnetic fields 10/7/15 2 LECTURE 14. Our Study of Magnetism LECTUE 4 Fundamental Laws for Calculating B-field Biot-Savart Law ( brute force Ampere s Law ( high symmetry Example: B-field of an nfinite Straight Wire from Biot-Savart Law from Ampere s Law Other examples

More information

AAST/AEDT. As you can see there is an analogy between electric and magnetic fields

AAST/AEDT. As you can see there is an analogy between electric and magnetic fields AAST/AEDT 1 AP PHYSICS-C: MAGNETIC FIELD Let us run an experiment. We place two parallel wires close to each other. If we turn the current on, the wires start to interact. If currents are opposite by their

More information

AP Physics C Electricity and Magnetism

AP Physics C Electricity and Magnetism AP Physics C Electricity and Magnetism Course overview This is a calculus based course in physics. The course is the equivalent of an introductory engineering course in Physics. The main objective of the

More information

Force between parallel currents Example calculations of B from the Biot- Savart field law Ampère s Law Example calculations

Force between parallel currents Example calculations of B from the Biot- Savart field law Ampère s Law Example calculations Today in Physics 1: finding B Force between parallel currents Example calculations of B from the Biot- Savart field law Ampère s Law Example calculations of B from Ampère s law Uniform currents in conductors?

More information

Ch. 28: Sources of Magnetic Fields

Ch. 28: Sources of Magnetic Fields Ch. 28: Sources of Magnetic Fields Electric Currents Create Magnetic Fields A long, straight wire A current loop A solenoid Slide 24-14 Biot-Savart Law Current produces a magnetic field The Biot-Savart

More information

( )( )( ) Model: The magnetic field is that of a moving charged particle. Visualize: 10 T m/a C m/s sin T. 1.

( )( )( ) Model: The magnetic field is that of a moving charged particle. Visualize: 10 T m/a C m/s sin T. 1. 33.3. Model: The magnetic field is that of a moving charged particle. Visualize: The first point is on the x-axis, with θ a = 90. The second point is on the y-axis, with θ b = 180, and the third point

More information

18. Ampere s law and Gauss s law (for B) Announcements: This Friday, Quiz 1 in-class and during class (training exam)

18. Ampere s law and Gauss s law (for B) Announcements: This Friday, Quiz 1 in-class and during class (training exam) 18. Ampere s law and Gauss s law (for B) Announcements: This Friday, Quiz 1 in-class and during class (training exam) Where does a B-field come from? Facts: Electrical current produces a magnetic field

More information

Physics 2212 G Quiz #4 Solutions Spring 2018 = E

Physics 2212 G Quiz #4 Solutions Spring 2018 = E Physics 2212 G Quiz #4 Solutions Spring 2018 I. (16 points) The circuit shown has an emf E, three resistors with resistance, and one resistor with resistance 3. What is the current through the resistor

More information

LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS. Instructor: Kazumi Tolich

LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS. Instructor: Kazumi Tolich LECTURE 22 MAGNETIC TORQUE & MAGNETIC FIELDS Instructor: Kazumi Tolich Lecture 22 2! Reading chapter 22.5 to 22.7! Magnetic torque on current loops! Magnetic field due to current! Ampere s law! Current

More information

Physics 2212 GH Quiz #4 Solutions Spring 2016

Physics 2212 GH Quiz #4 Solutions Spring 2016 Physics 2212 GH Quiz #4 Solutions Spring 2016 I. (18 points) A bar (mass m, length L) is connected to two frictionless vertical conducting rails with loops of wire, in the presence of a uniform magnetic

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Spring 2013 Exam 3 Equation Sheet. closed fixed path. ! = I ind. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.0 Spring 013 Exam 3 Equation Sheet Force Law: F q = q( E ext + v q B ext ) Force on Current Carrying Wire: F = Id s " B # wire ext Magnetic

More information

Gauss s law for electric fields

Gauss s law for electric fields 1 Gauss s law for electric fields In Maxwell s Equations, you ll encounter two kinds of electric field: the electrostatic field produced by electric charge and the induced electric field produced by a

More information

Electricity and Magnetism Implications of Gauss s Law Electric Potential Energy

Electricity and Magnetism Implications of Gauss s Law Electric Potential Energy Electricity and Magnetism Implications of Gauss s Law Electric Potential Energy Lana Sheridan De Anza College Jan 22, 2018 Last time using Gauss s law Overview implications of Gauss law electric potential

More information

CHAPTER 7 FORCE ON A CURRENT IN A MAGNETIC FIELD

CHAPTER 7 FORCE ON A CURRENT IN A MAGNETIC FIELD 1 CHAPTER 7 FORCE ON A CURRENT IN A MAGNETIC FIELD 7.1 Introduction In Chapter 6 we showed that when an electric current is situated in an external magnetic field it experiences a force at right angles

More information

Electricity and Magnetism Coulomb s Law

Electricity and Magnetism Coulomb s Law Electricity and Magnetism Coulomb s Law Lana Sheridan De Anza College Jan 10, 2018 Last time introduced charge conductors insulators induced charge Warm Up. Do both balloons A and B have a charge? ntry

More information

May 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH.

May 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it NORTH. This end points to the South; call it SOUTH. Unit 9 Magnetism This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH." 1 The behavior of magnetic poles is similar to that of like and unlike electric charges. Law

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields A Brief History of Magnetism 13 th century BC Chinese used a compass Uses a magnetic needle Probably an invention of Arabic or Indian origin 800 BC Greeks Discovered magnetite

More information

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields Physics Week 5(Sem. 2) Name Chapter Summary Magnetism Magnetic Fields Permanent magnets have long been used in navigational compasses. The needle in a compass is supported to allow it to freely rotate

More information

Lecture 16.1 :! Final Exam Review, Part 2

Lecture 16.1 :! Final Exam Review, Part 2 Lecture 16.1 :! Final Exam Review, Part 2 April 28, 2015 1 Announcements Online Evaluation e-mails should have been sent to you.! Please fill out the evaluation form. May 6 is deadline.! Remember that

More information

(a) What is the direction of the magnetic field at point P (i.e., into or out of the page), and why?

(a) What is the direction of the magnetic field at point P (i.e., into or out of the page), and why? Physics 9 Fall 2010 Midterm 2 s For the midterm, you may use one sheet of notes with whatever you want to put on it, front and back Please sit every other seat, and please don t cheat! If something isn

More information

Gauss s Law. Phys102 Lecture 4. Key Points. Electric Flux Gauss s Law Applications of Gauss s Law. References. SFU Ed: 22-1,2,3. 6 th Ed: 16-10,+.

Gauss s Law. Phys102 Lecture 4. Key Points. Electric Flux Gauss s Law Applications of Gauss s Law. References. SFU Ed: 22-1,2,3. 6 th Ed: 16-10,+. Phys102 Lecture 4 Phys102 Lecture 4-1 Gauss s Law Key Points Electric Flux Gauss s Law Applications of Gauss s Law References SFU Ed: 22-1,2,3. 6 th Ed: 16-10,+. Electric Flux Electric flux: The direction

More information

1 Basic electromagnetism

1 Basic electromagnetism 1 Basic electromagnetism 1.1 Introduction Two thousand years ago, the Chinese invented the compass, a special metallic needle with one end always pointing to the North Pole. That was the first recorded

More information

Magnetic Forces and Fields (Chapters 29-30)

Magnetic Forces and Fields (Chapters 29-30) Magnetic Forces and Fields (Chapters 29-30) Magnetism Magnetic Materials and Sources Magnetic Field, Magnetic Force Force on Moving Electric Charges Lorentz Force Force on Current Carrying Wires Applications

More information

Physics 1B Part II: Magnetism

Physics 1B Part II: Magnetism Physics 1 Part : Magnetism colors reversed (color code varies) 6/5/2012 1 We start with the macroscopic What did historical people observe? How do magnets behave? s electricity related to magnetism? f

More information

DIVERGENCE AND CURL THEOREMS

DIVERGENCE AND CURL THEOREMS This document is stored in Documents/4C/Gausstokes.tex. with LaTex. Compile it November 29, 2014 Hans P. Paar DIVERGENCE AND CURL THEOREM 1 Introduction We discuss the theorems of Gauss and tokes also

More information

Cyclotron, final. The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path

Cyclotron, final. The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path Cyclotron, final The cyclotron s operation is based on the fact that T is independent of the speed of the particles and of the radius of their path K 1 qbr 2 2m 2 = mv = 2 2 2 When the energy of the ions

More information

DAY 12. Summary of Topics Covered in Today s Lecture. Magnetic Fields Exert Torques on a Loop of Current

DAY 12. Summary of Topics Covered in Today s Lecture. Magnetic Fields Exert Torques on a Loop of Current DAY 12 Summary of Topics Covered in Today s Lecture Magnetic Fields Exert Torques on a Loop of Current Imagine a wire bent into the shape of a rectangle with height h and width w. The wire carries a current

More information

Chapter 20 Lecture Notes

Chapter 20 Lecture Notes Chapter 20 Lecture Notes Physics 2424 - Strauss Formulas: B = µ 0 I/2πr B = Nµ 0 I/(2R) B = µ 0 ni Σ B l = µ 0 I F = Bqv sinθ r = mv/bq m = (er 2 /2V) B 2 F = ILB sinθ τ = NIAB sinϕ F/L = I 2 I 1 µ 0 /2πd

More information

Magnetic Fields and Forces

Magnetic Fields and Forces Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 20 Magnetic Fields and Forces Marilyn Akins, PhD Broome Community College Magnetism Magnetic fields are produced by moving electric charges

More information