Fluorescence Spectroscopy

Size: px
Start display at page:

Download "Fluorescence Spectroscopy"

Transcription

1 Fluorescence Spectroscopy Steady State and Time Dependent Fluorescence Measurements Kai Wen Teng PHYS 403 Summer 2014

2 EM Spectrum of molecules Rotational Energy Infrared Vibrational Energy Near Infrared Electronic Energy Visible and Ultra-Violet r v Diagram from Diagram by Robert Clegg in Photosynth Res Aug- Sep;101(2-3):

3 Types of Fluorescent Molecules Synthetic Organic: Fluorescein Semiconductor Nanocrystal: Crystals: Naturally Occuring: Ruby and assorted mineral From mineralman.net Fluorescent Nanodiamonds Fluorescent Proteins: Green Fluorescent Protein Image from Zrazhevskiy et al Nano Lett., 2010, 10 (9), pp DOI: /nl

4 Perrin-Jablonski energy diagram (S0, S1 and S2 transitions) Alexander Jablonski Diagram by Ulai Noomnarm in Photosynth Res Aug-Sep;101(2-3):

5 O.D O.D Absorption (S 0 -S 1 ) l Beer-Lambert s Law log(i 0 ) log(i) cl? Extinction coefficient: Concentration Caffeine

6 Steady State Measurements: Absorbance One of the very first commercially available instrument that measures absorbance was the Beckman DU Machine nowadays that utilizes diffraction grating and diode array detector can acquire an absorbance spectra in less than 10 seconds.

7 Organic dye: Fluorescence (S 1 -S 0 ) Solvent Effect: Ruby:

8 Time-Dependent Fluorescence: Fluorescence Lifetime Fluorescence Lifetime: The average amount of time a molecule stays in excited state Probability of being in the excited state kf = rate constant for leaving excited state while emitting a photon ki = rate constant for leaving excited state through other means (ie. Dynamic quenching, Energy Transfer, etc) Excited State kf ki ki Diagram by Robert Clegg in Photosynth Res Aug-Sep;101(2-3): Fluorescence Lifetime: i 1 ki Lifetime is sensitive to other decaying pathway present!

9 The Bolognian Stone MarcAntonioCellio (1680) representing the light emission of heated barite

10 First mention of lifetimes? The Bologna stone, when placed in the sun attracts the rays, and retains them so long as to give light a considerable time after it is removed into the dark. Goethe The Sorrows of Werter

11 Lastusaari et al. 2011

12 Dr. Brand in attempted to distil human urine and in this way discovered phosphorus. Phosphorus (Greek phosphoros was the ancient name for the planet Venus) was discovered by German alchemist Hennig Brand in 1669 through a preparation from urine. Working in Hamburg, Brand attempted to distill salts by evaporating urine, and in the process produced a white material that glowed in the dark and burned brilliantly. Misnomer: Phosphorescence of phosphorous is due to slow oxidation Painting by Joseph Wright of Derby (18thcentury) representing the discovery of the phosphorescence of the phosphorus extracted from urine by Hennig Brand in 1669

13 Measuring the Depletion of the excited state * * kf kt t # x # xo e # F * x k Intensity that you = measure [x] * KF is rate constant of fluorescence Intensity measured is proportional to the # of molecules in the excited state!

14 Measuring Lifetime: Time Domain nsec What do you need? -Collect signal fast enough -Fitting

15 Measuring Lifetime: Frequency Domain E(t) = E o + Eωcos ωet + φe F(t) = F + F cos ω t + φ - φ o ω E E tan ω E F F 1 ω o M = = Eω Eo 1+ ωτ Mod 2 What do you need? -Intensity modulators -Synchronization

16 Samples Described by Multiple Lifetimes I(t) = i a e i -t τ i Some Examples: -ECFP (Enhanced Cyan Fluorescent Protein (FP)), FPs -Ruby Rhodamine Mixture -Crystals a τ F(t) = E a τ + E cos(ω t - (φ - φ )) i i o i i ω 2 E i E i i 1+ (ωeτ i ) You still can only measure one M,φ E α F(t) = 1+ ω i cos(ω 2 E t - (φ i - φ E )) Fo Eo i 1+ (ωeτ i ) F(t) = 1+ F o E E ω o Mcos(ω t - (φ - φ)) E i

17 Mixing is used in commercial instruments [G(t)*F(t)]= DC+ Terms with frequencies GE 2 ω ω + M (ω E,ω G,ω E +ω G cos((ωg - ω E )t + φg - φ E + φ) ) Images from Molecular Fluorescence by Bernard Valeur

18 AOMs Intensity Modulator Annals of the New York Academy of Sciences Vol. 158 pp , modulation frequency limited by resonance frequency of the acoustooptic cell -variations in the intensity modulation caused by temperature

19 Pockels Cell Biophysical Journal Vol. 44 (1983) pp Hecht Optics

20 Directly Modulated Diode System in ESB Laser Diodes -> (405nm,436nm,473nm,635nm,690nm,780nm,830nm) LEDs -> (280nm,300nm,335nm,345nm,460nm,500nm,520nm)

21 ISS SLM Phoenix Upgrade Original System New Upgrades PMT Housing New Acquisition Box Stepper Motor Controller -photon counting -Measures nanosecond lifetime

22 Champaign, Illinois Domain of FD FLIM Robert Clegg UIUC Full-Field FLIM Enrico Gratton UIUC Scanning Confocal FLIM (FLIMBox) Beniamino Barbieri ISS Inc. Commercialization of FD FLIM

23 Msin(φ) The Polar Plot Msin(φ) φ Mcos(φ) Mcos(φ) Vectors on the Polar Plot R = Mcos(φ)x ˆ+ Msin(φ)y ˆ R=αiR i + α jrj R= α M cos(φ )+ α M cos(φ ) xˆ i i i j j j + α M sin(φ )+ α M sin(φ ) yˆ i i i j j j -movement of the vector depends on the emitted intensity of each species (i)

24 Msin(Ф) Emission Spectral Analysis on the SLM Msin(Ф) Fluorescein 4.3ns Measured Data (60MHz) RhodB 1.7ns Simulated Data (60MHz) Fluorescein 4.3ns RhodB 1.7ns Mcos(Ф) Mcos(Ф) Measured Spectrum Wavelength (nm)

25 Intensity Intensity Intensity Quantum Yield/FRET D FRET R A D A Wavelength Donor Exc. Donor Em. Acceptor Exc. Acceptor Em. D A Wavelength Wavelength Quantum Yield of Energy = Transfer (E) Rate of Energy Transfer Total deexcitation rate 1 1 DA D = 1 = 1 D Theoretically: DA D

26 Applications of Fluorescence in Biology

27 Msinφ Msinφ Fluorescence Lifetime Imaging on Live Cells Top of cell: Intensity Top of cell: Lifetimes Optical Sections Rendered by Lifetime 0µm 0.5µm 1.0µm 1.5µm 2.0µm 2.5µm 3.0µm 3.5µm 4.0µm 4.5µm 5.0µm 5.5µm 6.0µm 6.5µm 7.0µm 7.5µm 8.0µm 8.5µm 9.0µm 9.5µm 10.0µm 10.5µm 4.5µm ns ns 1 4 ns 3 ns 4 ns 3 ns 2 #1 #2 0 Mcosφ Images courtesy of John Eichorst Mcosφ 1.0

28 Center of the distribution can be determined in ~1.5 nm accuracy if #N is more than 10^4 Single Molecule Fluorescence Imaging

29 Super Resolution Fluorescence Imaging Huang et al Science,2008

Fluorescence Spectroscopy

Fluorescence Spectroscopy Fluorescence Spectroscopy Steady State and Time Dependent Fluorescence Measurements Kai Wen Teng PHYS 403 Fall 15 EM Spectrum of molecules Rotational Energy Infrared Vibrational Energy Near Infrared Electronic

More information

Optical Spectroscopy. Steady State and Time Dependent Fluorescence Measurements. Kai Wen Teng. October 8 th PHYS 403 Fall 2013

Optical Spectroscopy. Steady State and Time Dependent Fluorescence Measurements. Kai Wen Teng. October 8 th PHYS 403 Fall 2013 Optical Spectroscopy Steady State and Time Dependent Fluorescence Measurements Kai Wen Teng October 8 th 2013 PHYS 403 Fall 2013 EM Spectrum of molecules Rotational Energy Infrared Vibrational Energy Near

More information

LABORATORY OF ELEMENTARY BIOPHYSICS

LABORATORY OF ELEMENTARY BIOPHYSICS LABORATORY OF ELEMENTARY BIOPHYSICS Experimental exercises for III year of the First cycle studies Field: Applications of physics in biology and medicine Specialization: Molecular Biophysics Fluorescence

More information

single-molecule fluorescence resonance energy transfer

single-molecule fluorescence resonance energy transfer single-molecule fluorescence resonance energy transfer (2) determing the Förster radius: quantum yield, donor lifetime, spectral overlap, anisotropy michael börsch 26/05/2004 1 fluorescence (1) absorbance

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

What the Einstein Relations Tell Us

What the Einstein Relations Tell Us What the Einstein Relations Tell Us 1. The rate of spontaneous emission A21 is proportional to υ 3. At higher frequencies A21 >> B(υ) and all emission is spontaneous. A 21 = 8π hν3 c 3 B(ν) 2. Although

More information

Lecture 5. Anisotropy decay/data analysis. Enrico Gratton

Lecture 5. Anisotropy decay/data analysis. Enrico Gratton Lecture 5. Anisotropy decay/data analysis Enrico Gratton Anisotropy decay Energy-transfer distance distributions Time resolved spectra Excited-state reactions Basic physics concept in polarization The

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Lecture 3: Light absorbance

Lecture 3: Light absorbance Lecture 3: Light absorbance Perturbation Response 1 Light in Chemistry Light Response 0-3 Absorbance spectrum of benzene 2 Absorption Visible Light in Chemistry S 2 S 1 Fluorescence http://www.microscopyu.com

More information

Chapter 6 Photoluminescence Spectroscopy

Chapter 6 Photoluminescence Spectroscopy Chapter 6 Photoluminescence Spectroscopy Course Code: SSCP 4473 Course Name: Spectroscopy & Materials Analysis Sib Krishna Ghoshal (PhD) Advanced Optical Materials Research Group Physics Department, Faculty

More information

Absorption spectrometry summary

Absorption spectrometry summary Absorption spectrometry summary Rehearsal: Properties of light (electromagnetic radiation), dual nature light matter interactions (reflection, transmission, absorption, scattering) Absorption phenomena,

More information

Measurement Examples. Excitation and Emission Scans. Steady State Fluorescence Anisotropy. Kinetic Measurements

Measurement Examples. Excitation and Emission Scans. Steady State Fluorescence Anisotropy. Kinetic Measurements Measurement Examples A division of Edinburgh Instruments Ltd. Excitation and Emission Scans Excitation and emission spectra are standard measurements in fluorescence spectroscopy. The figure demonstrates

More information

Absorption photometry

Absorption photometry The light Absorption photometry Szilvia Barkó University of Pécs, Faculty of Medicines, Dept. Biophysics February 2011 Transversal wave E Electromagnetic wave electric gradient vector wavelength The dual

More information

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters ) September 17, 2018 Reference literature (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters 13-14 ) Reference.: https://slideplayer.com/slide/8354408/ Spectroscopy Usual Wavelength Type of Quantum

More information

10. 6 Photochemistry. Out-class reading: Levine, pp photochemistry

10. 6 Photochemistry. Out-class reading: Levine, pp photochemistry Out-class reading: Levine, pp. 800-804 photochemistry 6.1 Brief introduction of light 1) Photochemistry The branch of chemistry which deals with the study of chemical reaction initiated by light. 2) Energy

More information

Optics and Spectroscopy

Optics and Spectroscopy Introduction to Optics and Spectroscopy beyond the diffraction limit Chi Chen 陳祺 Research Center for Applied Science, Academia Sinica 2015Apr09 1 Light and Optics 2 Light as Wave Application 3 Electromagnetic

More information

Supporting Information

Supporting Information Supporting Information Study of Diffusion Assisted Bimolecular Electron Transfer Reactions: CdSe/ZnS Core Shell Quantum Dot acts as an Efficient Electron Donor as well as Acceptor. Somnath Koley, Manas

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Fluorescence Resonance Energy Transfer (FRET) Microscopy

Fluorescence Resonance Energy Transfer (FRET) Microscopy Fluorescence Resonance Energy Transfer () Microscopy Mike Lorenz Optical Technology Development mlorenz@mpi-cbg.de -FLM course, May 2009 What is fluorescence? Stoke s shift Fluorescence light is always

More information

Lab 11: Must what goes in be the same as what comes out? Spectroscopy & Fluorescence in Chlorophyll.

Lab 11: Must what goes in be the same as what comes out? Spectroscopy & Fluorescence in Chlorophyll. Lab 11: Must what goes in be the same as what comes out? Spectroscopy & Fluorescence in Chlorophyll. Introduction to Fluorescence: Fluorescence is one of the possible mechanisms for emission of light by

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES Chemistry 524--Final Exam--Keiderling May 4, 2011 3:30 -?? pm -- 4286 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted. No open books or

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

CHEM Outline (Part 15) - Luminescence 2013

CHEM Outline (Part 15) - Luminescence 2013 CHEM 524 -- Outline (Part 15) - Luminescence 2013 XI. Molecular Luminescence Spectra (Chapter 15) Kinetic process, competing pathways fluorescence, phosphorescence, non-radiative decay Jablonski diagram

More information

Advanced Spectroscopy Laboratory

Advanced Spectroscopy Laboratory Advanced Spectroscopy Laboratory - Raman Spectroscopy - Emission Spectroscopy - Absorption Spectroscopy - Raman Microscopy - Hyperspectral Imaging Spectroscopy FERGIELAB TM Raman Spectroscopy Absorption

More information

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time Phys 2310 Fri. Dec. 12, 2014 Today s Topics Begin Chapter 13: Lasers Reading for Next Time 1 Reading this Week By Fri.: Ch. 13 (13.1, 13.3) Lasers, Holography 2 Homework this Week No Homework this chapter.

More information

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p

Wavelength λ Velocity v. Electric Field Strength Amplitude A. Time t or Distance x time for 1 λ to pass fixed point. # of λ passing per s ν= 1 p Introduction to Spectroscopy (Chapter 6) Electromagnetic radiation (wave) description: Wavelength λ Velocity v Electric Field Strength 0 Amplitude A Time t or Distance x Period p Frequency ν time for 1

More information

Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller

Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller Quantum yield, polarized light, dipole moment, photoselection, dipole radiation, polarization and anisotropy

More information

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Content Introduction to XEOL Application of XEOL Development and Application of XEOL in STXM

More information

n ( λ ) is observed. Further, the bandgap of the ZnTe semiconductor is

n ( λ ) is observed. Further, the bandgap of the ZnTe semiconductor is Optical Spectroscopy Lennon O Naraigh, 0000 Date of Submission: 0 th May 004 Abstract: This experiment is an exercise in the principles and practice of optical spectroscopy. The continuous emission spectrum

More information

Using Alba with the FemtoFiber laser by Toptica for 2-photon quantitative imaging

Using Alba with the FemtoFiber laser by Toptica for 2-photon quantitative imaging TECHNICAL NOTE Using Alba with the FemtoFiber laser by Toptica for 2-photon quantitative imaging Shih-Chu Liao, Yuansheng Sun, Ulas Coskun ISS, Inc. Introduction The advantages of multiphoton excitation

More information

Fluorescence (Notes 16)

Fluorescence (Notes 16) Fluorescence - 2014 (Notes 16) XV 74 Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU

The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU The Fundamentals of Spectroscopy: Theory BUILDING BETTER SCIENCE AGILENT AND YOU 1 Agilent is committed to the educational community and is willing to provide access to company-owned material. This slide

More information

6. A solution of red Kool-Aid transmits light at a wavelength range of nm.

6. A solution of red Kool-Aid transmits light at a wavelength range of nm. I. Multiple Choice (15 pts) 1. FRET stands for a. Fluorescence Recovery Electron Transfer b. Fluorescence Resonance Energy Transfer c. Fluorescence Recovery Energy Transfer 2. Fluorescence involves the

More information

Chapter 29 Molecular and Solid-State Physics

Chapter 29 Molecular and Solid-State Physics Chapter 29 Molecular and Solid-State Physics GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and

More information

two slits and 5 slits

two slits and 5 slits Electronic Spectroscopy 2015January19 1 1. UV-vis spectrometer 1.1. Grating spectrometer 1.2. Single slit: 1.2.1. I diffracted intensity at relative to un-diffracted beam 1.2.2. I - intensity of light

More information

Effects of Temperature and Concentration on the Rate of Photo-bleaching of Erythrosine in Water

Effects of Temperature and Concentration on the Rate of Photo-bleaching of Erythrosine in Water Supporting Information for: Effects of Temperature and Concentration on the Rate of Photo-bleaching of Erythrosine in Water Joshua K. G. Karlsson, Owen J. Woodford, Roza Al-Aqar and Anthony Harriman* Molecular

More information

Singlet. Fluorescence Spectroscopy * LUMO

Singlet. Fluorescence Spectroscopy * LUMO Fluorescence Spectroscopy Light can be absorbed and re-emitted by matter luminescence (photo-luminescence). There are two types of luminescence, in this discussion: fluorescence and phosphorescence. A

More information

Solution set for EXAM IN TFY4265/FY8906 Biophysical microtechniques

Solution set for EXAM IN TFY4265/FY8906 Biophysical microtechniques ENGLISH NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF PHYSICS Contact during exam: Magnus Borstad Lilledahl Telefon: 73591873 (office) 92851014 (mobile) Solution set for EXAM IN TFY4265/FY8906

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

Fluorescence Spectroscopy

Fluorescence Spectroscopy Fluorescence Spectroscopy Frequency and time dependent emission Emission and Excitation fluorescence spectra Stokes Shift: influence of molecular vibrations and solvent Time resolved fluorescence measurements

More information

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions Spin States Molecular Rotations Molecular Vibrations Outer Shell Electrons Inner Shell Electrons Nuclear Transitions NMR EPR Microwave Absorption Spectroscopy Infrared Absorption Spectroscopy UV-vis Absorption,

More information

BMB Class 17, November 30, Single Molecule Biophysics (II)

BMB Class 17, November 30, Single Molecule Biophysics (II) BMB 178 2018 Class 17, November 30, 2018 15. Single Molecule Biophysics (II) New Advances in Single Molecule Techniques Atomic Force Microscopy Single Molecule Manipulation - optical traps and tweezers

More information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2 S1 Chemistry at Boron: Synthesis and Properties of Red to Near-IR Fluorescent Dyes based on Boron Substituted Diisoindolomethene Frameworks Gilles Ulrich, a, * Sebastien Goeb a, Antoinette De Nicola a,

More information

Energy transfer and optical gain studies of FDS: Rh B dye mixture investigated under CW laser excitation

Energy transfer and optical gain studies of FDS: Rh B dye mixture investigated under CW laser excitation Energy transfer and optical gain studies of FDS: Rh B dye mixture investigated under CW laser excitation M. Kailasnath *a, G. Ajith Kumar, V.P.N Nampoori b International School of Photonics, Cochin University

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

Analytical Chemistry II

Analytical Chemistry II Analytical Chemistry II L4: Signal processing (selected slides) Computers in analytical chemistry Data acquisition Printing final results Data processing Data storage Graphical display https://www.creativecontrast.com/formal-revolution-of-computer.html

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

Supporting Information

Supporting Information Supporting Information Cyclodextrin Supramolecular Complex as Water Soluble Ratiometric Sensor for ferric Ion Sensing Meiyun Xu, Shuizhu Wu,* Fang Zeng, Changmin Yu College of Materials Science & Engineering,

More information

Phys 2310 Mon. Dec. 4, 2017 Today s Topics. Begin supplementary material: Lasers Reading for Next Time

Phys 2310 Mon. Dec. 4, 2017 Today s Topics. Begin supplementary material: Lasers Reading for Next Time Phys 2310 Mon. Dec. 4, 2017 Today s Topics Begin supplementary material: Lasers Reading for Next Time 1 By Wed.: Reading this Week Lasers, Holography 2 Homework this Week No Homework this chapter. Finish

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

Analytical Spectroscopy Review

Analytical Spectroscopy Review Analytical Spectroscopy Review λ = wavelength ν = frequency V = velocity = ν x λ = 2.998 x 10 8 m/sec = c (in a vacuum) ν is determined by source and does not change as wave propogates, but V can change

More information

The Hydrogen Spectrum

The Hydrogen Spectrum 1 The Hydrogen Spectrum PHYS 1301 F98 Prof. T.E. Coan Last edit: 6 Aug 98 Introduction In last week's laboratory experiment on diffraction, you should have noticed that the light from the mercury discharge

More information

Single Photon detectors

Single Photon detectors Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor

More information

Supporting Information for. Near infrared-to-blue photon upconversion by exploiting direct. S-T absorption of a molecular sensitizer

Supporting Information for. Near infrared-to-blue photon upconversion by exploiting direct. S-T absorption of a molecular sensitizer Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Supporting Information for Near infrared-to-blue photon upconversion by

More information

Light Emission. Today s Topics. Excitation/De-Excitation 10/26/2008. Excitation Emission Spectra Incandescence

Light Emission. Today s Topics. Excitation/De-Excitation 10/26/2008. Excitation Emission Spectra Incandescence Light Emission Excitation Emission Spectra Incandescence Absorption Spectra Today s Topics Excitation/De-Excitation Electron raised to higher energy level Electron emits photon when it drops back down

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

C101-E145 TALK LETTER. Vol. 17

C101-E145 TALK LETTER. Vol. 17 C101-E145 TALK LETTER Vol. 17 UV-VIS Spectroscopy and Fluorescence Spectroscopy (Part 1 of 2) ------- 02 Applications: Spectrofluorophotometers Used in a Variety of Fields ------- 06 Q&A: Is there a way

More information

SCINTILLATION DETECTORS AND PM TUBES

SCINTILLATION DETECTORS AND PM TUBES SCINTILLATION DETECTORS AND PM TUBES General Characteristics Introduction Luminescence Light emission without heat generation Scintillation Luminescence by radiation Scintillation detector Radiation detector

More information

bio-molecular studies Physical methods in Semmelweis University Osváth Szabolcs

bio-molecular studies Physical methods in Semmelweis University Osváth Szabolcs Physical methods in bio-molecular studies Osváth Szabolcs Semmelweis University szabolcs.osvath@eok.sote.hu Light emission and absorption spectra Stokes shift is the difference (in wavelength or frequency

More information

Spectral Resolution. Spectral resolution is a measure of the ability to separate nearby features in wavelength space.

Spectral Resolution. Spectral resolution is a measure of the ability to separate nearby features in wavelength space. Spectral Resolution Spectral resolution is a measure of the ability to separate nearby features in wavelength space. R, minimum wavelength separation of two resolved features. Delta lambda often set to

More information

CHAPTER 5 SPECTRAL CHARACTERISTICS OF NONLINEAR DYES IN LIQUID MEDIUM

CHAPTER 5 SPECTRAL CHARACTERISTICS OF NONLINEAR DYES IN LIQUID MEDIUM 90 CHAPTER 5 SPECTRAL CHARACTERISTICS OF NONLINEAR DYES IN LIQUID MEDIUM 5.1 INTRODUCTION The new nonlinear optical (NLO) materials with high optical nonlinearities are gaining interest both in research

More information

Increasing your confidence Proving that data is single molecule. Chem 184 Lecture David Altman 5/27/08

Increasing your confidence Proving that data is single molecule. Chem 184 Lecture David Altman 5/27/08 Increasing your confidence Proving that data is single molecule Chem 184 Lecture David Altman 5/27/08 Brief discussion/review of single molecule fluorescence Statistical analysis of your fluorescence data

More information

Nanoscale confinement of photon and electron

Nanoscale confinement of photon and electron Nanoscale confinement of photon and electron Photons can be confined via: Planar waveguides or microcavities (2 d) Optical fibers (1 d) Micro/nano spheres (0 d) Electrons can be confined via: Quantum well

More information

Atomic Absorption Spectroscopy (AAS)

Atomic Absorption Spectroscopy (AAS) Atomic Absorption Spectroscopy (AAS) Alex Miller ABC s of Electrochemistry 3/8/2012 Contents What is Atomic Absorption Spectroscopy? Basic Anatomy of an AAS system Theory of Operation Practical Operation

More information

Lecture 0. NC State University

Lecture 0. NC State University Chemistry 736 Lecture 0 Overview NC State University Overview of Spectroscopy Electronic states and energies Transitions between states Absorption and emission Electronic spectroscopy Instrumentation Concepts

More information

P. Lambrev October 10, 2018

P. Lambrev October 10, 2018 TIME-RESOLVED OPTICAL SPECTROSCOPY Petar Lambrev Laboratory of Photosynthetic Membranes Institute of Plant Biology The Essence of Spectroscopy spectro-scopy: seeing the ghosts of molecules Kirchhoff s

More information

Fluorescence Polarization Anisotropy FPA

Fluorescence Polarization Anisotropy FPA Fluorescence Polarization Anisotropy FPA Optics study of light Spectroscopy = light interacts the study of the interaction between matter & electro-magnetic radiation matter Spectroscopy Atomic Spectroscopy

More information

Chem Homework Set Answers

Chem Homework Set Answers Chem 310 th 4 Homework Set Answers 1. Cyclohexanone has a strong infrared absorption peak at a wavelength of 5.86 µm. (a) Convert the wavelength to wavenumber.!6!1 8* = 1/8 = (1/5.86 µm)(1 µm/10 m)(1 m/100

More information

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Chemistry Instrumental Analysis Lecture 5. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 5 Light Amplification by Stimulated Emission of Radiation High Intensities Narrow Bandwidths Coherent Outputs Applications CD/DVD Readers Fiber Optics Spectroscopy

More information

Models of the Atom. Spencer Clelland & Katelyn Mason

Models of the Atom. Spencer Clelland & Katelyn Mason Models of the Atom Spencer Clelland & Katelyn Mason First Things First Electrons were accepted to be part of the atom structure by scientists in the1900 s. The first model of the atom was visualized as

More information

Luminescence spectroscopy

Luminescence spectroscopy Febr. 203 Luminescence spectroscopy Biophysics 2 nd semester Józse Orbán University o Pécs, Department o Biophysics Deinitions, laws FUNDAMENTALS o SPECTROSCY review - Spectral types (absorbtion/emission

More information

Chapter 15 Molecular Luminescence Spectrometry

Chapter 15 Molecular Luminescence Spectrometry Chapter 15 Molecular Luminescence Spectrometry Two types of Luminescence methods are: 1) Photoluminescence, Light is directed onto a sample, where it is absorbed and imparts excess energy into the material

More information

A Fluorometric Analysis of Quinine in Tonic Water

A Fluorometric Analysis of Quinine in Tonic Water A Fluorometric Analysis of Quinine in Tonic Water Introduction In this Laboratory Exercise, we will determine the amount of quinine in Tonic Water using a fluorometric analysis. Fluorescence Spectroscopy

More information

Application Note: Ocean Optics in the Teaching and Research Laboratories Susquehanna University Department of Chemistry July 2014

Application Note: Ocean Optics in the Teaching and Research Laboratories Susquehanna University Department of Chemistry July 2014 Application Note: Ocean Optics in the Teaching and Research Laboratories Susquehanna University Department of Chemistry July 2014 Authors: Dr. Swarna Basu (Associate Professor of Chemistry), Dr. Wade Johnson

More information

Chemistry 524--Final Exam--Keiderling Dec. 12, pm SES

Chemistry 524--Final Exam--Keiderling Dec. 12, pm SES Chemistry 524--Final Exam--Keiderling Dec. 12, 2002 --4-8 pm -- 238 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted plus one 8.5 x 11 sheet

More information

Fluorescence Quenching

Fluorescence Quenching Summary Fluorescence Quenching The emission of light from the excited state of a molecule (fluorescence or phosphorescence) can be quenched by interaction with another molecule. The stationary and time-dependent

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

Fluorescence 2009 update

Fluorescence 2009 update XV 74 Fluorescence 2009 update Jablonski diagram Where does the energy go? Can be viewed like multistep kinetic pathway 1) Excite system through A Absorbance S 0 S n Excite from ground excited singlet

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy With Exercises and Examples from Biophysics and Biochemistry von William W Parson 1. Auflage Springer-Verlag Berlin Heidelberg 2006 Verlag C.H. Beck im Internet: www.beck.de

More information

Fluorescence Workshop UMN Physics June 8-10, 2006 Basic Spectroscopic Principles Joachim Mueller

Fluorescence Workshop UMN Physics June 8-10, 2006 Basic Spectroscopic Principles Joachim Mueller Fluorescence Workshop UMN Physics June 8-10, 2006 Basic Spectroscopic Principles Joachim Mueller Fluorescence, Light, Absorption, Jablonski Diagram, and Beer-Law First stab at a definition: What is fluorescence?

More information

TIME-RESOLVED OPTICAL SPECTROSCOPY

TIME-RESOLVED OPTICAL SPECTROSCOPY TIME-RESOLVED OPTICAL SPECTROSCOPY Petar Lambrev Laboratory of Photosynthetic Membranes Institute of Plant Biology The Essence of Spectroscopy spectro-scopy: seeing the ghosts of molecules Kirchhoff s

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Luminescence Spectroscopy of Semiconductors IVAN PELANT Institute ofphysics, v.v.i. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Department of Chemical Physics and Optics Charles University,

More information

(i.e. what you should be able to answer at end of lecture)

(i.e. what you should be able to answer at end of lecture) Today s Announcements 1. Test given back next Wednesday 2. HW assigned next Wednesday. 3. Next Monday 1 st discussion about Individual Projects. Today s take-home lessons (i.e. what you should be able

More information

Lasers... the optical cavity

Lasers... the optical cavity Lasers... the optical cavity history principle, intuitive aspects, characteristics 2 levels systems Ti: Helium Al2O3 - Neon model-locked laser laser VCSEL bragg mirrors cleaved facets 13 ptical and/or

More information

Light Interaction with Small Structures

Light Interaction with Small Structures Light Interaction with Small Structures Molecules Light scattering due to harmonically driven dipole oscillator Nanoparticles Insulators Rayleigh Scattering (blue sky) Semiconductors...Resonance absorption

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

Chemistry 2. Molecular Photophysics

Chemistry 2. Molecular Photophysics Chemistry 2 Lecture 12 Molecular Photophysics Assumed knowledge Electronic states are labelled using their spin multiplicity with singlets having all electron spins paired and triplets having two unpaired

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Electronic Supplementary Information Polymorphism and microcrystal shape

More information

Energy Transfer Upconversion Processes

Energy Transfer Upconversion Processes 1. Up-conversion Processes Energy Transfer Upconversion Processes Seth D. Melgaard NLO Final Project The usual fluorescence behavior follows Stokes law, where exciting photons are of higher energy than

More information

FROM LOCALIZATION TO INTERACTION

FROM LOCALIZATION TO INTERACTION EPFL SV PTBIOP FROM LOCALIZATION TO INTERACTION BIOP COURSE 2015 COLOCALIZATION TYPICAL EXAMPLE EPFL SV PTBIOP Vinculin Alexa568 Actin Alexa488 http://www.olympusconfocal.com/applications/colocalization.html

More information

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray

CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray CD Basis Set of Spectra that is used is that derived from comparing the spectra of globular proteins whose secondary structures are known from X-ray crystallography An example of the use of CD Modeling

More information

Einführung in die Photonik II

Einführung in die Photonik II Einführung in die Photonik II ab 16.April 2012, Mo 11:00-12:30 Uhr SR 218 Lectures Monday, 11:00 Uhr, room 224 Frank Cichos Molecular Nanophotonics Room 322 Tel.: 97 32571 cichos@physik.uni-leipzig.de

More information

Photochemical principles

Photochemical principles Chapter 1 Photochemical principles Dr. Suzan A. Khayyat 1 Photochemistry Photochemistry is concerned with the absorption, excitation and emission of photons by atoms, atomic ions, molecules, molecular

More information

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages )

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages ) Spectroscopy: Introduction Required reading Chapter 18 (pages 378-397) Chapter 20 (pages 424-449) Spectrophotometry is any procedure that uses light to measure chemical concentrations Properties of Light

More information

LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: Next Up: Cameras and optics Eyes to web: Final Project Info

LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: Next Up: Cameras and optics Eyes to web: Final Project Info LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: 14.3 Next Up: Cameras and optics Eyes to web: Final Project Info 1 Group Exercise Your pennies will simulate a two state atom; tails = ground state,

More information

Pre-Lab Exercises Lab 2: Spectroscopy

Pre-Lab Exercises Lab 2: Spectroscopy Pre-Lab Exercises Lab 2: Spectroscopy 1. Which color of visible light has the longest wavelength? Name Date Section 2. List the colors of visible light from highest frequency to lowest frequency. 3. Does

More information

Instrumental Analysis: Spectrophotometric Methods

Instrumental Analysis: Spectrophotometric Methods Instrumental Analysis: Spectrophotometric Methods 2007 By the end of this part of the course, you should be able to: Understand interaction between light and matter (absorbance, excitation, emission, luminescence,fluorescence,

More information