CHE 322 Process & Engineering Thermodynamics Fall 2016

Size: px
Start display at page:

Download "CHE 322 Process & Engineering Thermodynamics Fall 2016"

Transcription

1 CHE 322 Process & Engineering Thermodynamics Fall 2016 Instructor JENNIFER MAYNARD W 2:30-4 pm, CPE Teaching Assistants KRITI MISHRA Th 3-4:30 pm, CPE 3.448; office Grader EMILY BOLYARD Lecture T/Th 11:00 am 12:15 pm RLM Recitation F 9:00 9:50 am RLM #14960 NOTE: HW will be due Friday at the beginning of recitation NOTE: quizzes will be conducted during recitation most weeks Text: Engineering & Chemical Thermodynamics, 2 nd ed., Milo D. Koretsky, Wiley. 1

2 Course Description: Thermodynamics relates work, heat, temperature and states of matter to each other. From a surprisingly small set of empirically based laws, an enormous amount of information about the relationships among equilibrium parameters for a system can be deduced. This information can then be applied to physical, chemical and biological systems including engine design, materials processing and cellular processes. Amazingly, thermodynamics is independent of any molecular model of matter, but molecular interpretations of various aspects of the subject (e.g., entropy and temperature) will be discussed in the course to broaden understanding. The focus of this course is the further development of thermodynamics based on the Ch353 Physical Chemistry pre-requisite and the application of the subject to practical systems. Goals: The objective of this course is to introduce students to the principles of thermodynamics as they apply to physical and chemical processes. Knowledge, Abilities, and Skills Students Should Have Entering This Course: 1. Units, material and energy balances, the use of steam tables and P-H charts (ChE 317). 2. The first law of thermodynamics, enthalpy, and heat capacity (ChE 317) 3. Ideal gas and real fluid behavior (ChE 317). 4. Solution of simple chemical engineering process problems (ChE 317). 5. The first and second laws of thermodynamics (Ch 353). 6. State functions and path-dependent functions in the solution of chemical problems (ChE 353). 7. The theoretical aspects of thermodynamics and the treatment of ideal and real fluids (Ch 353). 8. Deviations from ideality by use of various equations of state (Ch 353). 9. Solution thermodynamics (Ch 353). Knowledge, Abilities, and Skills Students Should Gain Form This Course: 1. The student should be able to apply energy and entropy balances to open and closed systems and to evaluate the thermodynamic efficiency of compressors, turbines, Rankine cycles and refrigeration cycles. They should be comfortable using steam tables, P-H, T-S, and H-S charts and calculating residual properties with equations of state. They should be able to derive property relationships using multivariable calculus. 2. The student should be able to solve phase equilibria problems involving vapor, liquid and solid phases. They should know how to use experimental data to evaluate the constants for various empirical equations, e.g. Van Laar, Margulies, and to use these equations to construct binary phase diagrams. 3. The student should be able to set up and calculate yields from homogeneous and heterogeneous reaction equilibria (useful for 372). 2

3 Impact on Subsequent Courses in Curriculum: Thermodynamic properties, phase equilibrium and chemical reaction equilibrium play an important role throughout chemical engineering, e.g. in ChE 360, ChE 363, ChE 372 and ChE 473K. Thermodynamics is one of the main pillars of chemical engineering; others include transport phenomena and reaction kinetics. Course procedure Attendance in lecture or discussions is encouraged but not required. If you do attend any class, please arrive promptly, attentive and ready to work. No electronics are permitted without permission; unauthorized use may result in temporary confiscation. Lecture hours will be used to introduce new material, provide detailed examples, conduct some quizes, conduct three hourly exams. Recitation hours will be used to conduct quizzes, work example problems, provide extra time on difficult topics. Canvas will be used to post homework assignments and solutions, assignment grades and any announcements. Please check Canvas at least weekly. Grading Homework 10% Typically posted Fri on Canvas, due the.following Fri in recitation. No late HW accepted. Quizes 10% Based on the prior weeks lecture, reading & HW, most Fridays during recitation. These are designed to be a check that you are keeping up with and understanding the material. No quizzes on Exam weeks. Lowest quiz score will be dropped; if you miss a quiz, this will be your dropped quiz. If you are late to class, you will not get extra time for your quiz. If you present your explanation of a short problem to the class, this can replace your second lowest quiz score (optional). Exams (3) 20% each In-class exam dates and sections covered are noted in the schedule. There will be no make-up exams. Final 20% Time and room determined by the college. Registration for this course includes the University-scheduled final exam date; there will be no make-up final. The final will be cumulative. Total 100% Bbbbbbbbbbbbbbbbbbbbbbbbbbbb Please show the detailed steps/ logic you follow in solving a problem (ie, a diagram of the problem, define variables, analytical approach and equations used/ derived) grading will be based primarily upon these steps, not upon a correct final answer. We want to give you credit for your work, but there needs to be something on page to justify this. Reading assingments are required and you are responsible for the concepts and examples contained therein. Content may be covered in the reading that is not covered in lecture or recitation. The reading is most valuable if you complete it before the relevant class period. 3

4 Homework problems are for you to practice using the concepts and equations and are representative of those on exams. The way to learn is to struggle with the problems, to understand why a certain approach is chosen and the details of each step. For some homework problems, class will prepare you to complete them; for some you will need to refer to the text. Quizes will be conducted most Thursdays during recitation and will consist of one to two problems. These will be based on material covered in the classroom, reading assignments and homework. You may have unannounced quizzes if it does not appear that students are keeping up with the class. Your lowest quiz score will be dropped. Exams will be based upon material covered in lecture, recitation, reading and in the homework; reading assignments complement lecture and provide additional examples for practice. During exams, you may bring one 3x5 inch cheat sheet to help you. The exam will be closed notes, closed book. All required equations and other key information will be provided. Practice exams with solutions will be provided on Canvas. Exams will be conducted during the normal class period and will be a combination of simpler problems (i.e., knowledge-based or those similar to HW and class examples) and more challenging problems (i.e., in which you apply the concepts in a slightly different way; e.g. you have seen distillation columns with one feed now you have two feeds or you have only seen total condensers now you have a partial condenser). These are not intended to be tricky but to probe the depths of your understanding. Re-grades will be accepted up to one week after the assignment s return and must be accompanied by a written explanation of the request. A regrade request may trigger a re-grade of the entire assignment. In class descriptions You will have the opportunity to present problems (examples from the handouts) to the class in 5-10 minutes. This is optional but will replace your lowest quiz score; grading will reflect the accuracy, clarity and depth of your solution as well as your ability to handle questions about the problem. Final grades will be assigned based on the overall grade distribution using the class mean and standard deviation. If you are consistently more than one standard deviation below the mean, we should discuss the situation and/ or adjust your study strategies. Students with disabilities The University of Texas at Austin provides upon request appropriate academic adjustments for qualified students with disabilities. For more information, contact the Office of the Dean of Students at , TTY or the College of Engineering Director of Students with Disabilities at Division of Diversity and Community Engagement, Services for Students with Disabilities, , 4

5 Academic dishonesty UT Honor Code (or statement of ethics) and an explanation or example of what constitutes plagiarism (Link to University Honor Code: Religious holidays By UT Austin policy, you must notify the instructor of your pending absence at least fourteen days p rior to the date of observance of a religious holy day. If you must miss a class, an examination, a work assignment, or a project in order to observe a religious holy day, you will be given an opportunity to complete the missed work within a reasonable time after the absence. ) Emergency evacuations Recommendations regarding emergency evacuation are available from the Office of Campus Safety and Security, , For CPE specifically, in the event of an emergency, we egress from CPE and assemble on the south side of the pedestrian bridge until the all-clear notifcaiton. You can sign up to receive emergency text alerts here: How to succeed in this class Diagram the problem make sure you understand what is being asked, choose your system, label variables and flow streams, identify unknowns, etc. Do the homework preferably not just the night before it s due and try to understand the steps. Working in groups is great as long as all members understand the problem solutions. Do more than the HW periodically, look over and try to understand your notes, always read the assigned text before class, explain things to your roommate. Often it helps to turn off all electronics in order to focus high quality effort on the task at hand. Ask questions help us to help you! Lecture Outline: The course is composed of the following lectures. Please read the assigned sections of the text before attending the lecture. Date Topic Read before lecture* 1. The first law Th 8/25 Course overview First Law of Thermodynamics Energy balance for closed systems (liquids, steam) R1, 8/26 R1: energy balance boot camp HW1 due T 8/30 Energy balance for closed systems, un-steady-state (liquids, steam) Review ChE 317 MB, Chapter 1, Sections 2.1, 2.4 Section

6 Th 9/1 Open systems - Mass and Energy Balances for Open Systems; Enthalpy and Heat Capacity R2, 9/2 R2: cycles, leaking tank examples; steam table review 2. Equations of state T 9/6 Ideal gases: PVT Behavior of Pure Substances, Ideal Gas Law & Energy Balances Th 9/8 Real gases I: Generalized Correlations for Gases & Liquids; Compressibility, corresponding states R3, 9/9 R3: T 9/13 Real gases II: cubic equations of state Section 2.7, Sections The second law Th 9/15 Second Law of Thermodynamics: Origins in heat engines Sections R4, 9/16 Aspen module to work with real gases T 9/20 Review for Exam 1 Th 9/22 Midterm Exam 1 R5, 9/23 Entropy and the Second Law of Thermodynamics Sections T 9/27 Entropy Balance for Closed Systems Section 3.5 Th 9/29 Entropy Balance for Open Systems Section 3.6 R6, 9/30 Entropy balance problems Section Thermodynamic cycles T 10/4 Thermodynamic Network: Variables & Property Tables, Section calculating delta H for real gases from PVT data Th 10/6 Unit operations: nozzle, throttle, turbine, compressor, boiler, Section 2.8 condenser, pump R7, 10/7 T 10/11 Introduction to thermodynamic cycles, Carnot & Rankine cycles Th 10/13 Variations on power cycles Section 2.9, handout from another book R8, 10/14 T 10/18 Refrigeration cycles; exam review Th 10/20 Midterm Exam 2 R9, 10/21 No class 5. Phase equilibrium T 10/25 Ideal VLE I: Qualitative behavior: phase diagrams; thermo Section requirements for equilibrium and stability; one component/two phase systems Clausius-Clapeyron; Clapeyron; Antoine Th 10/27 Ideal VLE II: Raoult & Henry s Laws; K-values Section 8.1 6

7 R10, 10/28 T 11/1 Ideal VLE practice Non-ideal VLE I: one component/ two phase systems: derive fugacity, calculate fugacity of a pure gas and pure liquid, using vdw and PR Th 11/3 Non-ideal VLE II: two component/ two phase systems: azeotropes; partial molar properties, Gibbs-Duhem eqn, mixing in gases R11, 11/4 T 11/8 Section 7.2 Section 6.3 Non-ideal VLE III: two phases/ two component systems: mixing Section 7.4 in liquids - correlations to get activity coefficients Th 11/10 Non-ideal VLE IV: Liquid-Liquid Equilibrium: immiscible, partially Section 8.2 miscible; stability R12, 11/11 Osmotic pressure & Boiling point elevation Section 8.5 T 11/15 Non-ideal VLE V: Liquid-Liquid-Vapor Equilibrium: phase Section 8.3 diagrams, calculate phase composition Th 11/17 Midterm Exam 3 R13, 11/18 6. Chemical reaction equilibrium T 11/22 Chemical Reaction Equilibrium I: Introduction, derive K a = exp (- Sections 2.6, G/RT) eqn, gas example /24-25 Thanksgiving holidays T 11/29 Chemical Reaction Equilibrium II: Temperature effects; Multiple Section 9.4, 9.7 Reactions Th 12/1 Chemical Reaction Equilibrium III: Reactions with liquids and solids; rxns with coupled phase equilibria or heat transfer R14, 12/2 Non-stoicheometric feed, effect of inerts Section 9.5 Mon 12/12 FINAL EXAM (comprehensive) 2 pm 5 pm, Room TBD *all reading assignments from Koretsky, 2 nd edition Essential Thermo 322 Vocab Sheet System: any part of the universe we choose to study; it may have real (eg, a capped test tube) or imaginary boundaries and these boundaries may be rigid or mobile (as in a piston). Careful choice of your system can make the problem much easier (eg, choose a closed system if poss.). 7

8 State: the condition in which the system exists (eg, temp, pressure, number of moles of substance); in thermodynamics, this will often refer to the state at which equilibrium exists. a condition which is time-invariant and reproducible. Surroundings: once you choose the system and its boundaries, everything else becomes the surroundings. Realistically, this may be the part of the universe that is affected by changes in the system. Closed system: this system does not exchange mass with its surroundings, but may exchange work and heat. Thus the energy, P, T, V may change but the mass of the system remains fixed. Open system: this system does exchange mass with its surroundings. Here, the boundaries may be defined as a specific volume in space through which mass may enter and leave, or an actual container, say a length of pipe with reactants flowing in and products flowing out. Isothermal system: a process which occurs at constant temperature (T 1 = T 2) and can apply to both open and closed systems. To maintain an isothermal state, it is usually necessary to exchange heat with the surroundings. Adiabatic system: a process occurs in either an open or closed system without exchanging heat with its surroundings (Q = 0). Commonly also termed perfectly insulated. Isolated system: a system that exchanges neither heat nor mass nor work with its surroundings; eg, a chemical reaction occurring in an insulated vessel of constant volume. State variable: the terms state variable, state property, property are used interchangeably and refer to a variable whose value depends on the state in which the system exists. Between two states, the change in a state variable is always the same, regardless of the path taken. Temp, pressure, volume & internal energy are all state variables. Path variable: properties whose value depends on the path travelled by the system. This only has meaning when applied to a process in which the path taken is specified; key path variables are work (W) and heat (Q). Extensive property: the value depends on the size of the system and are additive. For example, volume: if you double the number of particles, keeping T and P constant, the volume of an ideal gas will double; if a system has multiple parts, the volume of each part can be added to determine the total system volume. Intensive property: these properties do not depend on the size of the system, for instance, T, P, specific volume (=V/n), density (=m/v). When the system is homogeneous, extensive variables will often be rendered intensive by dividing by the size of the system (eg, number of moles); this is indicated by a bar over the variable. Work (W): work can the energy used to move an object over a specified distance (W = F*d = mad), PV work used to maintain or change the volume of a system [W = (PV)], but also shaft (mechanical) or electrical work. Our convention is that work done by a system on its surroundings will decrease the energy of the system, while work done by the surroundings on the system will increase the energy of the system. Heat (Q): heat is transferred when two bodies of different temperature are in constant (see 0 law of thermo). Common calculations: Q = m*c p*t or Q/t = h*a*t (ChE 353). Reversible process: a reversible process can proceed forward or backwards with no energy input and S=0; this does not actually occur in real life but is an approximation. 8

Recitation F 9:00 9:50 am CPE #14960 F 10:00 10:50 am CPE #14965

Recitation F 9:00 9:50 am CPE #14960 F 10:00 10:50 am CPE #14965 CHE 322 Process & Engineering Thermodynamics Fall 2015 Instructor JENNIFER MAYNARD maynard@che.utexas.edu W 2-4 pm, CPE 5.466 Teaching Assistants EMILY ADKINS Emily.adkins@utexas.edu W 5-6 pm, NHB 6.408

More information

Th 2:00-3:30 pm, McKetta Study room

Th 2:00-3:30 pm, McKetta Study room CHE 322 Process & Engineering Thermodynamics Fall 2013 Instructor JENNIFER MAYNARD maynard@che.utexas.edu W 2-4 pm, CPE 5.466 Teaching Assistant JOSH LABER joshua.laber@utexas.edu Th 3:30-5:30 pm, CPE

More information

Syllabus for CHE0200 Chemical Engineering Thermodynamics Class Section 1030 Spring 2018

Syllabus for CHE0200 Chemical Engineering Thermodynamics Class Section 1030 Spring 2018 Syllabus for CHE0200 Chemical Engineering Thermodynamics Class 19309 Section 1030 Spring 2018 Lectures: M,W,F 8-9:50am, Room 309 BEH Recitations: Th 8-9:50am, Room 309 BEH Instructor: Prof. Karl Johnson

More information

Teaching Assistant: Tracy Bucholz CPE office hours: M, W, F 8:30-9:30am

Teaching Assistant: Tracy Bucholz CPE office hours: M, W, F 8:30-9:30am ChE 317: INTRODUCTION TO CHEMICAL ENGINEERING ANALYSIS T. Th 8-9:30 CPE 2.218 Personnel Contact Information Course Instructor: Prof. Lynn Loo lloo@che.utexas.edu CPE 4.422 471-6300 office hours: T, Th

More information

Course Name: Thermodynamics for Chemical Engineers

Course Name: Thermodynamics for Chemical Engineers Instructor Information CM3230 Thermodynamics for Chemical Engineers College of Engineering Fall 2011 Instructor: Dr. Tom Co, Associate Professor Office Location: 202G ChemSci Building Telephone: Office

More information

CHEM 30A: Introductory General Chemistry Fall 2017, Laney College. Welcome to Chem 30A!

CHEM 30A: Introductory General Chemistry Fall 2017, Laney College. Welcome to Chem 30A! CHEM 30A: Introductory General Chemistry Fall 2017, Laney College Welcome to Chem 30A! Meeting Time/Location Lecture (Class Code 41591): Sa 10:00AM 12:50PM in A233 Lab (Class Code 41592): Sa 1:30PM 4:20PM

More information

Chemistry Physical Chemistry I Fall 2017

Chemistry Physical Chemistry I Fall 2017 Chemistry 309 - Physical Chemistry I Fall 2017 Instructor: Office Hours: Dr. Samuel A. Abrash C208 Gottwald Science Center Work: 289-8248 Home: 323-7363 Cell: 363-2597 sabrash@richmond.edu www.richmond.edu/~sabrash

More information

ME 022: Thermodynamics

ME 022: Thermodynamics ME 022: Thermodynamics General Information: Term: 2019 Summer Session Instructor: Staff Language of Instruction: English Classroom: TBA Office Hours: TBA Class Sessions Per Week: 5 Total Weeks: 5 Total

More information

Chemistry Physical Chemistry I Fall 2018

Chemistry Physical Chemistry I Fall 2018 Chemistry 309 - Physical Chemistry I Fall 2018 Instructor: Office Hours: Dr. Samuel A. Abrash C-208 Gottwald Science Center Work: 289-8248 Home: 323-7363 Cell: 363-2597 sabrash@richmond.edu www.richmond.edu/~sabrash

More information

Page 1 of 5 Printed: 2/4/09

Page 1 of 5 Printed: 2/4/09 Course Goal: CHEN 205 - Chemical Engineering Thermodynamics I, Credit 3 (3-0) Spring 2009, TuTh 9:35 10:50, Brown 102 (a) To introduce students to the fundamental concepts and laws of thermodynamics; and

More information

CHEM 231. Physical Chemistry I NJIT Fall Semester, Prerequisites: Chem 126 or 123, Phys 111 Co requisite: Math 211

CHEM 231. Physical Chemistry I NJIT Fall Semester, Prerequisites: Chem 126 or 123, Phys 111 Co requisite: Math 211 CHEM 231 Physical Chemistry I NJIT Fall Semester, 2017 Prerequisites: Chem 126 or 123, Phys 111 Co requisite: Math 211 Textbook: Chapters to be covered: Instructor: Goals: Prerequisites: Course Outline:

More information

Business. Final Exam Review. Competencies. Schedule Today. Most missed on Exam 3. Review Exam #3

Business. Final Exam Review. Competencies. Schedule Today. Most missed on Exam 3. Review Exam #3 Business Final Exam Review Online course evaluation (19/32 = 59%) Counts as a homework assignment (by Thurs) Professional program application Past due! Case study due today by 5 pm Leadership evaluation

More information

ME264 Thermodynamics

ME264 Thermodynamics ME264 Thermodynamics Spring 2016 Syllabus Instructor: Dr. Özgür Uğraş Baran 1 Course Information Basic Information Required or elective Course Credit (Hours/ECTS credits) Required (3-0-0/6) Class Hours

More information

Michelle Liu, Neelay Phadke, Dogan Gidon W 5-6 in Hildebrand 100-D

Michelle Liu, Neelay Phadke, Dogan Gidon W 5-6 in Hildebrand 100-D Course Syllabus CHEMICAL ENGINEERING 141 Syllabus Thermodynamics, Spring 2015 Instructors: Prof. Danielle Tullman-Ercek, 116 Gilman Hall, 642-7160, dtercek@berkeley.edu Graduate Student Instructors: Dogan

More information

STATISTICAL AND THERMAL PHYSICS

STATISTICAL AND THERMAL PHYSICS Phys 362 Spring 2015 STATISTICAL AND THERMAL PHYSICS Phys 362 Spring 2015 Instructor: Office: Professor David Collins WS 228B Phone: 248-1787 email: Office Hours: dacollin@coloradomesa.edu M 9 10 am, 11

More information

Topics in General Chemistry Chemistry 103 Fall 2017

Topics in General Chemistry Chemistry 103 Fall 2017 Topics in General Chemistry Chemistry 103 Fall 2017 Instructor: Professor Oertel, N280 Science Center, 775-8989, catherine.oertel@oberlin.edu Class meeting: MWF 11-11:50 am, Science Center A255 Laboratory

More information

Chemistry 313 Course Syllabus / Fall 2006

Chemistry 313 Course Syllabus / Fall 2006 Chemistry 313 Course Syllabus / Fall 2006 Instructor: Dr. Caleb A. Arrington Course Number and Title: Chem 313 Physical Chemistry I (Thermodynamics) Meeting Place: RMSC-308 Meeting Time: M,W,&F 10:30 11:50

More information

LINEAR ALGEBRA: M340L EE, 54300, Fall 2017

LINEAR ALGEBRA: M340L EE, 54300, Fall 2017 LINEAR ALGEBRA: M340L EE, 54300, Fall 2017 TTh 3:30 5:00pm Room: EER 1.516 Click for printable PDF Version Click for Very Basic Matlab Pre requisite M427J Instructor: John E Gilbert E mail: gilbert@math.utexas.edu

More information

Office Hours: Mon., Wed before and after class or by appointment.

Office Hours: Mon., Wed before and after class or by appointment. Instructor: Long Beach Community College Chemistry 2 Introductory General Chemistry Section 70320 Spring 2013 MW 8:00 9:25 AM, Lecture, Room D314 M 9:35 10:40, Prelab lecture, Room D304 M 10:50 12:55 PM,

More information

CHEMISTRY F106X - GENERAL CHEMISTRY II Summer Semester 2018 University of Alaska - Fairbanks 4 Credits

CHEMISTRY F106X - GENERAL CHEMISTRY II Summer Semester 2018 University of Alaska - Fairbanks 4 Credits CHEMISTRY F106X - GENERAL CHEMISTRY II Summer Semester 2018 University of Alaska - Fairbanks 4 Credits Dr. Gregory S. Kowalczyk Murie 113B 474-7465 E-Mail: gskowalczyk@alaska.edu Web Page: Blackboard Learn

More information

CHEM 021: General Chemistry II

CHEM 021: General Chemistry II CHEM 021: General Chemistry II General Information: Term: 2019 Summer Session Instructor: Staff Language of Instruction: English Classroom: TBA Office Hours: TBA Class Sessions Per Week: 5 Total Weeks:

More information

CHEM 021: General Chemistry II

CHEM 021: General Chemistry II General Information CHEM 021: General Chemistry II Term: 2019 Summer Session Class Sessions Per Week: 5 Instructor: Staff Total Weeks: 5 Language of Instruction: English Total Class Sessions: 25 Classroom:

More information

Chemistry 110 General Chemistry, Course Lecture MWF 8:30 am 9:50 am Room NSM C221 Laboratory M or W 1:00 pm 3:50 pm Room NSM B340

Chemistry 110 General Chemistry, Course Lecture MWF 8:30 am 9:50 am Room NSM C221 Laboratory M or W 1:00 pm 3:50 pm Room NSM B340 Course Syllabus Fall 2009 CSU Dominguez Hills Chemistry 110 General Chemistry, Course 40318 Lecture MWF 8:30 am 9:50 am Room NSM C221 Laboratory M or W 1:00 pm 3:50 pm Room NSM B340 Instructor: Dr. Kenneth

More information

Prerequisite: one year of high school chemistry and MATH 1314

Prerequisite: one year of high school chemistry and MATH 1314 Chemistry 1411 COURSE SYLLABUS CRN 70200, Fall 2015 Time: Tuesday & Thursday 12:00 PM~3:00 PM (08/24~12/13) Instructor: Dr. Sudha Rani (Available before/after the class by appointment) Phone: 716-560-5491

More information

Chemistry : General Chemistry, Fall 2013 Department of Chemistry and Biochemistry California State University East Bay

Chemistry : General Chemistry, Fall 2013 Department of Chemistry and Biochemistry California State University East Bay Chemistry 1101 01: General Chemistry, Fall 2013 Department of Chemistry and Biochemistry California State University East Bay Lecture instructor: Patrick Huang Lectures: MWF 8:15 9:05 am in VBT124 Email:

More information

Physics 343: Modern Physics Autumn 2015

Physics 343: Modern Physics Autumn 2015 Physics 343: Modern Physics Autumn 2015 Course Information Instructor: Dr. David A. Macaluso Office: C.H. Clapp Building, room 119 Telephone: (406) 243-6641 Email: david.macaluso@umontana.edu Lectures:

More information

ENGR 3130: DYNAMICS University of Detroit Mercy Term I,

ENGR 3130: DYNAMICS University of Detroit Mercy Term I, ENGR 3130: DYNAMICS University of Detroit Mercy Term I, 2013-2014 Course Description: The application of kinematics and kinetics to particles and rigid bodies. The course considers fixed and moving reference

More information

University of Engineering & Technology Lahore. (KSK Campus)

University of Engineering & Technology Lahore. (KSK Campus) Course File Session-2015 Semester: Fall 2016 MT-24: Thermodynamics for Technologists Department of Mechanical Engineering University of Engineering & Technology Lahore. (KSK Campus) Course File Contents

More information

COURSE REQUIREMENTS COURSE COMPONENTS

COURSE REQUIREMENTS COURSE COMPONENTS CHEMISTRY 116 - FALL, 2004 COURSE INFORMATION HONORS GENERAL COLLEGE CHEMISTRY I Professor Richard Burns (5405 SES, x6-8703) E Mail: rpburns@uic.edu Office Hours 3:00-4:00 MWF Lecture: 12:00-12:50 MWF,

More information

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW:

FINAL EXAM. ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: ME 200 Thermodynamics I, Spring 2013 CIRCLE YOUR LECTURE BELOW: Div. 5 7:30 am Div. 2 10:30 am Div. 4 12:30 am Prof. Naik Prof. Braun Prof. Bae Div. 3 2:30 pm Div. 1 4:30 pm Div. 6 4:30 pm Prof. Chen Prof.

More information

: 6:00 7:15 PM SC2208 : 7:30 10:15 PM SC2208

: 6:00 7:15 PM SC2208 : 7:30 10:15 PM SC2208 Chem 1C-61 General Chemistry Course Outline Spring 2015 Dr. Billie Lo (billielo@comcast.net) Lecture: TTh 6:00 7:15 PM SC2208 Laboratory: TTh 7:30 10:15 PM SC2208 Office Hours: T 5:00 6:00 PM SC2208 PREREQUISITE:

More information

KOMAR UNIVERSITY OF SCIENCE AND TECHNOLOGY (KUST)

KOMAR UNIVERSITY OF SCIENCE AND TECHNOLOGY (KUST) Course Title Course Code General Chemistry I and Lab CHM1410C General Chemistry I No. of Credits Department All Departments College Science and Engineering Pre-requisites Course Code Course Coordinator(s)

More information

CH 331 Syllabus Fall 2012

CH 331 Syllabus Fall 2012 Instructor Information: Dr. Daniel J. T. Myles Office: Gilbert Hall 145 Phone: 541-737-6756 E-mail: daniel.myles@oregonstate.edu All course information, updates, and announcements are posted via Blackboard

More information

Modern Physics (PHY 371)

Modern Physics (PHY 371) Modern Physics (PHY 371) Instructor: Paulo Bedaque, PSC, room 3147. My email is the best way to contact me in an emergency including absence from an exam. The best way to ask a physics question is trough

More information

HEAT AND THERMODYNAMICS PHY 522 Fall, 2010

HEAT AND THERMODYNAMICS PHY 522 Fall, 2010 HEAT AND THERMODYNAMICS PHY 522 Fall, 2010 I. INSTRUCTOR Professor Lance De Long Office: CP363 (257-4775) Labs: CP75, CP158 (257-8883), ASTeCC A041 Office Hours: M 10:30-11:30 a.m.; T 8:30-9:30 a.m. II.

More information

Office Hours: Dr. Kruse: Tue, 14:30-15:30 & Fri, 10:30-11:30 in ABB 142 (Chemistry Help Centre) TA's: tutorial time

Office Hours: Dr. Kruse: Tue, 14:30-15:30 & Fri, 10:30-11:30 in ABB 142 (Chemistry Help Centre) TA's: tutorial time Chem 2P03 & ChemBio 2P03 Course Outline - Fall 2016 Applications of Physical Chemistry Prof. P. Kruse, ABB-263, x23480, pkruse@mcmaster.ca http://www.chemistry.mcmaster.ca/kruse/ version 16 August 2016

More information

ORANGE COAST COLLEGE

ORANGE COAST COLLEGE ORANGE COAST COLLEGE Chemistry 185: General Chemistry Spring 2017 16 weeks: 01/30 05/28/2016 Section: 35652 (Lecture) 5 Units Lecture: M/W 12:45 pm 2:10 pm Room: CHEM 207 Labs: 30475: M/W 7:50 am 11:00

More information

I. Instructor: Dave Bugay

I. Instructor: Dave Bugay Chemistry 1412: General Chemistry II CHEM 1412: General Chemistry II (4-3-1) Topics included in this course are liquids and solids, solutions, ionization theory, chemical equilibrium, thermodynamics, kinetics,

More information

CHEMISTRY 2H Honors General Chemistry I Fall 2013 Course Syllabus

CHEMISTRY 2H Honors General Chemistry I Fall 2013 Course Syllabus Instructor: Erik Menke CHEMISTRY 2H Honors General Chemistry I Fall 2013 Course Syllabus Meeting Times and Location: MWF 9:30 to 10:20, COB 263 Office Hours: Drop by my office any time if you have questions

More information

0703C101 General Chemistry I(With Lab)

0703C101 General Chemistry I(With Lab) Summer 2019 0703C101 General Chemistry I(With Lab) Instructor: Stefan Kautsch Time: Monday through Friday (June 17, 2019 - July 19, 2019) Office Hours: 2 hours (according to the teaching schedule) Contact

More information

Physics Fundamentals of Astronomy

Physics Fundamentals of Astronomy Physics 1303.010 Fundamentals of Astronomy Course Information Meeting Place & Time ASU Planetarium (VIN P-02) TR 09:30-10:45 AM Spring 2018 Instructor Dr. Kenneth Carrell Office: VIN 119 Phone: (325) 942-2136

More information

CHEM 235 Physical Chemistry II NJIT Spring Semester, 2016

CHEM 235 Physical Chemistry II NJIT Spring Semester, 2016 CHEM 235 Physical Chemistry II NJIT Spring Semester, 2016 Prerequisites: Textbook: Chem 231 or equivalent, Math 211 or 213, Phys 111 P. W. Atkins and J. de Paula Physical Chemistry 10th Edition, Freeman

More information

CALIFORNIA STATE UNIVERSITY, East Bay Department of Chemistry. Chemistry 1615 Survey of Basic Chemistry for Healthier Living Fall Quarter, 2014

CALIFORNIA STATE UNIVERSITY, East Bay Department of Chemistry. Chemistry 1615 Survey of Basic Chemistry for Healthier Living Fall Quarter, 2014 CALIFORNIA STATE UNIVERSITY, East Bay Department of Chemistry Chemistry 1615 Survey of Basic Chemistry for Healthier Living Fall Quarter, 2014 Dr. Al Baecker Lecture Schedule: al.baecker@csueastbay.edu

More information

PHY 6500 Thermal and Statistical Physics - Fall 2017

PHY 6500 Thermal and Statistical Physics - Fall 2017 PHY 6500 Thermal and Statistical Physics - Fall 2017 Time: M, F 12:30 PM 2:10 PM. From 08/30/17 to 12/19/17 Place: Room 185 Physics Research Building Lecturer: Boris Nadgorny E-mail: nadgorny@physics.wayne.edu

More information

MATH 251 Ordinary and Partial Differential Equations Summer Semester 2017 Syllabus

MATH 251 Ordinary and Partial Differential Equations Summer Semester 2017 Syllabus MATH 251 Ordinary and Partial Differential Equations Summer Semester 2017 Syllabus Course Description: Ordinary and Partial Differential Equations. First and second order equations; series solutions; Laplace

More information

Important Dates. Non-instructional days. No classes. College offices closed.

Important Dates. Non-instructional days. No classes. College offices closed. Instructor: Dr. Alexander Krantsberg Email: akrantsberg@nvcc.edu Phone: 703-845-6548 Office: Bisdorf, Room AA 352 Class Time: Tuesdays and Thursdays 7:30 PM - 9:20 PM. Classroom: Bisdorf / AA 467 Office

More information

ME 200 Final Exam December 12, :00 a.m. to 10:00 a.m.

ME 200 Final Exam December 12, :00 a.m. to 10:00 a.m. CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 1:30 p.m. 3:30 p.m. Mongia Abraham Sojka Bae Naik ME 200 Final Exam December 12, 2011 8:00 a.m. to 10:00 a.m. INSTRUCTIONS

More information

FACULTY OF PHARMACY UNIVERSITY OF TORONTO. COURSE LENGTH: FALL x ; SPRING: ; YEAR:

FACULTY OF PHARMACY UNIVERSITY OF TORONTO. COURSE LENGTH: FALL x ; SPRING: ; YEAR: FACULTY OF PHARMACY UNIVERSITY OF TORONTO YEAR: 2010-2011 COURSE NUMBER: COURSE TITLE: CHM 223H1 Physical Chemistry For Pharmacy REQUIRED: x ELECTIVE: COURSE LENGTH: FALL x ; SPRING: ; YEAR: NUMBER OF

More information

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS NONCALCULUS BASED PHYSICS I PHYS 2010

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS NONCALCULUS BASED PHYSICS I PHYS 2010 PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS NONCALCULUS BASED PHYSICS I PHYS 2010 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Revised: Spring 2011 Catalog Course Description: This

More information

COURSE SYLLABUS AND INSTRUCTOR PLAN GENERAL INORGANIC CHEMISTRY I CHEM Dr. Vanessa Castleberry

COURSE SYLLABUS AND INSTRUCTOR PLAN GENERAL INORGANIC CHEMISTRY I CHEM Dr. Vanessa Castleberry WACO, TEXAS COURSE SYLLABUS AND INSTRUCTOR PLAN GENERAL INORGANIC CHEMISTRY I CHEM - 1411-50 Dr. Vanessa Castleberry Spring 2012 Course Description: Covers the fundamental laws, theories, and concepts

More information

Physics 18, Introductory Physics I for Biological Sciences Spring 2010

Physics 18, Introductory Physics I for Biological Sciences Spring 2010 Physics 18 page 1/6 Physics 18, Introductory Physics I for Biological Sciences Spring 2010 - Course Description - Instructor: Dr. Derrick Kiley Office: AOB 176; Office Phone 209 228-3076 E-mail Address:

More information

REFERENCE TEXTBOOKS MATERIAL AND ENERGY BALANCE: THERMODYNAMICS: TRANSPORT: KINETICS AND REACTOR DESIGN:

REFERENCE TEXTBOOKS MATERIAL AND ENERGY BALANCE: THERMODYNAMICS: TRANSPORT: KINETICS AND REACTOR DESIGN: REFERENCE TEXTBOOKS MATERIAL AND ENERGY BALANCE: Elementary Principles of Chemical Processes, 4 th Edition - Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard THERMODYNAMICS: Introduction to Chemical

More information

Astronomy Course Syllabus

Astronomy Course Syllabus Astronomy Course Syllabus Course: ASTR& 100 Title: Survey of Astronomy Section: DE Term: 2017 Spring Days: Online Time: Online Location: Online Instructor: Julie Masura Phone None E-mail: Canvas intranet

More information

GEORGETOWN UNIVERSITY Department of Chemistry General Chemistry I - Summer General Information for CHEM 001 and CHEM 009

GEORGETOWN UNIVERSITY Department of Chemistry General Chemistry I - Summer General Information for CHEM 001 and CHEM 009 GEORGETOWN UNIVERSITY Department of Chemistry General Chemistry I - Summer 2018 General Information for CHEM 001 and CHEM 009 Prof. Diana C. Glick (Lecture and Lab) Regents Hall 211A 687-5961 glickdc@georgetown.edu

More information

CHE 371: Kinetics and Thermodynamics Fall 2008

CHE 371: Kinetics and Thermodynamics Fall 2008 CHE 371: Kinetics and Thermodynamics Fall 2008 Class Meetings: Lecture: M, T, W, F 9:00 AM, Olin 103 Laboratory: T, W 1:30-5:20 PM, R 2:30-6:20 PM Instructor: Prof. Amanda Nienow, Nobel 106C, 933-7327,

More information

Ph 1a Fall General Information

Ph 1a Fall General Information Ph 1a Fall 2017 General Information Lecturer Jonas Zmuidzinas 306 Cahill, Ext. 6229, jonas@caltech.edu Lectures are on Wednesdays and Fridays, 11:00-11:55 am, in 201 E. Bridge. Course Administrator Meagan

More information

CHEMISTRY 121 FG Spring 2013 Course Syllabus Rahel Bokretsion Office 3624, Office hour Tuesday 11:00 AM-12:00 PM

CHEMISTRY 121 FG Spring 2013 Course Syllabus Rahel Bokretsion Office 3624, Office hour Tuesday 11:00 AM-12:00 PM CHEMISTRY 121 FG Spring 2013 Course Syllabus Rahel Bokretsion rbokretsion@ccc.edu Office 3624, Office hour Tuesday 11:00 AM-12:00 PM GENERAL COURSE INFORMATION Required Material: Introductory Chemistry

More information

Instructor Dr. Tomislav Pintauer Mellon Hall Office Hours: 1-2 pm on Thursdays and Fridays, and by appointment.

Instructor Dr. Tomislav Pintauer Mellon Hall Office Hours: 1-2 pm on Thursdays and Fridays, and by appointment. Course Description and Objectives The purpose of this course is to introduce students to the basic facts and principles of chemistry. Our approach provides a sound foundation by teaching students that

More information

Chemistry 103: Basic General Chemistry (4.0 Credits) Fall Semester Prerequisites: Placement or concurrent enrollment in DEVM F105 or higher

Chemistry 103: Basic General Chemistry (4.0 Credits) Fall Semester Prerequisites: Placement or concurrent enrollment in DEVM F105 or higher Chemistry 103: Basic General Chemistry (4.0 Credits) Fall Semester 2017 Instructor: Dr. Kriya L. Dunlap Office: WRRB 230 Telephone: 474-2766 (office) Email: kldunlap@alaska.edu Lecture: MWF 3:30 4:30,

More information

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m.

ME 200 Final Exam December 14, :00 a.m. to 10:00 a.m. CIRCLE YOUR LECTURE BELOW: First Name Last Name 7:30 a.m. 8:30 a.m. 10:30 a.m. 11:30 a.m. Boregowda Boregowda Braun Bae 2:30 p.m. 3:30 p.m. 4:30 p.m. Meyer Naik Hess ME 200 Final Exam December 14, 2015

More information

MSE 3050: Thermodynamics and Kinetics of Materials

MSE 3050: Thermodynamics and Kinetics of Materials University of Virginia, Department of Materials Science and Engineering Spring 2019, Tuesday and Thursday, 9:30 10:45 am Mechanical Engineering Building 339 MSE 3050: Thermodynamics and Kinetics of Materials

More information

CHEM 1420: Physical Chemistry 2 Thermodynamics, Statistical Mechanics, and Kinetics

CHEM 1420: Physical Chemistry 2 Thermodynamics, Statistical Mechanics, and Kinetics CHEM 1420: Physical Chemistry 2 Thermodynamics, Statistical Mechanics, and Kinetics Spring 2018 Term 2184 Lecture: TTh 9:30 10:45 228 Eberly Hall Recitation: T 4:00 4:50 pm 307 Eberly Sean Garrett-Roe

More information

CHEM 102 Fall 2012 GENERAL CHEMISTRY

CHEM 102 Fall 2012 GENERAL CHEMISTRY CHEM 102 Fall 2012 GENERAL CHEMISTRY California State University, Northridge Lecture: Instructor: Dr. Thomas Minehan Office: Science 2314 Office hours: TR, 12:00-1:00 pm Phone: (818) 677-3315 E.mail: thomas.minehan@csun.edu

More information

Physics 1304 Astronomy of the Solar System

Physics 1304 Astronomy of the Solar System Physics 1304 Astronomy of the Solar System Course Information Fall 2018 Instructor Dr. Kenneth Carrell Office: VIN 119 Phone: (325) 942-2136 Email: kenneth.carrell@angelo.edu Office Hours: MW 1-2 PM, TR

More information

WEST LOS ANGELES COLLEGE Introduction to General Chemistry CHEMISTRY 60 SYLLABUS; 5 units

WEST LOS ANGELES COLLEGE Introduction to General Chemistry CHEMISTRY 60 SYLLABUS; 5 units WEST LOS ANGELES COLLEGE Introduction to General Chemistry CHEMISTRY 60 SYLLABUS; 5 units SPRING 2014; Section 3492 Instructor Information Instructor E-mail Lecture Room MSA 005 Laboratory Session Room

More information

2012/2013 SEMESTER 01 SYLLABUS

2012/2013 SEMESTER 01 SYLLABUS 2012/2013 SEMESTER 01 SYLLABUS Course Name & Code Course Name Credit Lec Lab Tut Prerequisites CHM 241 Physical Chemistry 1 4 2 3 1 CHM 102 1. Course: CHM 241, Physical Chemistry Improving the students

More information

CHEMISTRY DEPARTMENT, PORTLAND STATE UNIVERSITY

CHEMISTRY DEPARTMENT, PORTLAND STATE UNIVERSITY CHEMISTRY DEPARTMENT, PORTLAND STATE UNIVERSITY CHEMISTRY 440/540, PHYSICAL CHEMISTRY. FALL, 2014 Venue: CR 250 Instructor: R. H. Simoyi (SB2 372) Syllabus: The chapters and page numbers referred to in

More information

Biophysical Chemistry CHEM348 and CHEM348L

Biophysical Chemistry CHEM348 and CHEM348L Biophysical Chemistry CHEM348 and CHEM348L Credits: 3 (CHEM 348), 1 (CHEM 348L) South Dakota State University, 015 Lecture: 9:00-9:50 am, MWF, SAV 07. Lab: -4:50 pm, Wed. SAV 378 or as stated in class.

More information

Chemistry Syllabus Fall Term 2017

Chemistry Syllabus Fall Term 2017 Chemistry 9 - Syllabus Fall Term 17 Date Lecture Number - General Subject Chapter W 8/30 F 9/1 1 - Introduction and orgo I review X - Review, friendly diagnostic exam M 9/4 2 - Orgo I review, exam highlights

More information

ChE 320: Chemical Engineering Thermodynamics

ChE 320: Chemical Engineering Thermodynamics Chemical Engineering all 2013 ChE 320: Chemical Engineering hermodynamics INSUCO: Dr. Brown ordel.brown@mail.wvu.edu OICE: ESB-163 (floor above the ELC) CLASS SCHEDULE AND LOCAION: CN ime Day Location

More information

AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL Required text: Evans, Partial Differential Equations second edition

AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL Required text: Evans, Partial Differential Equations second edition AMSC/MATH 673, CLASSICAL METHODS IN PDE, FALL 2018. MWF 2:00pm - 2:50pm MTH 0407 Instructor: M. Machedon Office: MTH 3311 e-mail: mxm@math.umd.edu Required text: Evans, Partial Differential Equations second

More information

EARTH 421: GEOCHEMISTRY 2

EARTH 421: GEOCHEMISTRY 2 EARTH 421: GEOCHEMISTRY 2 Course Syllabus 2012 Instructor: Carol Ptacek EIT 5001 tel.: 519-888-4567 ext. 32230 E-mail: ptacek@uwaterloo.ca Teaching assistants: Krista Paulson EIT 1012 tel.: 519-888-4567

More information

Angelina College Science and Mathematics Chemistry 1105 Introductory Chemistry Internet General Syllabus

Angelina College Science and Mathematics Chemistry 1105 Introductory Chemistry Internet General Syllabus I. BASIC COURSE INFORMATION: Angelina College Science and Mathematics Chemistry 1105 Introductory Chemistry Internet General Syllabus A. Course Description: 1. Basic laboratory experiments supporting theoretical

More information

Chem 3070: Thermodynamics and Kinetics. Spring 2013

Chem 3070: Thermodynamics and Kinetics. Spring 2013 Chem 3070: Thermodynamics and Kinetics. Spring 2013 Instructors Valeria Molinero, Associate Professor of Chemistry Yuqing Qiu, Graduate Student of Chemistry Timothy Gorey, Graduate Student of Chemistry

More information

: 6:00 7:15 PM SC2208 : 7:30 10:20 PM SC2208

: 6:00 7:15 PM SC2208 : 7:30 10:20 PM SC2208 Chem 1C-61 General Chemistry Course Outline Spring, 2016 Dr. Billie Lo (billielo@comcast.net) Lecture: TTh 6:00 7:15 PM SC2208 Laboratory: TTh 7:30 10:20 PM SC2208 Office Hours: T 5:00 6:00 PM S32 PREREQUISITE:

More information

Physics Fundamentals of Astronomy

Physics Fundamentals of Astronomy Physics 1303.010 Fundamentals of Astronomy Course Information Meeting Place & Time ASU Planetarium (VIN P-02) MWF 09:00-09:50 AM Spring 2017 Instructor Dr. Kenneth Carrell Office: VIN 119 Phone: (325)

More information

PHYS F212X FE1+FE2+FE3

PHYS F212X FE1+FE2+FE3 Syllabus for PHYS F212X FE1+FE2+FE3 General Physics II College of Natural Science and Mathematics University of Alaska Fairbanks Fall 2016 (8/29/2016 to 12/14/2016) Course Information: PHYS F212X FE1+FE2+FE3

More information

GEORGETOWN UNIVERSITY Department of Chemistry General Chemistry II - Summer General Information for CHEM 002 and CHEM 010

GEORGETOWN UNIVERSITY Department of Chemistry General Chemistry II - Summer General Information for CHEM 002 and CHEM 010 GEORGETOWN UNIVERSITY Department of Chemistry General Chemistry II - Summer 2018 General Information for CHEM 002 and CHEM 010 Prof. Diana C. Glick (Lecture and Lab) Regents Hall 211A 687-5961 glickdc@georgetown.edu

More information

Chemistry 12B Organic Chemistry. Spring 2016

Chemistry 12B Organic Chemistry. Spring 2016 Chemistry 12B Organic Chemistry Spring 2016 Instructor: Nada Khouderchah E-mail: khouderchahnada@fhda.edu Office hours and location: Tuesday from 5:00-5:50 pm and Thursday from 7:20 8:20 pm in the faculty

More information

Lehman College City University of New York Department of Chemistry. CHE 168 General Chemistry II

Lehman College City University of New York Department of Chemistry. CHE 168 General Chemistry II Lehman College City University of New York Department of Chemistry CHE 168 General Chemistry II Instructor Professor Marc S. Lazarus Office Hours: Wed. 10:00am-11:00am Office Location: Davis Hall 336 Telephone:

More information

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS GENERAL CHEMISTRY I CHEM 1110

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS GENERAL CHEMISTRY I CHEM 1110 PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS GENERAL CHEMISTRY I CHEM 1110 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Revised: Spring 2014 Catalog Course Description: Modern atomic

More information

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK NATURAL SCIENCES DEPARTMENT. SCC105: Introduction to Chemistry Fall I 2014

LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK NATURAL SCIENCES DEPARTMENT. SCC105: Introduction to Chemistry Fall I 2014 LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK NATURAL SCIENCES DEPARTMENT SCC105: Introduction to Chemistry Fall I 2014 Your Instructor's name Your Instructor's contact information Course Description:

More information

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS MECHANICS & HEAT W/ LAB II PHYS 1320

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS MECHANICS & HEAT W/ LAB II PHYS 1320 PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS MECHANICS & HEAT W/ LAB II PHYS 1320 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Date Revised: Spring 01 Catalog Course Description:

More information

Chemistry 330 Fall 2015 Organic Chemistry I

Chemistry 330 Fall 2015 Organic Chemistry I Chemistry 330 Fall 2015 Organic Chemistry I Instructor: John G. Kodet Contact Information: Office: Faraday Hall 335 Email: jkodet@niu.edu Office Hours: MW 2:00-3:00 pm, and by appointment Lecture: MWF

More information

General Chemistry 201 Section ABC Harry S. Truman College Spring Semester 2014

General Chemistry 201 Section ABC Harry S. Truman College Spring Semester 2014 Instructor: Michael Davis Office: 3226 Phone: 773 907 4718 Office Hours: Tues 9:00 12:00 Wed 1:00 3:00 Thurs 9:00 12:00 Email: mdavis@ccc.edu Website: http://faradaysclub.com http://ccc.blackboard.com

More information

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy;

MAE 320 HW 7B. 1e. For an isolated system, please circle the parameter which will change with time. (a) Total energy; MAE 320 HW 7B his comprehensive homework is due Monday, December 5 th, 206. Each problem is worth the points indicated. Copying of the solution from another is not acceptable. Multi-choice, multi-answer

More information

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 7. Entropy. by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 7 Entropy by Asst.Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics: An Engineering Approach, 5th ed.,

More information

Syllabus and Topics Thermal Physics I Fall 2007

Syllabus and Topics Thermal Physics I Fall 2007 Syllabus and Topics 33-341 Thermal Physics I Fall 2007 Robert F. Sekerka 6416 Wean Hall, Phone 412-268-2362 sekerka@cmu.edu http://sekerkaweb.phys.cmu.edu August 27, 2007 Class Schedule: This class is

More information

CHEM 1100 General Chemistry I: Summer 2019

CHEM 1100 General Chemistry I: Summer 2019 CHEM 1100 General Chemistry I: Summer 2019 Course Overview: This course provides an introduction to chemistry. We will explore the key concepts of the science of chemistry. Topics covered in this course

More information

Physics Fundamentals of Astronomy

Physics Fundamentals of Astronomy Physics 1303.010 Fundamentals of Astronomy Course Information Meeting Place & Time ASU Planetarium (VIN P-02) MWF 09:00-09:50 AM Instructor Dr. Kenneth Carrell Office: VIN 119 Phone: (325) 942-2136 Email:

More information

Important Dates. Non-instructional days. No classes. College offices closed.

Important Dates. Non-instructional days. No classes. College offices closed. Instructor: Dr. Alexander Krantsberg Email: akrantsberg@nvcc.edu Phone: 703-845-6548 Office: Bisdorf, Room AA 352 Class Time: Mondays and Wednesdays 12:30 PM - 1:45 PM. Classroom: Bisdorf / AA 354 Office

More information

Chemistry 020. Intersession 2007 Course Outline. Instructor: Kay Calvin ChB

Chemistry 020. Intersession 2007 Course Outline. Instructor: Kay Calvin ChB Chemistry 020 Intersession 2007 Course Outline Instructor: Kay Calvin ChB 117 E-mail: kcalvin@uwo.ca Course Website: http://instruct.uwo.ca/chemistry/020inter Course information will also be posted on

More information

CELL PHONES ALLOWED AS CALCULATORS

CELL PHONES ALLOWED AS CALCULATORS Los Angeles Trade-Technical College Fall 2013 Chemistry 101 (General Chemistry I), section 4075, 5 units Prerequisites: MATHEMATICS 125 (Intermediate Algebra) T-TH lecture 4:35 PM 6:00 PM MH 309, lab 6:10

More information

Prerequisite: Math 40 or Math 41B with a minimum grade of C, or the equivalent.

Prerequisite: Math 40 or Math 41B with a minimum grade of C, or the equivalent. MATH 80 Intermediate Algebra #0630 El Camino College Room: MCS 219A MTWTH 11:30 12:40pm Fall 2011 Instructor: GREG FRY email: gfry@elcamino.edu Voice Mail: 310-660-3573 (5220) Office: MCS 104U Office Hours:

More information

Spring 2015 MECH 2311 INTRODUCTION TO THERMAL FLUID SCIENCES

Spring 2015 MECH 2311 INTRODUCTION TO THERMAL FLUID SCIENCES Spring 2015 MECH 2311 INTRODUCTION TO THERMAL FLUID SCIENCES Course Description Instructor An introduction to basic concepts of thermodynamics and fluid mechanics to include properties, property relationships,

More information

THERMODYNAMICS (Date of document: 8 th March 2016)

THERMODYNAMICS (Date of document: 8 th March 2016) THERMODYNAMICS (Date of document: 8 th March 2016) Course Code : MEHD214 Course Status : Core Level : Diploma Semester Taught : 3 Credit : 4 Pre-requisites : None Assessments : Computerized homework 20

More information

Welcome to Chemistry 1A. This course in the first half of the General Chemistry course offered at RCC.

Welcome to Chemistry 1A. This course in the first half of the General Chemistry course offered at RCC. Chemistry 1A Syllabus Winter 2018 Welcome to Chemistry 1A, the first semester of General chemistry. Dr Kime 951-222-8285 Office: MTSC building 422 Ellen.Kime@rcc.edu http://websites.rcc.edu/kime/ Welcome

More information

The Regents Chemistry course includes the following topics:

The Regents Chemistry course includes the following topics: Welcome to The Physical Setting: Regents Chemistry Course Outline The Regents Chemistry course includes the following topics: 1. Introduction to Chemistry A. Definition B. Scientific Method C. Matter and

More information

Times/Room Friday 9:00 pm 3:00 pm Room B225 (lecture and laboratory) Course Semester Credit Total Course hours (lecture & lab)

Times/Room Friday 9:00 pm 3:00 pm Room B225 (lecture and laboratory) Course Semester Credit Total Course hours (lecture & lab) HOUSTON COMMUNITY COLLEGE NORTHWEST (ALIEF CAMPUS) COURSE OUTLINE FOR CHEM 1411 GENERAL CHEMISTRY I Class Number 13095 / Spring 2017 Discipline/Program Course Level Course Title Chemistry First Year (Freshman)

More information

SPRING 2014 BIOC 4224 Physical Chemistry for Biologists SYLLABUS INSTRUCTORS:

SPRING 2014 BIOC 4224 Physical Chemistry for Biologists SYLLABUS INSTRUCTORS: SPRING 2014 BIOC 4224 Physical Chemistry for Biologists SYLLABUS INSTRUCTORS: From Jan 13, 2014 - March 3, 2014 Dr. Jose L. Soulages, Professor E-mail: jose.soulages@okstate.edu Phone: 744-6212; Office:

More information