Generalized Shifted Inverse Iterations on Grassmann Manifolds 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Generalized Shifted Inverse Iterations on Grassmann Manifolds 1"

Transcription

1 Proceedings of the Sixteenth International Symposium on Mathematical Networks and Systems (MTNS 2004), Leuven, Belgium Generalized Shifted Inverse Iterations on Grassmann Manifolds 1 J. Jordan α, P.-A. Absil β and R. Sepulchre γ α Department of Mathematics, University of Würzburg, Würzburg, Germany. β School of Computational Science and Information Technology, Florida State University, Tallahassee FL , USA. γ Department of Electrical Engineering and Computer Science, Institut Monteore, B28 Université de Liège, B-4000 Liège, Belgium. Abstract: We discuss a family of feedback maps for the generalized Inverse Iterations on the Grassmann manifold. The xed points of the resulting algorithms correspond to the eigenspaces of a given matrix. A sucient condition for local convergence is given. 1 Introduction In many applications it is necessary to nd a p-dimensional eigenspace of a given matrix A. There exist several dierent strategies to design algorithms for eigenspace computation, see for example the approaches in [7, 8, 10]. A classical and very successful algorithm for the case p = 1 and A = A T is the Rayleigh quotient iteration (RQI). Its dynamics can be described on the projective space, see for example [4, 9, 11]. A block version of the RQI method for 1 p < n was proposed in [3]. The iteration was shown to induce an iteration on the Grassmann manifold (i.e. the set of p-dimensional subspaces of R n ) and was therefore called Grassmann- RQI. Assuming A = A T, the Grassmann-RQI is locally cubic convergent to a p-dimensional invariant subspace of A. 1 This paper presents research partially supported by the Belgian Program on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Oce for Science, Technology and Culture. This work was completed while the rst author was a guest at the University of Liege under a grant from the Control Training Site (CTS). The second author's work was supported by the National Science Foundation of the USA under Grant ACI and by the School of Computational Science and Information Technology of Florida State University.

2 2 The Grassmann-RQI can be interpreted as a shifted Inverse Iteration on the Grassmann manifold with a certain feedback control. In this paper we want to generalize this idea by using dierent feedback strategies instead of the Rayleigh quotient. We introduce a set of feedback laws which ensure that the corresponding algorithm is well-posed on the Grassmann manifold. Similar to the Grassmann-RQI eigenspaces are corresponding to the xed points of the algorithm. Furthermore we prove local convergence for a certain set of algorithms. The paper is organized as follows. In Section 2 we generalize the Grassmann- RQI. Therefore we introduce a set of feedback maps. In Section 3 we discussed the algebraic structure of the feedback maps. Section 4 deals with the singularities of the algorithm. The correspondence between xed points and eigenspaces is discussed in Section 5. We give sucient criteria for local convergence in Section 6. Finally, we give some concluding remarks in Section 7. 2 The generalized shifted Inverse Iteration The Grassmann Rayleigh Quotient Iteration described in [1, 3] is a subspace iteration on the Grassmann manifold Grass(p, n). It can can be interpreted as a discrete-time system with a certain feedback control. In this section we introduce a family of feedback controls which generalizes this idea. Note that we do not assume symmetry of the matrix A in this section. We use the following notation. With ST(p, n) we denote the set of real full rank n by p matrices. Note that ST(p, n) is open in R n p and has therefore, in a canonical way, a smooth manifold structure (called the noncompact Stiefel manifold). Let π be the canonical projection π : ST(p, n) Grass(p, n) that maps Y ST(p, n) to its column space. For any X, Y ST(p, n) exists M GL p (R) such that X = Y M if and only if π(x) = π(y ). Given an initial iterate Y 0 Grass(p, n), the Grassmann-RQI [3] computes a sequence of subspaces Y t = Φ R (Y t 1 ), t = 1,..., t final, where Φ R is dened as follows. Algorithm 2.1 (Grassmann-RQI mapping Φ R ) Given Y Grass(p, n), 1) Choose Y π 1 (Y), i.e. a matrix Y ST(p, n) with π(y ) = Y. 2) Solve the Sylvester equation AY + Y + R(Y ) = Y (1) with the Rayleigh quotient map R : Y (Y T Y ) 1 Y T AY. 3) Dene Φ R (Y) := Y + := π(y + ). The map Φ R is well dened under the following assumptions: (i) the Sylvester equation (1) admits one and only one solution, (ii) this solution has full rank and (iii) Y + is independent of the choice of Y π 1 (Y). One can show that assumptions (i) and (ii) holds for an open and dense subset of matrices Y ST(p, n).

3 3 Moreover, if (i) and (ii) are fullled then (iii) is fulllled as well. This is due to the following homogeneity property of R X ST(p, n), M GL p (R) : R(XM) = M 1 R(X)M. (2) We call a map F : ST(p, n) GL p (R) with Property (2) a feedback map and denote the set of all feedback maps with F. For any F F we dene the iteration mapping Φ F as follows. Algorithm 2.2 (Grassmann shifted Inverse Iteration mapping Φ F ) Given Y Grass(p, n), 1) Choose Y π 1 (Y). 2) Solve the Sylvester equation 3) Dene Φ F (Y) := Y + := π(y + ). AY + Y + F (Y ) = Y (3) We denote the corresponding iterative algorithm Y k = Φ F (Y k 1 ), the Generalized Shifted Inverse Iteration. Note that Property (2) ensures that the new iterate Y + does not depend on the choice of Y in algorithm step 1. It is possible to choose a time varying F F. This leads to a discrete-time control system Y 0 Grass(p, n), Y t+1 = Φ(F t, Y t ), F t F. (4) In this paper we consider algorithms of type (2.2) with xed F F. But the dynamic properties of (4) will be the aim of future work. 3 The algebra of feedback maps We have dened the Generalized Shifted Inverse Iteration for any feedback map F F. Obviously F is not empty, since the Rayleigh quotient map belongs to F. In this section we give some more examples and show that F has a rich algebraic structure. Theorem 3.1 With multiplication F G : X F (X)G(X), addition F + G : X F (X) + G(X), scalar multiplication λf : X λf (X), zero element X 0 R p p and one element X I R p p, F is a real algebra. Using Theorem (3.1) is not dicult to construct examples of feedback maps. In particular every algebraic combination of the following examples is an element of F. Examples 3.2 1) F 0. This choice of F leads to the (unshifted) Inverse Iteration on Grass(p, n).

4 4 2) The Rayleigh quotient map R : X (X T X) 1 X T AX is an element of F. Note that F := R gives Algorithm ) For W R n p the map F W : X (W T X) 1 W T AX dened for all X with W T X GL p (R) is in F. 4) Let F be a feedback map and f : ST(p, n) R be a map with f(xm) = f(x) for all X ST(p, n) and all M GL p (R). Then the map ff : X f(x)f (X) is an element of F. 5) Let B : ST(p, n) R n n be a map with B(XM) = B(X) for all X ST(p, n) and all M GL p (R). Then the map F B : X (X T X) 1 X T B(X)X is also element of F. One can construct an innite set of linear independent maps F α F. Therefore F has innite dimension as a vector space. 4 Singularities of Φ F In general, there may exist subspaces Y Grass(p, n) for which Φ F (Y) is not a well-dened element of Grass(p, n). This happens if and only if either Equation (3) fails to have an unique solution, or the unique solution fails to have full rank. Remarkably, under convenient conditions on F, Φ F is well dened on a generic subset of Grass(p, n). With M F we denote the set of all matrices Y ST(p, n) such that Equation (3) has a unique solution and this solution has full rank. If X ST(p, n) and Y ST(p, n) represent the same element of Grass(p, n) (i.e. π(x) = π(y )) then X M F if and only if Y M F. Therefore, the question if Φ F is well dened or not, does not depend on the choice of the representation Y of Y Grass(p, n). A reasonable assumption for F is to be a rational functions of the entries y ij of Y ST(p, n) as in the case of the generalized Rayleigh quotient map. Our results also hold for a wider class of feedback maps. We call a continuous map F : A B quasi open if for every S A with nonempty interior F (S) has nonempty interior in B. Theorem 4.1 Let F : R n p R p p rational or quasi open and continuous on ST(p, n). a) The set of matrices Y for which Equation (3) has a unique solution is open and dense, unless F λ p I for any eigenvalue λ p of A. b) π(m F ) is either open and dense in Grass(p, n), or empty. Note that the case π(m F ) = is rather exceptional and easy to verify. particular this is the case if F λ p I for any eigenvalue λ p of A. In 5 Correspondence between xed points and eigenspaces If the feedback law F is an element of F, then the xed points of Algorithm 2.2 are related to the eigenspaces of A. Let V be a xed point of the map

5 5 Φ F : Y Y +, then there exits M GL p (R) such that AY M Y MF (Y ) = Y. (5) Using Property (2) we get AY = Y P with P = (M 1 + F (Y M 1 )) R p p. Thus, Aπ(Y ) π(y ). Theorem 5.1 If Y Grass(p, n) is a xed point of Φ F then Y is an eigenspace of A. Conversely, if Y is an eigenspace of A, then Y is a xed point of Φ F provided that Y π(m F ). Observe that the unshifted algorithm (i.e. the choice F O) reduces to the Inverse Iteration. In this case the set of xed points and the set of eigenspaces of A coincide. In the shifted algorithm no new xed point is created but some eigenspaces may become singularities. This is for instance the case of the Grassmann-RQI. Its very nature makes every eigenspace a singularity of the algorithm, thereby accelerating the rate of convergence. Nevertheless, the Grassmann-RQI mapping Φ R has a continuous extension such that xed points of the extended map coincide with the eigenspaces. 6 Local convergence In the following we want to state a sucient condition on F which guarantees local convergence of Algorithm 2.2 for symmetric matrices A. To measure distances on Grass(p, n) we use d(x, Y) := Π X Π Y 2 where Π X denotes the orthogonal projection on X. Note that the topology induced on Grass(p, n) by the distance d(x, Y) is identical to the one induced by the canonical projection π : ST(p, n) Grass(p, n) (see [6]). Because the following theorem is stated in local coordinates we need some terminology and properties of the geometry on Grass(p, n). Let X Grass(p, n) be a xed element. We choose an orthogonal X π 1 (X ) and X R (n p) p such that Q := (X X ) O n (R). Furthermore, we use the notation ( ) Q T A11 A AQ = 12. (6) A 21 A 22 X is called spectral (with respect to A) if A 11 R p p and A 22 R (n p) (n p) have no eigenvalues in common. For Y Grass(p, n) which is not orthogonal to X (i.e. X T Y GL p (R) for Y π 1 (Y)), pick Ỹ π 1 (Y) and dene σ X (Y) = Ỹ (X T Ỹ ) 1. One easily veries that σ X (Y) is independent of the choice Ỹ π 1 (Y). Thus, the map K X : Grass(p, n) R (n p) p, Y X T σ X(Y) is well dened. Note that K X denes a coordinate chart for Grass(p, n). The distance of a point Y Grass(p, n) which is not orthogonal to X can be approximated in terms of the local coordinate K X (Y) by d(x, Y) = K X (Y) 2 + O( K X (Y) 3 2). (7)

6 6 For a deeper introduction to the geometry on Grass(p, n) see [1, 3, 2, 10]. The following theorem gives a sucient condition for local convergence of Algorithm 2.2. Theorem 6.1 Let A be a symmetric n by n matrix and X be a p-dimensional spectral eigenspace of A. Let X π 1 (X ) be orthogonal and θ > 0 a constant. Let F F be continuous with property F (σ X Y) X T AX 2 = O( K X (Y) θ 2), (8) for all Y in a neighborhood of X. The Grassmann shifted Inverse Iteration mapping Φ F admits a continuous extension on a neighborhood of X. The point X is an attractive xed point of the extended mapping, and the rate of convergence is θ + 1. In particular Theorem 6.1 gives locally cubic convergence for the Rayleigh quotient R(Y ) = (Y T Y ) 1 Y T AY. This result was already proved in [1]. It is possible to construct other maps F which fulll the conditions of the theorem. Nevertheless Condition (8) is certainly a very hard restriction on the choice of F. If one wants to apply Theorem 6.1 to prove cubic convergence close to a certain eigenspace X, F has to behave locally like the Rayleigh quotient map. On the other hand, since we have a freedom in the choice of F F, Algorithm 2.2 may open new possibilities to improve the global behavior of the iteration. 7 Conclusion and future work Given a matrix A R n n we have constructed a family of iterations dened on suciently large subsets of Grass(p, n). The xed points of the algorithms correspond to the p-dimensional eigenspaces of A. Therefore these algorithms may be used for eigenspace calculations. Furthermore, we state a condition for local convergence to the xed points. The Grassmann-RQI can be seen as a particular case with a constant control. In the case p = 1 (i.e. Grass(p, n) = RP n 1 ) the Grassmann-RQI reduces to the well-known Rayleigh quotient iteration which is an ideal shift-strategy in a certain sense and has some useful global properties ([4, 11]). In our future work we want to study control systems of type (4). In particular we want toinvestigate if the generalized Rayleigh quotient map R is (locally) an ideal choice compared with other possible shifts. Furthermore we want to construct feedback strategies which improve the global behavior. References [1] P.-A. Absil, Invariant Subspace Computation: A Geometric Approach, PhD Thesis, Liege (2003). [2] P.-A. Absil and R. Mahony and R. Sepulchre, Riemannian geometry of Grassmann manifolds with a view on algorithmic computation, Acta Appl. Math. 80, No 2, (2004), pp

7 REFERENCES 7 [3] P.-A. Absil, R. Mahony, R. Sepulchre and P. Van Dooren, A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces, SIAM Review, 44, No 1, (2002), pp [4] S. Batterson and J. Smillie, The dynamics of Rayleigh quotient iteration, SIAM J. Numer. Anal., 26 (1989), pp [5] S. Batterson and J. Smillie, Rayleigh quotient iteration for nonsymmetric matrices, Math. Comp., 55, No 191,(1990), pp [6] J. Ferrer, M.I. García, and F. Puerta, Dierential families of subspaces, Linear Algebra Appl., 199(1994), pp [7] U. Helmke, J. Moore, Optimization and Dynamical Systems, Springer- Verlag, New York, (1994). [8] K. Hüper, A calculus approach to matrix eigenvalue algorithms, Habilitationsschrift, Würzburg (2002). [9] I. C. F. Ipsen, Computing an eigenvector with inverse iteration, SIAM Rev. 39 (1997), pp [10] G.W. Stewart, Error and perturbation bounds for subspace associated with certain eigenvalue problems, Siam Review, 15, No 4, (1973), pp [11] B. N. Parlett, The Rayleigh Quotient Iteration and Some Generalizations for Nonnormal Matrices, Mathematics of Computation, 28, No 127, (1974), pp [12] P. Van Dooren, R. Sepulchre, 'Shift policies in QR like algorithms and feedback control of self-similar ows', Open Problems in Mathematical Systems and Control Theory (V. Blondel, E. Sontag, M. Vidyasagar and J.C. Willems; Eds.), Springer, London (1999), pp

Affine iterations on nonnegative vectors

Affine iterations on nonnegative vectors Affine iterations on nonnegative vectors V. Blondel L. Ninove P. Van Dooren CESAME Université catholique de Louvain Av. G. Lemaître 4 B-348 Louvain-la-Neuve Belgium Introduction In this paper we consider

More information

H 2 -optimal model reduction of MIMO systems

H 2 -optimal model reduction of MIMO systems H 2 -optimal model reduction of MIMO systems P. Van Dooren K. A. Gallivan P.-A. Absil Abstract We consider the problem of approximating a p m rational transfer function Hs of high degree by another p m

More information

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition) Vector Space Basics (Remark: these notes are highly formal and may be a useful reference to some students however I am also posting Ray Heitmann's notes to Canvas for students interested in a direct computational

More information

Numerical Methods I: Eigenvalues and eigenvectors

Numerical Methods I: Eigenvalues and eigenvectors 1/25 Numerical Methods I: Eigenvalues and eigenvectors Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 2, 2017 Overview 2/25 Conditioning Eigenvalues and eigenvectors How hard are they

More information

The nonsmooth Newton method on Riemannian manifolds

The nonsmooth Newton method on Riemannian manifolds The nonsmooth Newton method on Riemannian manifolds C. Lageman, U. Helmke, J.H. Manton 1 Introduction Solving nonlinear equations in Euclidean space is a frequently occurring problem in optimization and

More information

VERSAL DEFORMATIONS OF BILINEAR SYSTEMS UNDER OUTPUT-INJECTION EQUIVALENCE

VERSAL DEFORMATIONS OF BILINEAR SYSTEMS UNDER OUTPUT-INJECTION EQUIVALENCE PHYSCON 2013 San Luis Potosí México August 26 August 29 2013 VERSAL DEFORMATIONS OF BILINEAR SYSTEMS UNDER OUTPUT-INJECTION EQUIVALENCE M Isabel García-Planas Departamento de Matemàtica Aplicada I Universitat

More information

Definition (T -invariant subspace) Example. Example

Definition (T -invariant subspace) Example. Example Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Math 24 Calculus III Summer 25, Session II. Determine whether the given set is a vector space. If not, give at least one axiom that is not satisfied. Unless otherwise stated,

More information

Ph.D. Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2) EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified.

Ph.D. Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2) EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified. PhD Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2 EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified Problem 1 [ points]: For which parameters λ R does the following system

More information

UMIACS-TR July CS-TR 2721 Revised March Perturbation Theory for. Rectangular Matrix Pencils. G. W. Stewart.

UMIACS-TR July CS-TR 2721 Revised March Perturbation Theory for. Rectangular Matrix Pencils. G. W. Stewart. UMIAS-TR-9-5 July 99 S-TR 272 Revised March 993 Perturbation Theory for Rectangular Matrix Pencils G. W. Stewart abstract The theory of eigenvalues and eigenvectors of rectangular matrix pencils is complicated

More information

Optimization on the Grassmann manifold: a case study

Optimization on the Grassmann manifold: a case study Optimization on the Grassmann manifold: a case study Konstantin Usevich and Ivan Markovsky Department ELEC, Vrije Universiteit Brussel 28 March 2013 32nd Benelux Meeting on Systems and Control, Houffalize,

More information

ISOLATED SEMIDEFINITE SOLUTIONS OF THE CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATION

ISOLATED SEMIDEFINITE SOLUTIONS OF THE CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATION ISOLATED SEMIDEFINITE SOLUTIONS OF THE CONTINUOUS-TIME ALGEBRAIC RICCATI EQUATION Harald K. Wimmer 1 The set of all negative-semidefinite solutions of the CARE A X + XA + XBB X C C = 0 is homeomorphic

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

II. DIFFERENTIABLE MANIFOLDS. Washington Mio CENTER FOR APPLIED VISION AND IMAGING SCIENCES

II. DIFFERENTIABLE MANIFOLDS. Washington Mio CENTER FOR APPLIED VISION AND IMAGING SCIENCES II. DIFFERENTIABLE MANIFOLDS Washington Mio Anuj Srivastava and Xiuwen Liu (Illustrations by D. Badlyans) CENTER FOR APPLIED VISION AND IMAGING SCIENCES Florida State University WHY MANIFOLDS? Non-linearity

More information

Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds

Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds John Douglas Moore Department of Mathematics University of California Santa Barbara, CA, USA 93106 e-mail: moore@math.ucsb.edu

More information

Computational Methods. Eigenvalues and Singular Values

Computational Methods. Eigenvalues and Singular Values Computational Methods Eigenvalues and Singular Values Manfred Huber 2010 1 Eigenvalues and Singular Values Eigenvalues and singular values describe important aspects of transformations and of data relations

More information

LECTURE 8: THE SECTIONAL AND RICCI CURVATURES

LECTURE 8: THE SECTIONAL AND RICCI CURVATURES LECTURE 8: THE SECTIONAL AND RICCI CURVATURES 1. The Sectional Curvature We start with some simple linear algebra. As usual we denote by ( V ) the set of 4-tensors that is anti-symmetric with respect to

More information

LECTURE VI: SELF-ADJOINT AND UNITARY OPERATORS MAT FALL 2006 PRINCETON UNIVERSITY

LECTURE VI: SELF-ADJOINT AND UNITARY OPERATORS MAT FALL 2006 PRINCETON UNIVERSITY LECTURE VI: SELF-ADJOINT AND UNITARY OPERATORS MAT 204 - FALL 2006 PRINCETON UNIVERSITY ALFONSO SORRENTINO 1 Adjoint of a linear operator Note: In these notes, V will denote a n-dimensional euclidean vector

More information

A Finite Element Method for an Ill-Posed Problem. Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D Halle, Abstract

A Finite Element Method for an Ill-Posed Problem. Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D Halle, Abstract A Finite Element Method for an Ill-Posed Problem W. Lucht Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D-699 Halle, Germany Abstract For an ill-posed problem which has its origin

More information

Rank-Constrainted Optimization: A Riemannian Manifold Approach

Rank-Constrainted Optimization: A Riemannian Manifold Approach Ran-Constrainted Optimization: A Riemannian Manifold Approach Guifang Zhou1, Wen Huang2, Kyle A. Gallivan1, Paul Van Dooren2, P.-A. Absil2 1- Florida State University - Department of Mathematics 1017 Academic

More information

LECTURE VII: THE JORDAN CANONICAL FORM MAT FALL 2006 PRINCETON UNIVERSITY. [See also Appendix B in the book]

LECTURE VII: THE JORDAN CANONICAL FORM MAT FALL 2006 PRINCETON UNIVERSITY. [See also Appendix B in the book] LECTURE VII: THE JORDAN CANONICAL FORM MAT 204 - FALL 2006 PRINCETON UNIVERSITY ALFONSO SORRENTINO [See also Appendix B in the book] 1 Introduction In Lecture IV we have introduced the concept of eigenvalue

More information

Optimal Scaling of Companion Pencils for the QZ-Algorithm

Optimal Scaling of Companion Pencils for the QZ-Algorithm Optimal Scaling of Companion Pencils for the QZ-Algorithm D Lemonnier, P Van Dooren 1 Introduction Computing roots of a monic polynomial may be done by computing the eigenvalues of the corresponding companion

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Group Theory. 1. Show that Φ maps a conjugacy class of G into a conjugacy class of G.

Group Theory. 1. Show that Φ maps a conjugacy class of G into a conjugacy class of G. Group Theory Jan 2012 #6 Prove that if G is a nonabelian group, then G/Z(G) is not cyclic. Aug 2011 #9 (Jan 2010 #5) Prove that any group of order p 2 is an abelian group. Jan 2012 #7 G is nonabelian nite

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors LECTURE 3 Eigenvalues and Eigenvectors Definition 3.. Let A be an n n matrix. The eigenvalue-eigenvector problem for A is the problem of finding numbers λ and vectors v R 3 such that Av = λv. If λ, v are

More information

Math 315: Linear Algebra Solutions to Assignment 7

Math 315: Linear Algebra Solutions to Assignment 7 Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are

More information

. Consider the linear system dx= =! = " a b # x y! : (a) For what values of a and b do solutions oscillate (i.e., do both x(t) and y(t) pass through z

. Consider the linear system dx= =! =  a b # x y! : (a) For what values of a and b do solutions oscillate (i.e., do both x(t) and y(t) pass through z Preliminary Exam { 1999 Morning Part Instructions: No calculators or crib sheets are allowed. Do as many problems as you can. Justify your answers as much as you can but very briey. 1. For positive real

More information

1 Quasi-definite matrix

1 Quasi-definite matrix 1 Quasi-definite matrix The matrix H is a quasi-definite matrix, if there exists a permutation matrix P such that H qd P T H11 H HP = 1 H1, 1) H where H 11 and H + H1H 11 H 1 are positive definite. This

More information

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig Convergence analysis of Riemannian GaussNewton methods and its connection with the geometric condition number by Paul Breiding and

More information

L 2 Geometry of the Symplectomorphism Group

L 2 Geometry of the Symplectomorphism Group University of Notre Dame Workshop on Innite Dimensional Geometry, Vienna 2015 Outline 1 The Exponential Map on D s ω(m) 2 Existence of Multiplicity of Outline 1 The Exponential Map on D s ω(m) 2 Existence

More information

Tangent spaces, normals and extrema

Tangent spaces, normals and extrema Chapter 3 Tangent spaces, normals and extrema If S is a surface in 3-space, with a point a S where S looks smooth, i.e., without any fold or cusp or self-crossing, we can intuitively define the tangent

More information

1. Let r, s, t, v be the homogeneous relations defined on the set M = {2, 3, 4, 5, 6} by

1. Let r, s, t, v be the homogeneous relations defined on the set M = {2, 3, 4, 5, 6} by Seminar 1 1. Which ones of the usual symbols of addition, subtraction, multiplication and division define an operation (composition law) on the numerical sets N, Z, Q, R, C? 2. Let A = {a 1, a 2, a 3 }.

More information

SUMMARY OF MATH 1600

SUMMARY OF MATH 1600 SUMMARY OF MATH 1600 Note: The following list is intended as a study guide for the final exam. It is a continuation of the study guide for the midterm. It does not claim to be a comprehensive list. You

More information

In particular, if A is a square matrix and λ is one of its eigenvalues, then we can find a non-zero column vector X with

In particular, if A is a square matrix and λ is one of its eigenvalues, then we can find a non-zero column vector X with Appendix: Matrix Estimates and the Perron-Frobenius Theorem. This Appendix will first present some well known estimates. For any m n matrix A = [a ij ] over the real or complex numbers, it will be convenient

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Rayleigh Quotient Iteration Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 10 Solving Eigenvalue Problems All

More information

Optimization Theory. A Concise Introduction. Jiongmin Yong

Optimization Theory. A Concise Introduction. Jiongmin Yong October 11, 017 16:5 ws-book9x6 Book Title Optimization Theory 017-08-Lecture Notes page 1 1 Optimization Theory A Concise Introduction Jiongmin Yong Optimization Theory 017-08-Lecture Notes page Optimization

More information

Using the Karush-Kuhn-Tucker Conditions to Analyze the Convergence Rate of Preconditioned Eigenvalue Solvers

Using the Karush-Kuhn-Tucker Conditions to Analyze the Convergence Rate of Preconditioned Eigenvalue Solvers Using the Karush-Kuhn-Tucker Conditions to Analyze the Convergence Rate of Preconditioned Eigenvalue Solvers Merico Argentati University of Colorado Denver Joint work with Andrew V. Knyazev, Klaus Neymeyr

More information

2 so Q[ 2] is closed under both additive and multiplicative inverses. a 2 2b 2 + b

2 so Q[ 2] is closed under both additive and multiplicative inverses. a 2 2b 2 + b . FINITE-DIMENSIONAL VECTOR SPACES.. Fields By now you ll have acquired a fair knowledge of matrices. These are a concrete embodiment of something rather more abstract. Sometimes it is easier to use matrices,

More information

Numerical Methods I Eigenvalue Problems

Numerical Methods I Eigenvalue Problems Numerical Methods I Eigenvalue Problems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 October 2nd, 2014 A. Donev (Courant Institute) Lecture

More information

The Algebraic Multigrid Projection for Eigenvalue Problems; Backrotations and Multigrid Fixed Points. Sorin Costiner and Shlomo Ta'asan

The Algebraic Multigrid Projection for Eigenvalue Problems; Backrotations and Multigrid Fixed Points. Sorin Costiner and Shlomo Ta'asan The Algebraic Multigrid Projection for Eigenvalue Problems; Backrotations and Multigrid Fixed Points Sorin Costiner and Shlomo Ta'asan Department of Applied Mathematics and Computer Science The Weizmann

More information

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND

More information

INVESTIGATING THE NUMERICAL RANGE AND Q-NUMERICAL RANGE OF NON SQUARE MATRICES. Aikaterini Aretaki, John Maroulas

INVESTIGATING THE NUMERICAL RANGE AND Q-NUMERICAL RANGE OF NON SQUARE MATRICES. Aikaterini Aretaki, John Maroulas Opuscula Mathematica Vol. 31 No. 3 2011 http://dx.doi.org/10.7494/opmath.2011.31.3.303 INVESTIGATING THE NUMERICAL RANGE AND Q-NUMERICAL RANGE OF NON SQUARE MATRICES Aikaterini Aretaki, John Maroulas Abstract.

More information

The Rationality of Certain Moduli Spaces of Curves of Genus 3

The Rationality of Certain Moduli Spaces of Curves of Genus 3 The Rationality of Certain Moduli Spaces of Curves of Genus 3 Ingrid Bauer and Fabrizio Catanese Mathematisches Institut Universität Bayreuth, NW II D-95440 Bayreuth, Germany Ingrid.Bauer@uni-bayreuth.de,

More information

HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION)

HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION) HOMEWORK PROBLEMS FROM STRANG S LINEAR ALGEBRA AND ITS APPLICATIONS (4TH EDITION) PROFESSOR STEVEN MILLER: BROWN UNIVERSITY: SPRING 2007 1. CHAPTER 1: MATRICES AND GAUSSIAN ELIMINATION Page 9, # 3: Describe

More information

MATRIX LIE GROUPS AND LIE GROUPS

MATRIX LIE GROUPS AND LIE GROUPS MATRIX LIE GROUPS AND LIE GROUPS Steven Sy December 7, 2005 I MATRIX LIE GROUPS Definition: A matrix Lie group is a closed subgroup of Thus if is any sequence of matrices in, and for some, then either

More information

Math 215 HW #9 Solutions

Math 215 HW #9 Solutions Math 5 HW #9 Solutions. Problem 4.4.. If A is a 5 by 5 matrix with all a ij, then det A. Volumes or the big formula or pivots should give some upper bound on the determinant. Answer: Let v i be the ith

More information

Linear vector spaces and subspaces.

Linear vector spaces and subspaces. Math 2051 W2008 Margo Kondratieva Week 1 Linear vector spaces and subspaces. Section 1.1 The notion of a linear vector space. For the purpose of these notes we regard (m 1)-matrices as m-dimensional vectors,

More information

Linear Algebra in Actuarial Science: Slides to the lecture

Linear Algebra in Actuarial Science: Slides to the lecture Linear Algebra in Actuarial Science: Slides to the lecture Fall Semester 2010/2011 Linear Algebra is a Tool-Box Linear Equation Systems Discretization of differential equations: solving linear equations

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

MATH 829: Introduction to Data Mining and Analysis Principal component analysis

MATH 829: Introduction to Data Mining and Analysis Principal component analysis 1/11 MATH 829: Introduction to Data Mining and Analysis Principal component analysis Dominique Guillot Departments of Mathematical Sciences University of Delaware April 4, 2016 Motivation 2/11 High-dimensional

More information

Elements of linear algebra

Elements of linear algebra Elements of linear algebra Elements of linear algebra A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the linear combination c 1 v

More information

On solving linear systems arising from Shishkin mesh discretizations

On solving linear systems arising from Shishkin mesh discretizations On solving linear systems arising from Shishkin mesh discretizations Petr Tichý Faculty of Mathematics and Physics, Charles University joint work with Carlos Echeverría, Jörg Liesen, and Daniel Szyld October

More information

The line, the circle, and the ray. R + x r. Science is linear, is nt? But behaviors take place in nonlinear spaces. The line The circle The ray

The line, the circle, and the ray. R + x r. Science is linear, is nt? But behaviors take place in nonlinear spaces. The line The circle The ray Science is linear, is nt The line, the circle, and the ray Nonlinear spaces with efficient linearizations R. Sepulchre -- University of Cambridge Francqui Chair UCL, 05 Page rank algorithm Consensus algorithms

More information

Canonical lossless state-space systems: staircase forms and the Schur algorithm

Canonical lossless state-space systems: staircase forms and the Schur algorithm Canonical lossless state-space systems: staircase forms and the Schur algorithm Ralf L.M. Peeters Bernard Hanzon Martine Olivi Dept. Mathematics School of Mathematical Sciences Projet APICS Universiteit

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX Chapter 1. Metric Spaces 1. Definition and Examples. As the course progresses we will need to review some basic notions about

More information

3 Stability and Lyapunov Functions

3 Stability and Lyapunov Functions CDS140a Nonlinear Systems: Local Theory 02/01/2011 3 Stability and Lyapunov Functions 3.1 Lyapunov Stability Denition: An equilibrium point x 0 of (1) is stable if for all ɛ > 0, there exists a δ > 0 such

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Linear Algebra- Final Exam Review

Linear Algebra- Final Exam Review Linear Algebra- Final Exam Review. Let A be invertible. Show that, if v, v, v 3 are linearly independent vectors, so are Av, Av, Av 3. NOTE: It should be clear from your answer that you know the definition.

More information

An Iterative Procedure for Solving the Riccati Equation A 2 R RA 1 = A 3 + RA 4 R. M.THAMBAN NAIR (I.I.T. Madras)

An Iterative Procedure for Solving the Riccati Equation A 2 R RA 1 = A 3 + RA 4 R. M.THAMBAN NAIR (I.I.T. Madras) An Iterative Procedure for Solving the Riccati Equation A 2 R RA 1 = A 3 + RA 4 R M.THAMBAN NAIR (I.I.T. Madras) Abstract Let X 1 and X 2 be complex Banach spaces, and let A 1 BL(X 1 ), A 2 BL(X 2 ), A

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

APPPHYS217 Tuesday 25 May 2010

APPPHYS217 Tuesday 25 May 2010 APPPHYS7 Tuesday 5 May Our aim today is to take a brief tour of some topics in nonlinear dynamics. Some good references include: [Perko] Lawrence Perko Differential Equations and Dynamical Systems (Springer-Verlag

More information

1. Select the unique answer (choice) for each problem. Write only the answer.

1. Select the unique answer (choice) for each problem. Write only the answer. MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

More information

Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm

Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm Hartmut Führ fuehr@matha.rwth-aachen.de Lehrstuhl A für Mathematik, RWTH Aachen

More information

Technische Universität Ilmenau Institut für Mathematik

Technische Universität Ilmenau Institut für Mathematik Technische Universität Ilmenau Institut für Mathematik Preprint No. M 07/22 Accumulation of complex eigenvalues of indefinite Sturm- Liouville operators Behrndt, Jussi; Katatbeh, Qutaibeh; Trunk, Carsten

More information

On the mathematical background of Google PageRank algorithm

On the mathematical background of Google PageRank algorithm Working Paper Series Department of Economics University of Verona On the mathematical background of Google PageRank algorithm Alberto Peretti, Alberto Roveda WP Number: 25 December 2014 ISSN: 2036-2919

More information

A Continuation Approach to a Quadratic Matrix Equation

A Continuation Approach to a Quadratic Matrix Equation A Continuation Approach to a Quadratic Matrix Equation Nils Wagner nwagner@mecha.uni-stuttgart.de Institut A für Mechanik, Universität Stuttgart GAMM Workshop Applied and Numerical Linear Algebra September

More information

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition

Definition 1. A set V is a vector space over the scalar field F {R, C} iff. there are two operations defined on V, called vector addition 6 Vector Spaces with Inned Product Basis and Dimension Section Objective(s): Vector Spaces and Subspaces Linear (In)dependence Basis and Dimension Inner Product 6 Vector Spaces and Subspaces Definition

More information

SYMPLECTIC LEFSCHETZ FIBRATIONS ALEXANDER CAVIEDES CASTRO

SYMPLECTIC LEFSCHETZ FIBRATIONS ALEXANDER CAVIEDES CASTRO SYMPLECTIC LEFSCHETZ FIBRATIONS ALEXANDER CAVIEDES CASTRO. Introduction A Lefschetz pencil is a construction that comes from algebraic geometry, but it is closely related with symplectic geometry. Indeed,

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

JUST THE MATHS UNIT NUMBER 9.9. MATRICES 9 (Modal & spectral matrices) A.J.Hobson

JUST THE MATHS UNIT NUMBER 9.9. MATRICES 9 (Modal & spectral matrices) A.J.Hobson JUST THE MATHS UNIT NUMBER 9.9 MATRICES 9 (Modal & spectral matrices) by A.J.Hobson 9.9. Assumptions and definitions 9.9.2 Diagonalisation of a matrix 9.9.3 Exercises 9.9.4 Answers to exercises UNIT 9.9

More information

Congurations of periodic orbits for equations with delayed positive feedback

Congurations of periodic orbits for equations with delayed positive feedback Congurations of periodic orbits for equations with delayed positive feedback Dedicated to Professor Tibor Krisztin on the occasion of his 60th birthday Gabriella Vas 1 MTA-SZTE Analysis and Stochastics

More information

1 Vectors. Notes for Bindel, Spring 2017 Numerical Analysis (CS 4220)

1 Vectors. Notes for Bindel, Spring 2017 Numerical Analysis (CS 4220) Notes for 2017-01-30 Most of mathematics is best learned by doing. Linear algebra is no exception. You have had a previous class in which you learned the basics of linear algebra, and you will have plenty

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

1 Differentiable manifolds and smooth maps. (Solutions)

1 Differentiable manifolds and smooth maps. (Solutions) 1 Differentiable manifolds and smooth maps Solutions Last updated: March 17 2011 Problem 1 The state of the planar pendulum is entirely defined by the position of its moving end in the plane R 2 Since

More information

Average Reward Parameters

Average Reward Parameters Simulation-Based Optimization of Markov Reward Processes: Implementation Issues Peter Marbach 2 John N. Tsitsiklis 3 Abstract We consider discrete time, nite state space Markov reward processes which depend

More information

Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds

Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds Self-intersections of Closed Parametrized Minimal Surfaces in Generic Riemannian Manifolds John Douglas Moore Department of Mathematics University of California Santa Barbara, CA, USA 93106 e-mail: moore@math.ucsb.edu

More information

The Eigenvalue Problem: Perturbation Theory

The Eigenvalue Problem: Perturbation Theory Jim Lambers MAT 610 Summer Session 2009-10 Lecture 13 Notes These notes correspond to Sections 7.2 and 8.1 in the text. The Eigenvalue Problem: Perturbation Theory The Unsymmetric Eigenvalue Problem Just

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 25, Time Allowed: 150 Minutes Maximum Marks: 30

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 25, Time Allowed: 150 Minutes Maximum Marks: 30 NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 25, 2010 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions on the following page 1 INSTRUCTIONS

More information

Jordan normal form notes (version date: 11/21/07)

Jordan normal form notes (version date: 11/21/07) Jordan normal form notes (version date: /2/7) If A has an eigenbasis {u,, u n }, ie a basis made up of eigenvectors, so that Au j = λ j u j, then A is diagonal with respect to that basis To see this, let

More information

Algebra Exam Syllabus

Algebra Exam Syllabus Algebra Exam Syllabus The Algebra comprehensive exam covers four broad areas of algebra: (1) Groups; (2) Rings; (3) Modules; and (4) Linear Algebra. These topics are all covered in the first semester graduate

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview & Matrix-Vector Multiplication Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 20 Outline 1 Course

More information

Math 113 Homework 5. Bowei Liu, Chao Li. Fall 2013

Math 113 Homework 5. Bowei Liu, Chao Li. Fall 2013 Math 113 Homework 5 Bowei Liu, Chao Li Fall 2013 This homework is due Thursday November 7th at the start of class. Remember to write clearly, and justify your solutions. Please make sure to put your name

More information

LINEAR ALGEBRA MICHAEL PENKAVA

LINEAR ALGEBRA MICHAEL PENKAVA LINEAR ALGEBRA MICHAEL PENKAVA 1. Linear Maps Definition 1.1. If V and W are vector spaces over the same field K, then a map λ : V W is called a linear map if it satisfies the two conditions below: (1)

More information

(1.) For any subset P S we denote by L(P ) the abelian group of integral relations between elements of P, i.e. L(P ) := ker Z P! span Z P S S : For ea

(1.) For any subset P S we denote by L(P ) the abelian group of integral relations between elements of P, i.e. L(P ) := ker Z P! span Z P S S : For ea Torsion of dierentials on toric varieties Klaus Altmann Institut fur reine Mathematik, Humboldt-Universitat zu Berlin Ziegelstr. 13a, D-10099 Berlin, Germany. E-mail: altmann@mathematik.hu-berlin.de Abstract

More information

1 Differentiable manifolds and smooth maps. (Solutions)

1 Differentiable manifolds and smooth maps. (Solutions) 1 Differentiable manifolds and smooth maps Solutions Last updated: February 16 2012 Problem 1 a The projection maps a point P x y S 1 to the point P u 0 R 2 the intersection of the line NP with the x-axis

More information

SQUARE ROOTS OF 2x2 MATRICES 1. Sam Northshield SUNY-Plattsburgh

SQUARE ROOTS OF 2x2 MATRICES 1. Sam Northshield SUNY-Plattsburgh SQUARE ROOTS OF x MATRICES Sam Northshield SUNY-Plattsburgh INTRODUCTION A B What is the square root of a matrix such as? It is not, in general, A B C D C D This is easy to see since the upper left entry

More information

Chapter Six. Newton s Method

Chapter Six. Newton s Method Chapter Six Newton s Method This chapter provides a detailed development of the archetypal second-order optimization method, Newton s method, as an iteration on manifolds. We propose a formulation of Newton

More information

MORSE HOMOLOGY. Contents. Manifolds are closed. Fields are Z/2.

MORSE HOMOLOGY. Contents. Manifolds are closed. Fields are Z/2. MORSE HOMOLOGY STUDENT GEOMETRY AND TOPOLOGY SEMINAR FEBRUARY 26, 2015 MORGAN WEILER 1. Morse Functions 1 Morse Lemma 3 Existence 3 Genericness 4 Topology 4 2. The Morse Chain Complex 4 Generators 5 Differential

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Contour integral solutions of Sylvester-type matrix equations

Contour integral solutions of Sylvester-type matrix equations Contour integral solutions of Sylvester-type matrix equations Harald K. Wimmer Mathematisches Institut, Universität Würzburg, 97074 Würzburg, Germany Abstract The linear matrix equations AXB CXD = E, AX

More information

From Wikipedia, the free encyclopedia

From Wikipedia, the free encyclopedia 1 of 8 27/03/2013 12:41 Quadratic form From Wikipedia, the free encyclopedia In mathematics, a quadratic form is a homogeneous polynomial of degree two in a number of variables. For example, is a quadratic

More information

Choose three of: Choose three of: Choose three of:

Choose three of: Choose three of: Choose three of: MATH Final Exam (Version ) Solutions July 8, 8 S. F. Ellermeyer Name Instructions. Remember to include all important details of your work. You will not get full credit (or perhaps even any partial credit)

More information

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY

SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY SOLVING MESH EIGENPROBLEMS WITH MULTIGRID EFFICIENCY KLAUS NEYMEYR ABSTRACT. Multigrid techniques can successfully be applied to mesh eigenvalue problems for elliptic differential operators. They allow

More information

2.3. VECTOR SPACES 25

2.3. VECTOR SPACES 25 2.3. VECTOR SPACES 25 2.3 Vector Spaces MATH 294 FALL 982 PRELIM # 3a 2.3. Let C[, ] denote the space of continuous functions defined on the interval [,] (i.e. f(x) is a member of C[, ] if f(x) is continuous

More information

Convergence of The Multigrid Method With A Wavelet. Abstract. This new coarse grid operator is constructed using the wavelet

Convergence of The Multigrid Method With A Wavelet. Abstract. This new coarse grid operator is constructed using the wavelet Convergence of The Multigrid Method With A Wavelet Coarse Grid Operator Bjorn Engquist Erding Luo y Abstract The convergence of the two-level multigrid method with a new coarse grid operator is studied.

More information