Origin of the Electrophoretic Force on DNA in a Nanopore

Size: px
Start display at page:

Download "Origin of the Electrophoretic Force on DNA in a Nanopore"

Transcription

1 Origin of the Electrophoretic Force on DNA in a Nanopore Stijn van Dorp 1 Ulrich F. Keyser 2, *Nynke H. Dekker 1, Cees Dekker 1, Serge G. Lemay 1 1 Kavli Institut of Nanoscience, Delft University of Technology, NL 2 Institut für Experimentelle Physik I, Universität Leipzig, D *Present Address: Cavendish Lab, University of Cambridge, UK

2 Outline Early experiments revisited (Nature Physics (2006)) Force on DNA in nanopores: numerical modeling and new experiments

3 DNA Tug of War Idea: put DNA in a nanopore and pull on it how cool is that? U. F. Keyser et al., Nature Physics (2006)

4 U. F. Keyser et al. Nature Physics 2, 473 (2006) First Measurements 40 Time (ms) 30 DNA in Pore Current (na) Position (µm) F = k ( Z 1 Z0) Controlled insertion of DNA strands one by one Exact number of DNA in the nanopore is known from ionic current measurement

5 Time-Resolved Events Conductance step indicates capture of DNA in nanopore Only when DNA is pulled taut the force changes Time to pull taut t is consistent with translocation of DNA

6 Force on DNA Linear force-voltage characteristic Force does not depend on distance nanopore-trap Extract the gradient and vary salt concentration

7 Salt Dependence of Force Slope (pn/mv) Nanopore diameter around ~6-10 nm KCl concentration (M) See e.g. Manning Q Rev Biophys 11, (1978), Laue et al. J.Pharm. Sci. 85, (1996), Long, Viovy, and Ajdari Biopolymers (1996), Keyser et al. Nature Physics 2, 473 (2006) Force is constant as ionic strength is varied From literature force is expected to decrease with increasing salt concentration Force/voltage conversion 0.23±0.02 pn/mv

8 Effective Charge Potential drops over nanopore Force on DNA F F q eff = ( q = ( q eff V = E( z) dz eff / a) E( z) dz / a) V effective charge/bp Slope effective charge Yes but

9 U. F. Keyser et al., Nature Physics 2, 473 (2006) What is missing here? The role of the nanopore (walls)...

10 Lots of Interest Recently Analytical calculations S. Ghosal Phys. Rev. E 74, (2006) Phys. Rev. E 76, (2007) Phys. Rev. Lett. 98, (2007) Molecular dynamics simulations A. Aksimentiev et al. Phys. Rev. E (2008) in press Talk yesterday

11 Vary Nanopore Diameter Task: increase nanopore diameter by at least a factor of ten

12 Increase Nanopore Diameter relative DNA area ~ 1:25 relative DNA area ~ 1: nm 80 nm DNA Detection of a single DNA molecule still possible? Yes should be at low salt concentration see Smeets PNAS (2008)

13 applied voltage (mv) DNA in a D=80 nm Nanopore current (na) time (s) Nanopore diameter ~80 nm Salt concentration M KCl current (na) data 20 point average time (s)

14 Force Measurements pn/mv 0.24 pn/mv 0.11 pn/mv 11 pn/mv 2in force (pn) 8 4 1in voltage (mv) Force on two DNA strands is doubled as expected DNA strands do not interact in large pores R > 15 nm

15 Change in Conductance G Nanopore diameter ~80 nm Salt concentration M KCl Usually 100 events are measured

16 Change in Conductance G Pore radius varied from 3 nm 45 nm Large pores: G is constant and lower Consistent with free translocation (open symbols )

17 Forces Dependence on Radius Force is proportional to voltage as expected For larger nanopore force is roughly halfed

18 Numerical Modeling Solve Poisson-Boltzmann equation numerically in 1D Electrostatic potential Φ and distribution of ions n ± : with as reduced potential Boundary conditions: insulating nanopore walls (uncharged) on DNA surface Simplification: access resistance is neglected

19 Potential Distribution Potential depends on radius of nanopore Calculated for bare charge of DNA 2e/bp In small nanopores a finite potential is observed despite boundary condition of zero charge

20 Co- and Counter-ion Distribution Counter-ions accumulate near DNA In small nanopores counter-ion cloud is compressed Co-ions are almost completely depleted In large nanopore almost bulk numbers

21 Flow Velocity We assume a no-slip boundary conditions Nanopore wall is uncharged Maximum flow velocity depends on distance between nanopore wall and DNA Drag force depends on nanopore radius F mech =-F elec =F bare -F drag depends on pore radius R

22 Relating Model to Experiments Combining Poisson Boltzmann and Stokes equation: Potential Φ(a) on DNA surface, Φ(R) Nanopore wall S. Ghosal PRE 76, (2007) Logarithmic dependence of F mech on nanopore radius explains slow variation with pore diameter

23 Nanopore Diameter Matters Force on DNA depends on pore diameter Change in pore diameter by factor 10 increases drag by a factor of two

24 Main Conclusion Potential on DNA surface and pore wall depend on pore radius R although DNA charge remains constant

25 Comparison: Model Data Force depends on nanopore radius R Our full PB model fits data when ion mobility is reduced

26 Summary Experimental prove that force on DNA depends on geometry of nanopore Hydrodynamic interactions have to be considered Numerical model qualitatively explains experiments For quantitative fitting mobility of counter ions have to be known MD simulations Aksimentiev et al.

27 1/f-Noise Sources in Nanopores Not only one origin of 1/f noise in nanopores Identified Nanobubbles (de-wetting) as ONE source of 1/f a -noise Smeets et al. PRL 2006 General Hooge relation for 1/f noise holds in nanopores Smeets et al. PNAS (2008) Sources of 1/f-noise see webpage with collection of papers

28 Funding Delft University of Technology FOM NWO DFG Emmy Noether Program Universität Leipzig

Origin of the Electrophoretic Force on DNA in Nanopores. Biological and Soft Systems - Cavendish Laboratory

Origin of the Electrophoretic Force on DNA in Nanopores. Biological and Soft Systems - Cavendish Laboratory Origin of the Electrophoretic Force on DNA in Nanopores Ulrich F. Keyser Biological and Soft Systems - Cavendish Laboratory Acknowledgements Delft Cees Dekker, Nynke H. Dekker, Serge G. Lemay R. Smeets,

More information

Supporting Information. Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore

Supporting Information. Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore Supporting Information Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore Stephanie J. Heerema, Leonardo Vicarelli, Sergii Pud, Raymond N. Schouten, Henny

More information

Nanopores: Solid-state nanopores for these experiments were produced by using the

Nanopores: Solid-state nanopores for these experiments were produced by using the Materials and Methods Nanopores: Solid-state nanopores for these experiments were produced by using the highly focused electron beam of a transmission electron microscope (TEM) to drill a single pore in

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.213.24 Detecting the translocation of DNA through a nanopore using graphene nanoribbons F. Traversi 1, C.Raillon 1, S. M. Benameur 2, K.Liu 1, S. Khlybov 1, M.

More information

Salt Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores

Salt Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores Salt Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores NANO LETTERS 2006 Vol. 6, No. 1 89-95 Ralph M. M. Smeets, Ulrich F. Keyser, Diego Krapf, Meng-Yue Wu, Nynke H. Dekker,

More information

Analyzing Ion channel Simulations

Analyzing Ion channel Simulations Analyzing Ion channel Simulations (Neher and Sakmann, Scientific American 1992) Single channel current (Heurteaux et al, EMBO 2004) Computational Patch Clamp (Molecular Dynamics) Atoms move according to

More information

Soft Matter and Biological Physics

Soft Matter and Biological Physics Dr. Ulrich F. Keyser - ufk20 (at) cam.ac.uk Soft Matter and Biological Physics Question Sheet Michaelmas 2011 Version: November 2, 2011 Question 0: Sedimentation Initially consider identical small particles

More information

Charge inversion accompanies DNA condensation. by multivalent ions. Construction, mechanics, and electronics. 11 May 2008.

Charge inversion accompanies DNA condensation. by multivalent ions. Construction, mechanics, and electronics. 11 May 2008. Charge inversion accompanies DNA condensation by multivalent ions DNA-based nanotechnology: Construction, mechanics, and electronics 11 May 2008 Serge Lemay Kavli Institute of Nanoscience Delft University

More information

Slowing down DNA Translocation through a Nanopore in Lithium Chloride

Slowing down DNA Translocation through a Nanopore in Lithium Chloride pubs.acs.org/nanolett Slowing down DNA Translocation through a Nanopore in Lithium Chloride Stefan W. Kowalczyk,, David B. Wells,, Aleksei Aksimentiev, and Cees Dekker*, Kavli Institute of Nanoscience,

More information

Electro kinetic Phenomena

Electro kinetic Phenomena Electro kinetic Phenomena Electro-osmosis Electrophoresis Gel electrophoresis, polymer dynamics in gels 3 Electric Double Layer In aqueous solutions we have to deal with a situations where (usually) every

More information

Molecular mechanism of selective transport across the Nuclear Pore Complex

Molecular mechanism of selective transport across the Nuclear Pore Complex Molecular mechanism of selective transport across the Nuclear Pore Complex David Winogradoff and Aleksei Aksimentiev Physics Department, University of Illinois at Urbana-Champaign May 16, 2017 The Nuclear

More information

Regulació electrostàtica de canals microfluídics i porus biològics. Jordi Faraudo Institut de Ciència de Materials de Barcelona

Regulació electrostàtica de canals microfluídics i porus biològics. Jordi Faraudo Institut de Ciència de Materials de Barcelona Regulació electrostàtica de canals microfluídics i porus biològics Jordi Faraudo Institut de Ciència de Materials de Barcelona A few (interesting?) examples of nanofluidic devices Electrostatic regulation

More information

Supporting information for. DNA Origami-Graphene Hybrid Nanopore for DNA Detection

Supporting information for. DNA Origami-Graphene Hybrid Nanopore for DNA Detection Supporting information for DNA Origami-Graphene Hybrid Nanopore for DNA Detection Amir Barati Farimani, Payam Dibaeinia, Narayana R. Aluru Department of Mechanical Science and Engineering Beckman Institute

More information

Nanopores and Nanofluidics for Single DNA Studies Derek Stein Department of Physics Brown University

Nanopores and Nanofluidics for Single DNA Studies Derek Stein Department of Physics Brown University Nanopores and Nanofluidics for Single DNA Studies Derek Stein Department of Physics Brown University Overview Motivation: biological, physical, and technological The program: develop and characterize new

More information

Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate

Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate Electro-Mechanical Conductance Modulation of a Nanopore Using a Removable Gate Shidi Zhao a, Laura Restrepo-Pérez b, Misha Soskine c, Giovanni Maglia c, Chirlmin Joo b, Cees Dekker b and Aleksei Aksimentiev

More information

arxiv:cond-mat/ v4 [cond-mat.soft] 3 Mar 2008

arxiv:cond-mat/ v4 [cond-mat.soft] 3 Mar 2008 Effective charge and free energy of DNA inside an ion channel Jingshan Zhang and B. I. Shklovskii Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455 (Dated: March 3, 28)

More information

Simulation of Nanopores in Capacitive Energy Extraction based on Double Layer Expansion (CDLE)

Simulation of Nanopores in Capacitive Energy Extraction based on Double Layer Expansion (CDLE) Simulation of Nanopores in Capacitive Energy Extraction based on Double Layer Expansion (CDLE) Emilio RuizReina 1, Félix Carrique 2, Ángel Delgado 3, María del Mar Fernández 3 1 Department of Applied Physics

More information

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores

Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Numerical Modeling of the Bistability of Electrolyte Transport in Conical Nanopores Long Luo, Robert P. Johnson, Henry S. White * Department of Chemistry, University of Utah, Salt Lake City, UT 84112,

More information

Identification of single nucleotides in MoS2 nanopores

Identification of single nucleotides in MoS2 nanopores SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.215.219 Identification of single nucleotides in MoS2 nanopores Jiandong Feng 1#, Ke Liu 1#, Roman D. Bulushev 1, Sergey Khlybov 1, Dumitru Dumcenco 2, Andras

More information

Supporting Information

Supporting Information Supporting Information Abnormal Ionic Current Rectification Caused by Reversed Electroosmotic flow under Viscosity Gradients across Thin Nanopores Yinghua Qiu, 1 * # Zuzanna S. Siwy, 2 and Meni Wanunu

More information

The Effect of Translocating Cylindrical Particles on the Ionic Current through a Nano-Pore

The Effect of Translocating Cylindrical Particles on the Ionic Current through a Nano-Pore University of Pennsylvania ScholarlyCommons Departmental Papers (MEAM) Department of Mechanical Engineering & Applied Mechanics February 27 The Effect of Translocating Cylindrical Particles on the Ionic

More information

Magnetic Torque Tweezers: measuring torsional stiffness in DNA and RecA DNA filaments

Magnetic Torque Tweezers: measuring torsional stiffness in DNA and RecA DNA filaments Magnetic Torque Tweezers: measuring torsional stiffness in DNA and RecA DNA filaments Lipfert, J., Kerssemakers, J. W., Jager, T. & Dekker, N. H. Magnetic torque tweezers: measuring torsional stiffness

More information

Electrolyte Concentration Dependence of Ion Transport through Nanochannels

Electrolyte Concentration Dependence of Ion Transport through Nanochannels Electrolyte Concentration Dependence of Ion Transport through Nanochannels Murat Bakirci mbaki001@odu.edu Yunus Erkaya yerka001@odu.edu ABSTRACT The magnitude of current through a conical nanochannel filled

More information

Nanofluidics and 2D Materials Based Nanosensors. Ivan Vlassiouk Oak Ridge National Laboratory, TN, USA

Nanofluidics and 2D Materials Based Nanosensors. Ivan Vlassiouk Oak Ridge National Laboratory, TN, USA Nanofluidics and 2D Materials Based Nanosensors Ivan Vlassiouk Oak Ridge National Laboratory, TN, USA Outline What are nanosensors and why do we need them? Learning from Nature is the key! Microfluidics

More information

Electrophoretic Mobility within a Confining Well

Electrophoretic Mobility within a Confining Well Electrophoretic Mobility within a Confining Well Tyler N. Shendruk Martin Bertrand Gary W. Slater University of Ottawa December 5, 2013 Free-Solution Electrophoresis: free-draining polyelectrolytes Free-Draining

More information

arxiv: v1 [cond-mat.soft] 21 Jun 2016

arxiv: v1 [cond-mat.soft] 21 Jun 2016 arxiv:166.6432v1 [cond-mat.soft] 21 Jun 216 Nanoparticle Translocation through Conical Nanopores: A Finite Element Study of Electrokinetic Transport Georg Rempfer, 1, a) Sascha Ehrhardt, 1 Christian Holm,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2011.88 Supporting Information Single-molecule transport across an individual biomimetic nuclear pore complex Stefan W. Kowalczyk, Larisa Kapinos, Timothy R.

More information

Todd Squires Aditya Khair

Todd Squires Aditya Khair The Francois Frenkiel Award Lecture: Fundamental aspects of Concentration Polarization Todd Squires Aditya Khair Chemical Engineering University of California, Santa Barbara Electrokinetic effects Diffuse

More information

Hydrodynamic Slip on DNA Observed by Optical Tweezers- Controlled Translocation Experiments with Solid-State and Lipid- Coated Nanopores

Hydrodynamic Slip on DNA Observed by Optical Tweezers- Controlled Translocation Experiments with Solid-State and Lipid- Coated Nanopores pubs.acs.org/nanolett Hydrodynamic Slip on DNA Observed by Optical Tweezers- Controlled Translocation Experiments with Solid-State and Lipid- Coated Nanopores Lukas Galla, Andreas J. Meyer, Andre Spiering,

More information

DNA Translocation through Graphene Nanopores

DNA Translocation through Graphene Nanopores DNA Translocation through Graphene Nanopores Grégory F. Schneider, Stefan W. Kowalczyk, Victor E. Calado, Grégory Pandraud, Henny W. Zandbergen, Lieven M.K. Vandersypen and Cees Dekker* Kavli Institute

More information

Distinguishing Single- and Double-Stranded Nucleic Acid Molecules Using Solid-State Nanopores

Distinguishing Single- and Double-Stranded Nucleic Acid Molecules Using Solid-State Nanopores Distinguishing Single- and Double-Stranded Nucleic Acid Molecules Using Solid-State Nanopores NANO LETTERS 2009 Vol. 9, No. 8 2953-2960 Gary M. Skinner, Michiel van den Hout, Onno Broekmans, Cees Dekker,

More information

Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale

Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale Experimental Observation of Nonlinear Ionic Transport at the Nanometer Scale NANO LETTERS 2006 Vol. 6, No. 11 2531-2535 Diego Krapf, Bernadette M. Quinn, Meng-Yue Wu, Henny W. Zandbergen, Cees Dekker,

More information

Direction- and Salt-Dependent Ionic Current Signatures for DNA Sensing with Asymmetric Nanopores

Direction- and Salt-Dependent Ionic Current Signatures for DNA Sensing with Asymmetric Nanopores Direction- and Salt-Dependent Ionic Current Signatures for DNA Sensing with Asymmetric Nanopores Kaikai Chen, 1,2 Nicholas A. W. Bell, 1, Jinglin Kong, 1 Yu Tian, 2 and Ulrich F. Keyser 1,* 1 Cavendish

More information

Mechanical Engineering, UCSB Electrokinetic Response of a Floating Bipolar Electrode in a Nanofluidic Channel

Mechanical Engineering, UCSB Electrokinetic Response of a Floating Bipolar Electrode in a Nanofluidic Channel Electrokinetic Response of a Floating Bipolar Electrode in a Nanofluidic Channel by Alex Eden, Karen Scida, Jan Eijkel, Sumita Pennathur, & Carl Meinhart 10/5/2017 + - Background: Bipolar Electrodes (BPEs)

More information

Super-sensitive Molecule-hugging Graphene Nanopores

Super-sensitive Molecule-hugging Graphene Nanopores Super-sensitive Molecule-hugging Graphene Nanopores Slaven Garaj 1, Song Liu 1,, Daniel Branton 3, and Jene A. Golovchenko 1, * 1 Department of Physics, Harvard University, Cambridge Massachusetts, 138,

More information

Phys498BIO; Prof. Paul Selvin Hw #9 Assigned Wed. 4/18/12: Due 4/25/08

Phys498BIO; Prof. Paul Selvin Hw #9 Assigned Wed. 4/18/12: Due 4/25/08 1. Ionic Movements Across a Permeable Membrane: The Nernst Potential. In class we showed that if a non-permeable membrane separates a solution with high [KCl] from a solution with low [KCl], the net charge

More information

Supporting Information. Molecular Dynamics Simulation of. DNA Capture and Transport in. Heated Nanopores

Supporting Information. Molecular Dynamics Simulation of. DNA Capture and Transport in. Heated Nanopores Supporting Information Molecular Dynamics Simulation of DNA Capture and Transport in Heated Nanopores Maxim Belkin and Aleksei Aksimentiev Department of Physics, University of Illinois at Urbana-Champaign

More information

Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope

Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope SUPPLEMENTARY INFORMATION Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope Johannes Rheinlaender and Tilman E. Schäffer Supplementary Figure S1 Supplementary

More information

The effective slip length and vortex formation in laminar flow over a rough surface

The effective slip length and vortex formation in laminar flow over a rough surface The effective slip length and vortex formation in laminar flow over a rough surface Anoosheh Niavarani and Nikolai V. Priezjev Movies and preprints @ http://www.egr.msu.edu/~niavaran A. Niavarani and N.V.

More information

Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun

Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun Electrokinetic assembly and manipulation II Lecture by Chung, Jae-Hyun Chung, Jae-Hyun, Mechanical Engineering, University of Washington Liu, Wing Kam, Mechanical Engineering, Northwestern University Liu,

More information

STRUCTURE OF IONS AND WATER AROUND A POLYELECTROLYTE IN A POLARIZABLE NANOPORE

STRUCTURE OF IONS AND WATER AROUND A POLYELECTROLYTE IN A POLARIZABLE NANOPORE International Journal of Modern Physics C Vol. 2, No. 9 (29) 1485 1492 c World Scientific Publishing Company STRUCTURE OF IONS AND WATER AROUND A POLYELECTROLYTE IN A POLARIZABLE NANOPORE LEI GUO and ERIK

More information

Referee Report Bell et al., Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore - MS NCOMMS

Referee Report Bell et al., Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore - MS NCOMMS Reviewers' comments: Reviewer #1 (Remarks to the Author): Referee Report Bell et al., Asymmetric dynamics of DNA entering and exiting a strongly confining nanopore - MS NCOMMS-16-30539 I have read the

More information

Graphene: A sub-nanometer trans-electrode membrane

Graphene: A sub-nanometer trans-electrode membrane 1 Graphene: A sub-nanometer trans-electrode membrane S. Garaj 1, W. Hubbard 2, A. Reina 3, J. Kong 4, D. Branton 5 & J.A. Golovchenko 1,2* Submitted 12 April 2010 to Nature, where it is under review. 1

More information

DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor

DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor Purdue University Purdue e-pubs Birck and NCN Publications Birck Nanotechnology Center June 2006 DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor Hung Chang Birck

More information

Translocation of RecA-Coated Double-Stranded DNA through Solid-State Nanopores

Translocation of RecA-Coated Double-Stranded DNA through Solid-State Nanopores Letter Subscriber access provided by TECHNICAL UNIV OF DELFT Translocation of RecA-Coated Double-Stranded DNA through Solid-State Nanopores R. M. M. Smeets, S. W. Kowalczyk, A. R. Hall, N. H. Dekker, and

More information

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( )

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature , ( ) 3.05 Nanomechanics of Materials and Biomaterials Thursday 04/05/07 Prof. C. Ortiz, MITDMSE I LECTURE 14: TE ELECTRICAL DOUBLE LAYER (EDL) Outline : REVIEW LECTURE #11 : INTRODUCTION TO TE ELECTRICAL DOUBLE

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

Supplementary information for

Supplementary information for Supplementary information for Transverse electric field dragging of DNA in a nanochannel Makusu Tsutsui, Yuhui He, Masayuki Furuhashi, Rahong Sakon, Masateru Taniguchi & Tomoji Kawai The Supplementary

More information

Chapter 2 Cellular Homeostasis and Membrane Potential

Chapter 2 Cellular Homeostasis and Membrane Potential Chapter 2 Cellular Homeostasis and Membrane Potential 2.1 Membrane Structure and Composition The human cell can be considered to consist of a bag of fluid with a wall that separates the internal, or intracellular,

More information

Lecture 6: High Voltage Gas Switches

Lecture 6: High Voltage Gas Switches Lecture 6: High Voltage Gas Switches Switching is a central problem in high voltage pulse generation. We need fast switches to generate pulses, but in our case, they must also hold off high voltages before

More information

Supporting Information. Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes

Supporting Information. Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes Supporting Information Three-Dimensional Super-Resolution Imaging of Single Nanoparticle Delivered by Pipettes Yun Yu,, Vignesh Sundaresan,, Sabyasachi Bandyopadhyay, Yulun Zhang, Martin A. Edwards, Kim

More information

Probing Access Resistance of Solid-State Nanopores with a Scanning-Probe Microscope Tip

Probing Access Resistance of Solid-State Nanopores with a Scanning-Probe Microscope Tip Scanning-Probe Microscopy Probing Access Resistance of Solid-State Nanopores with a Scanning-Probe Microscope Tip Changbae Hyun, Ryan Rollings, and Jiali Li * A n apparatus that integrates solid-state

More information

Supplemental Data for: Direct Observation of Translocation in Individual DNA Polymerase Complexes

Supplemental Data for: Direct Observation of Translocation in Individual DNA Polymerase Complexes Supplemental Data for: Direct Observation of Translocation in Individual DNA Polymerase Complexes Joseph M. Dahl 1, Ai H. Mai 1, Gerald M. Cherf 1, Nahid N. Jetha 4, Daniel R. Garalde 3, Andre Marziali

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 4 Electrophoresis Lecture - 1 Basis Concept in Electrophoresis

More information

Simulation of ionic current through the nanopore in a double-layered semiconductor

Simulation of ionic current through the nanopore in a double-layered semiconductor Home Search Collections Journals About Contact us My IOPscience Simulation of ionic current through the nanopore in a double-layered semiconductor membrane This article has been downloaded from IOPscience.

More information

Institut für Computerphysik U n i v e r s i t ä t S t u t t g a r t

Institut für Computerphysik U n i v e r s i t ä t S t u t t g a r t Institut für Computerphysik U n i v e r s i t ä t S t u t t g a r t Masterthesis A Realistic DNA Model For Electrokinetic Applications Tobias Rau WS/SS 2014/2015 23.10.2015 Erstberichter: Prof. Dr. C.

More information

An experimental result which confirm the fourth electrostatic force

An experimental result which confirm the fourth electrostatic force Proc. ESA Annual Meeting on Electrostatics 2008, Paper D3 1 An experimental result which confirm the fourth electrostatic force Katsuo Sakai Electrostatic Generator Research Center Yokohama Japan phone:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2013.221 Optoelectronic control of surface charge and translocation dynamics in solid- state nanopores Nicolas Di Fiori, Allison Squires, Daniel Bar, Tal Gilboa,

More information

Kelly Robinson 1 and Ravi Sharma 2

Kelly Robinson 1 and Ravi Sharma 2 Electrophoretic Mobility Estimated from the Transient Current in a Parallel Plate Cell Kelly Robinson 1 and Ravi Sharma 1 Electrostatic Answers LLC Rochester, NY 14450, USA email: Kelly.Robinson@ElectrostaticAnswers.com

More information

Temperature dependence of DNA translocations through solid-state nanopores

Temperature dependence of DNA translocations through solid-state nanopores Temperature dependence of DNA translocations through solid-state nanopores Daniel V Verschueren, Magnus P Jonsson and Cees Dekker Linköping University Post Print N.B.: When citing this work, cite the original

More information

Single molecule investigations of the phdependent interaction between nanoparticles and an a-hemolysin protein pore

Single molecule investigations of the phdependent interaction between nanoparticles and an a-hemolysin protein pore Single molecule investigations of the phdependent interaction between nanoparticles and an a-hemolysin protein pore Dr. Alina ASANDEI The Science Department of Alexandru Ioan Cuza University Iasi 2012

More information

Supporting Information for Conical Nanopores. for Efficient Ion Pumping and Desalination

Supporting Information for Conical Nanopores. for Efficient Ion Pumping and Desalination Supporting Information for Conical Nanopores for Efficient Ion Pumping and Desalination Yu Zhang, and George C. Schatz,, Center for Bio-inspired Energy Science, Northwestern University, Chicago, Illinois

More information

Supporting Information. DNA Base Detection Using a Single-Layer MoS 2

Supporting Information. DNA Base Detection Using a Single-Layer MoS 2 Supporting Information DNA Base Detection Using a Single-Layer MoS 2 Amir Barati Farimani, Kyoungmin Min, Narayana R. Aluru 1 Department of Mechanical Science and Engineering Beckman Institute for Advanced

More information

Module 8: "Stability of Colloids" Lecture 38: "" The Lecture Contains: Calculation for CCC (n c )

Module 8: Stability of Colloids Lecture 38:  The Lecture Contains: Calculation for CCC (n c ) The Lecture Contains: Calculation for CCC (n c ) Relation between surface charge and electrostatic potential Extensions to DLVO theory file:///e /courses/colloid_interface_science/lecture38/38_1.htm[6/16/2012

More information

Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels

Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels Presented at the COMSOL Conference 2008 Boston Dependence of Potential and Ion Distribution on Electrokinetic Radius in Infinite and Finite-length Nano-channels Jarrod Schiffbauer *,1, Josh Fernandez 2,

More information

Control of Charged Particles in a Virtual, Aqueous Nanopore by RF Electric Field

Control of Charged Particles in a Virtual, Aqueous Nanopore by RF Electric Field Control of Charged Particles in a Virtual, Aqueous Nanopore by RF Electric Field Predrag Krstic Physics Division, Oak Ridge National Laboratory Yale University SUPORT NGC, Moscow, September 011 1 In collaboration

More information

Molecular views on thermo-osmotic flows

Molecular views on thermo-osmotic flows Molecular views on thermo-osmotic flows Li Fu, Samy Merabia, Laurent Joly Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France http://ilm-perso.univ-lyon1.fr/~ljoly/

More information

Ionic Conductivity, Structural Deformation and Programmable Anisotropy of DNA Origami in Electric Field

Ionic Conductivity, Structural Deformation and Programmable Anisotropy of DNA Origami in Electric Field Article Subscriber access provided by UNIV OF CAMBRIDGE Ionic Conductivity, Structural Deformation and Programmable Anisotropy of DNA Origami in Electric Field Chen Yu Li, Elisa A. Hemmig, Jinglin Kong,

More information

Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths

Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths Supporting Information Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths Adrian Balan *1, Bartholomeus Machielse *1, David Niedzwiecki 1, Jianxun Lin

More information

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Hendrik Bluhm Andre Kruth Lotte Geck Carsten Degenhardt 1 0 Ψ 1 Quantum Computing

More information

CFD modeling of the electrical phenomena and the particle precipitation process of wet ESP in coaxial wire-tube configuration

CFD modeling of the electrical phenomena and the particle precipitation process of wet ESP in coaxial wire-tube configuration CFD modeling of the electrical phenomena and the particle precipitat process of wet ESP in coaxial wire-tube configurat Author 1 Sven Kaiser TU Dortmund Germany Sven.kaiser@bci.tudortmund.de Author 2 Prof.

More information

Current Rectification of a Single Charged Conical nanopore. Qi Liu, Peking University Mentor: Prof. Qi Ouyang and Yugangwang

Current Rectification of a Single Charged Conical nanopore. Qi Liu, Peking University Mentor: Prof. Qi Ouyang and Yugangwang Current Rectification of a Single Charged Conical nanopore Qi Liu, Peking University Mentor: Prof. Qi Ouyang and Yugangwang Biological Nanopores Biological ion channels are the principal nanodevices mediating

More information

arxiv: v1 [cond-mat.soft] 16 Nov 2014

arxiv: v1 [cond-mat.soft] 16 Nov 2014 Polyelectrolytes polarization in non-uniform electric fields Farnoush Farahpour 1, Fathollah Varnik 2, and Mohammad Reza Ejtehadi 1 1 Sharif University of Technology, Department of Physics, P.O. Box 11155-9161,

More information

The percentage of H 2 O 2 in the mixture of hydrogen peroxide and water that is used as a disinfectant can vary, but the percentage of hydrogen in

The percentage of H 2 O 2 in the mixture of hydrogen peroxide and water that is used as a disinfectant can vary, but the percentage of hydrogen in 5.2 Compounds and Chemical Bonds The percentage of H 2 O 2 in the mixture of hydrogen peroxide and water that is used as a disinfectant can vary, but the percentage of hydrogen in the compound water is

More information

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3)

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3) Separation Sciences 1. Introduction: Fundamentals of Distribution Equilibrium 2. Gas Chromatography (Chapter 2 & 3) 3. Liquid Chromatography (Chapter 4 & 5) 4. Other Analytical Separations (Chapter 6-8)

More information

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

Supplementary Figure 1. Supplementary Figure 1 Characterization of another locally gated PN junction based on boron

Supplementary Figure 1. Supplementary Figure 1 Characterization of another locally gated PN junction based on boron Supplementary Figure 1 Supplementary Figure 1 Characterization of another locally gated PN junction based on boron nitride and few-layer black phosphorus (device S1). (a) Optical micrograph of device S1.

More information

arxiv: v1 [cond-mat.stat-mech] 9 Feb 2010

arxiv: v1 [cond-mat.stat-mech] 9 Feb 2010 arxiv:12.1799v1 [cond-mat.stat-mech] 9 Feb 21 Controlling diffusive transport in confined geometries P.S. Burada Max-Planck Institute für Physik komplexer Systeme, Nöthnitzer Str. 38, 1187 Dresden, Germany

More information

Research Article MD Study of Solution Concentrations on Ion Distribution in a Nanopore-Based Device Inspired from Red Blood Cells

Research Article MD Study of Solution Concentrations on Ion Distribution in a Nanopore-Based Device Inspired from Red Blood Cells Computational and Mathematical Methods in Medicine Volume 2016, Article ID 2787382, 5 pages http://dx.doi.org/10.1155/2016/2787382 Research Article MD Study of Solution Concentrations on Ion Distribution

More information

Particle-Based Simulation of Bio-Electronic Systems

Particle-Based Simulation of Bio-Electronic Systems Particle-Based Simulation of Bio-Electronic Systems Alex Smolyanitsky, and Marco Saraniti Arizona State University Outline Particle-based Brownian dynamics simulations for bioelectronic systems Complex-field

More information

An electrokinetic LB based model for ion transport and macromolecular electrophoresis

An electrokinetic LB based model for ion transport and macromolecular electrophoresis An electrokinetic LB based model for ion transport and macromolecular electrophoresis Raffael Pecoroni Supervisor: Michael Kuron July 8, 2016 1 Introduction & Motivation So far an mesoscopic coarse-grained

More information

Supporting Text Z = 2Γ 2+ + Γ + Γ [1]

Supporting Text Z = 2Γ 2+ + Γ + Γ [1] Supporting Text RNA folding experiments are typically carried out in a solution containing a mixture of monovalent and divalent ions, usually MgCl 2 and NaCl or KCl. All three species of ions, Mg, M +

More information

Supporting information

Supporting information Supporting information Influence of electrolyte composition on liquid-gated carbon-nanotube and graphene transistors By: Iddo Heller, Sohail Chatoor, Jaan Männik, Marcel A. G. Zevenbergen, Cees Dekker,

More information

Static Electricity 2

Static Electricity 2 1 2 Introductory Question A woman rubs her feet on the carpet and gives a shock to her identical twin. If the twin also rubs her feet on the carpet before being touched, the shock will be A. larger B.

More information

Hydrodynamic Electrodes and Microelectrodes

Hydrodynamic Electrodes and Microelectrodes CHEM465/865, 2004-3, Lecture 20, 27 th Sep., 2004 Hydrodynamic Electrodes and Microelectrodes So far we have been considering processes at planar electrodes. We have focused on the interplay of diffusion

More information

Session 6: Solid State Physics. Diode

Session 6: Solid State Physics. Diode Session 6: Solid State Physics Diode 1 Outline A B C D E F G H I J 2 Definitions / Assumptions Homojunction: the junction is between two regions of the same material Heterojunction: the junction is between

More information

Superhydrophobic surfaces: stability of the Cassie-Baxter state and its effect on liquid water slippage

Superhydrophobic surfaces: stability of the Cassie-Baxter state and its effect on liquid water slippage Superhydrophobic surfaces: stability of the Cassie-Baxter state and its effect on liquid water slippage Mauro Chinappi Center for Life Nano Science IIT@Sapienza Talk outlines Talk 1: Solid Molecular Dynamics

More information

V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes

V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes V. Electrostatics Lecture 24: Diffuse Charge in Electrolytes MIT Student 1. Poisson-Nernst-Planck Equations The Nernst-Planck Equation is a conservation of mass equation that describes the influence of

More information

Nanoscale electrochemistry

Nanoscale electrochemistry Electrical characterisation of nanoscale samples & biochemical interfaces: methods and electronic instrumentation Nanoscale electrochemistry Giorgio Ferrari Dipartimento di elettronica, informazione e

More information

Quantitative Electrophysiology

Quantitative Electrophysiology ECE 795: Quantitative Electrophysiology Notes for Lecture #1 Tuesday, September 18, 2012 1. INTRODUCTION TO EXCITABLE CELLS Historical perspective: Bioelectricity first discovered by Luigi Galvani in 1780s

More information

Anatoly B. Kolomeisky Department of Chemistry Center for Theoretical Biological Physics How to Understand Molecular Transport through Channels: The

Anatoly B. Kolomeisky Department of Chemistry Center for Theoretical Biological Physics How to Understand Molecular Transport through Channels: The Anatoly B. Kolomeisy Department of Chemistry Center for Theoretical Biological Physics How to Understand Molecular Transport through Channels: The Role of Interactions Transport Through Channels Oil pumping

More information

DYNAMICS OF SUSPENDED COLLOIDAL PARTICLES NEAR A WALL

DYNAMICS OF SUSPENDED COLLOIDAL PARTICLES NEAR A WALL DYNAMICS OF SUSPENDED COLLOIDAL PARTICLES NEAR A WALL Minami Yoda G. W. Woodruff School of Mechanical Engineering minami@gatech.edu OUTLINE The problem and its motivation The (evanescent-wave PTV) technique

More information

Bchem 675 Lecture 9 Electrostatics-Lecture 2 Debye-Hückel: Continued Counter ion condensation

Bchem 675 Lecture 9 Electrostatics-Lecture 2 Debye-Hückel: Continued Counter ion condensation Bchem 675 Lecture 9 Electrostatics-Lecture 2 Debye-Hückel: Continued Counter ion condensation Ion:ion interactions What is the free energy of ion:ion interactions ΔG i-i? Consider an ion in a solution

More information

The field of nanopore technology is rapidly approaching

The field of nanopore technology is rapidly approaching This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. pubs.acs.org/nanolett

More information

Polarizability-Dependent Induced-Charge. Electroosmotic Flow of Dielectric Particles and. Its Applications

Polarizability-Dependent Induced-Charge. Electroosmotic Flow of Dielectric Particles and. Its Applications Polarizability-Dependent Induced-Charge Electroosmotic Flow of Dielectric Particles and Its Applications by Fang Zhang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

Electrically controlled DNA adhesion

Electrically controlled DNA adhesion SUPPLEMENTARY INFORMATION Electrically controlled DNA adhesion Matthias Erdmann, Ralf David +, Ann Fornof and Hermann E. Gaub* Chair for Applied Physics and Center for NanoScience, Ludwigs-Maximilians-Universität

More information

Andy Schwarzkopf Raithel Lab 1/20/2010

Andy Schwarzkopf Raithel Lab 1/20/2010 The Tip Experiment: Imaging of Blockade Effects in a Rydberg Gas Andy Schwarzkopf Raithel Lab 1/20/2010 Rydberg Atoms Highly-excited atoms with large n n scaling dependencies: Orbital radius ~ n2 Dipole

More information

Negative Incremental Resistance Induced by Calcium in Asymmetric Nanopores

Negative Incremental Resistance Induced by Calcium in Asymmetric Nanopores Negative Incremental Resistance Induced by Calcium in Asymmetric Nanopores NANO LETTERS 2006 Vol. 6, No. 3 473-477 Zuzanna S. Siwy,*, Matthew R. Powell, Eric Kalman, R. Dean Astumian, and Robert S. Eisenberg

More information

Surface stress and relaxation in metals

Surface stress and relaxation in metals J. Phys.: Condens. Matter 12 (2000) 5541 5550. Printed in the UK PII: S0953-8984(00)11386-4 Surface stress and relaxation in metals P M Marcus, Xianghong Qian and Wolfgang Hübner IBM Research Center, Yorktown

More information

TR&D3: Brownian Mover DBP4: Biosensors

TR&D3: Brownian Mover DBP4: Biosensors TR&D3: Brownian Mover DBP4: Biosensors Aleksei Aksimentiev Lead co-investigator of TR&D3-BD and DBP4 Associate Professor of Physics, UIUC http://bionano.physics.illinois.edu/ TR&D3 Brownian Mover Overview

More information