Calculating Average Speed and Comparing Kinetic and Potential Energy

Size: px
Start display at page:

Download "Calculating Average Speed and Comparing Kinetic and Potential Energy"

Transcription

1 Calculating Average Speed and Comparing Kinetic and Potential Energy Author: Matthew Kurth Grade Level: pre-ap 6 th grade Science (45 minute class) Sources: CPO Science (Force and Motion) o Curriculum Resource Guide: Car and Ramp, Section A-3 (some of the activity packet is from this source) Texas Essential Knowledge and Skills: Concepts: 6.8 Force, motion, and energy. The student knows force and motion are related to potential and kinetic energy. The student is expected to: (A) compare and contrast potential and kinetic energy; (C) calculate average speed using distance and time measurements; 6.2 Scientific investigation and reasoning. The student uses scientific inquiry methods during laboratory and field investigations. The student is expected to: (C) collect and record data using the International System of Units (SI) and qualitative means such as labeled drawings, writing, and graphic organizers; (D) construct tables and graphs, using repeated trials and means, to organize data and identify patterns; In this lesson the students complete an activity where average speeds are calculated from multiple trials that they do. Photogates will gather times of a car rolling down a ramp, and the students will use the formula of distance over time to calculate the average speeds. Kinetic and Potential energy will also be covered. Students will compare and contrast Kinetic and Potential energy in different situations. It is important for students to understand these concepts, so they can understand and describe the motion that they observe The University of Texas at Dallas

2 Performance Objectives: Students should be able to State the formula to calculate average speed. Calculate the average speed of an object and give its units when given the distance it traveled over the amount of time it took. Decide if Kinetic or Potential Energy is greater for an object and if they are increasing or decreasing. Appropriateness of Lesson to the Grade Level: Hands on experience and student collaboration will help the students better understand speed, Kinetic energy, and potential energy. Having defined roles will also help the students stay on task and work together as a group. Materials List: Materials for a group of 4: 1 straight physics ramp 1 Physics stand 1 car 2 photogates with input cords for each 1 CPO timer with outlet near it to plug it in Materials for each student: Activity packet calculator Advanced Preparations: Have the ramps already connected to the physics stands at the fourth or fifth hole from the bottom. Have a car already on each ramp Have both photogates attached to each ramp and input into the CPO timer (the photogate higher on the ramp goes into input A and the other into input B). Have a ramp set up at the front of the class so the students can see when you demonstrate the activity. Safety: There are no major safety concerns for this lesson. Page 2 of 10

3 ENGAGEMENT What the Teacher Will Do As students enter the classroom have them pick up a warm-up. Have the students complete their warm-up independently and pick them up after they are finished. Play video from you-tube of Olympic skier going down ramp and being projected out and down from the end of the ramp. Have a discussion with the class over what they put on the warmup. Discuss how to calculate average speed Probing/Eliciting Questions How would you describe this skier s motion? What term can we use to describe how fast he is going? What energy terms can we use to describe the skier? What is the formula for average speed? When does an object have Kinetic energy? When does an object have potential Energy? What is an example of a decrease in potential energy? Time: 10_ Minutes Student Responses and Misconceptions -He is going really fast. -speed -high energy Kinetic Energy -they might not include potential energy because of the speed of the skier. Time over distance When it is moving correct When it is held not necessarily it depends on the objects height off the ground Page 3 of 10

4 EXPLORATION What the Teacher Will Do Have the students move to the lab tables in their predetermined groups of 4 with ramps already set up. Assign roles for each member of the group. Assign a driver, catcher, timer, and mover ; these roles responsibilities are described in the activity packet. Pass out an activity packet (attached to end of this lesson) to each student for them to fill out. Demonstrate the activity to them. Stress that the car s wing must be just above the photogate before releasing it. Explain that they will have 3 trials recording the time before moving the photogate lower. The times will be averaged and times will be gathered from 3 distances. Have the class practice calculating an average on their calculators with you. Have the class begin on the packet. Walk around the class making sure that they understand the activity and are staying on task. Ask questions throughout the activity to see if they understand what is taking place After the groups have finished the packet, have the students turn off the timers and return to their seats. Probing/Eliciting Questions -Before the car is released does it have Potential and/or Kinetic energy? -When it moves down the ramp is the Kinetic energy increasing or decreasinghow about potential energy? -Should the average speeds change as the distances on the ramps change? Why? Time: 20 Minutes Student Responses and Misconceptions No, it has neither because it is not moving. It has no potential energy when it is moving only kinetic energy. No, they should stay the same because the times are increasing too. Page 4 of 10

5 EXPLANATION What the Teacher Will Do Have a discussion on how they calculated the average speed. Have a discussion over the change in potential and Kinetic energy. Time: 5 Minutes Probing/Eliciting Student Responses Questions and Misconceptions How do you calculate the average speed of an object? How do you get the units for the speed? It s always miles per hour What process do you use to figure out the units you will use? Before the car is released down the ramp does it have kinetic energy and/or Potential energy? No energy because it is At the bottom does the car being held. have potential and/or Kinetic energy correct Kinetic energy? Kinetic energy increases and Which increases and which the potential energy decreases as the car rolls disappear after it begins to down the ramp? move. If you were given the Maybe Kinetic energy of an object One goes up when the other could you calculate the goes down potential energy? What kind of relationship does potential and kinetic energy have? ELABORATION What the Teacher Will Do Have a discussion with the class over speed in real life. Disuses with the class which units to use in a situation. Time: 5 Minutes Probing/Eliciting Student Responses Questions and Misconceptions When do we use speed to describe motion? What objects do we describe by speed when we talk about Cars, planes, baseballs, them? tennis serves, skiers If you knew your flight from Dallas to Houston lasted 1 hour and Houston is 240 miles away, could you calculate the average speed Page 5 of 10

6 Have a discussion over potential and kinetic energy by having the class describe the motion of a person riding a swing. Place a picture on the overhead that shows a person on a swing at different points. Have them point out the highest potential and Kinetic energy, the lowest kinetic and potential energy, and increasing/decreasing potential and kinetic energy. you were moving on the trip? What process do you use to figure out the units of an average speed? What would the units be of the average speed of a bird that flew 5 wing lengths in one second? Where is the highest Kinetic energy?-potential? Where are Kinetic/potential energy increasing/decreasing? -The highest Kinetic energy is at the farthest point of the swing forward The Kinetic energy increases from the far back of the swing to the front of the swing. EVALUATION What the Teacher Will Do Pass out the Evaluations to each student and have them fill it out individually. Evaluations are attached at the end of this lesson. Pick up the evaluations when they are done. Probing/Eliciting Questions Time: 5 Minutes Student Responses and Misconceptions Page 6 of 10

7 Warm Up 1) What is the equation for average speed? 2) A plane flew 350 kilometers in 30 minutes, calculate the average speed and include its units. If I was holding a tennis ball at shoulder level and dropped it, so it fell towards the ground 3) While it was falling was the Kinetic energy increasing or decreasing? 4) Before I released the ball was the Kinetic or Potential energy greater? Page 7 of 10

8 (Activity Packet) Describing speed What information do you need to describe your speed? To describe your speed, you need two things: 1. The distance you traveled, and 2. The time it took you to travel that distance Practice calculating average speeds by filling out the table below. Make sure that each speed has units with it (ex: meters / hour).you may use a calculator. Example Distance Time Speed 100 meters 10 seconds 50 miles 1 hour 10 feet 15 seconds Page 8 of 10

9 Average Speed Experiment 1. Make sure the photogate connected to input A is placed near the top of the ramp with enough room for the car s wing to be above the photogate s sensor. 2. Place the other photogate at a distance of 20 cm from the first photogate, making sure that this photogate is connected to input B on the Timer. 3. Make sure the Timer is plugged in and turn it on using the switch on the left side. Adjust timer to measure interval by pushing the bottom yellow button until the green light indicating interval is lit up. Then make sure photogates A and B are activated (push yellow buttons above A and B on timer, to light up green light) 4. With car as close to the top of the ramp as possible, have the driver release it so it runs to the end of the track where the catcher can stop it. Make The timer makes sure a time was recorded. If it was, this should be the amount of time it took for the car to travel between the photogates. Record this time in Data Table 1, under Time 1 for 20 cm. The timer then resets the timing device by pressing reset. 5. Repeat this measurement two more times, recording them as time 2 and time 3. Calculate the average time and record. (add the three times and divide by 3) 6. The mover moves the lower photogate down the ramp, 40 cm from the top photogate. Repeat steps 4 and 5, except recording times on the 40 cm row. 7. The mover moves the lower photogate down the ramp, 60 cm from the top photogate. Repeat steps 4 and 5, except recording times on the 60 cm row. Page 9 of 10

10 Data Table 1 Position-Times Position of Car Time 1 Time 2 Time 3 Average time 20 cm 40 cm 60 cm Evaluation 1) What is the formula for average speed? 2) Calculate the average speeds and include its units. A camel walked 20 km in 10 hours 3) On a rollercoaster a cart is resting at the top of a hill, is the Kinetic energy or Potential energy greater? 4) As the cart rolls down the hill, is the Potential energy increasing or decreasing? Page 10 of 10

Introductory Energy & Motion Lab P4-1350

Introductory Energy & Motion Lab P4-1350 WWW.ARBORSCI.COM Introductory Energy & Motion Lab P4-1350 BACKGROUND: Students love to get to work fast, rather than spending lab time setting up and this complete motion lab lets them quickly get to the

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

have tried with your racer that are working well? you would like to make to your car?

have tried with your racer that are working well? you would like to make to your car? 1. What is energy? 2. What are some things you have tried with your racer that are working well? 3. What are some changes you would like to make to your car? Chapter 5 Section 1 Energy is the ability to

More information

FORCE AND MOTION Study Notes

FORCE AND MOTION Study Notes FORCE AND MOTION Study Notes FORCE: a push or pull acting on an object. examples of forces are gravity, friction, magnetism, and applied forces. Forces cause an object to change its speed, direction, or

More information

Tackling Potential and Kinetic Energy

Tackling Potential and Kinetic Energy Tackling Potential and Kinetic Energy Overview In this lesson, students explore concepts of energy and relate them to tackling in football. Using manipulatives, such as marbles or ball, students will investigate

More information

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio

AP Physics 1 Summer Assignment 2018 Mrs. DeMaio AP Physics 1 Summer Assignment 2018 Mrs. DeMaio demaiod@middletownk12.org Welcome to AP Physics 1 for the 2018-2019 school year. AP Physics 1 is an algebra based, introductory college-level physics course.

More information

Section 11.1 Distance and Displacement (pages )

Section 11.1 Distance and Displacement (pages ) Name Class Date Section 11.1 Distance and Displacement (pages 328 331) This section defines distance and displacement. Methods of describing motion are presented. Vector addition and subtraction are introduced.

More information

FORCE AND MOTION SEPUP UNIT OVERVIEW

FORCE AND MOTION SEPUP UNIT OVERVIEW FORCE AND MOTION SEPUP UNIT OVERVIEW Listed below is a summary of the activities in this unit. Note that the total teaching time is listed as 26-32 periods of approximately 50 minutes (approximately 5-6

More information

CORE. Chapter 3: Interacting Linear Functions, Linear Systems. Algebra Assessments

CORE. Chapter 3: Interacting Linear Functions, Linear Systems. Algebra Assessments CORE Algebra Assessments Chapter 3: Interacting Linear Functions, Linear Systems 97 98 Bears Band Booster Club The Bears Band Booster Club has decided to sell calendars to the band members and their parents.

More information

Name: School: Class: Teacher: Date:

Name: School: Class: Teacher: Date: ame: School: Class: Teacher: Date: Materials needed: Pencil, stopwatch, and scientific calculator d v λ f λ λ Wave Pool Side View During wave cycles, waves crash along the shore every few seconds. The

More information

Potential and Kinetic Energy

Potential and Kinetic Energy Lab VII Potential and Kinetic Energy 1 Introduction This is a lab about the interplay between kinetic and potential energy. While we can calculate forces and accelerations of an object as it moves along

More information

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test AP Physics 1 Unit 2: 2 Dimensional Kinematics Name: Date In Class Homework to completed that evening (before coming to next class period) 9/6 Tue (B) 9/7 Wed (C) 1D Kinematics Test Unit 2 Video 1: Vectors

More information

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Put all answers on this test. Show your work for partial credit. Circle or box your answers. Include the correct units and the correct

More information

Session 12 Lab Based Questions

Session 12 Lab Based Questions Session 12 Lab Based Questions Free Response: 1. You are conducting an experiment to measure the acceleration due to gravity g u at an unknown location. In the measurement apparatus, a simple pendulum

More information

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think?

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think? Thrills and Chills Section Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down Florida Next Generation Sunshine State Standards: Additional Benchmarks met in Section SC.91.N..4

More information

UC Irvine FOCUS! 5 E Lesson Plan

UC Irvine FOCUS! 5 E Lesson Plan UC Irvine FOCUS! 5 E Lesson Plan Title: Stomp Rockets Grade Level and Course: Pre-Algebra, Geometry, Grade 8 Physical Science, Grades 9-12 Physics (extension) - Trigonometry Materials: 1 stomp rocket per

More information

Conservation of Energy

Conservation of Energy Name Period Date Conservation of Energy Driving Questions How does the energy of a cart poised at the top of a hill compare to its energy at the bottom of the hill? Background Gravitational potential energy

More information

Ready, Aim, Launch! Background/Context. At a Glance. Learning Objectives. Standards Alignment

Ready, Aim, Launch! Background/Context. At a Glance. Learning Objectives. Standards Alignment Background/Context Students will use this lesson to discover how the mass of a projectile affects the distance it will travel when launched. The students will also understand the difference between potential

More information

STUDENT PACKET # 9 Student Exploration: Roller Coaster Physics

STUDENT PACKET # 9 Student Exploration: Roller Coaster Physics STUDENT PACKET # 9 Student Exploration: Roller Coaster Physics Name: Date: Reporting Category: Physical Science Benchmark SC.7.P.11.2 Investigate and describe the transformation of energy from one form

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

You Might Also Like. I look forward helping you focus your instruction while saving tons of time. Kesler Science Station Lab Activities 40%+ Savings!

You Might Also Like. I look forward helping you focus your instruction while saving tons of time. Kesler Science Station Lab Activities 40%+ Savings! Thanks Thank you for downloading my product. I truly appreciate your support and look forward to hearing your feedback. Connect You can connect with me and find many free activities and strategies over

More information

Section Distance and displacment

Section Distance and displacment Chapter 11 Motion Section 11.1 Distance and displacment Choosing a Frame of Reference What is needed to describe motion completely? A frame of reference is a system of objects that are not moving with

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

AP* Circular & Gravitation Free Response Questions

AP* Circular & Gravitation Free Response Questions 1992 Q1 AP* Circular & Gravitation Free Response Questions A 0.10-kilogram solid rubber ball is attached to the end of a 0.80-meter length of light thread. The ball is swung in a vertical circle, as shown

More information

Senior 2. Appendix 3: In Motion

Senior 2. Appendix 3: In Motion Senior 2 Appendix 3: In Motion Senior 2 Science Appendix 3.1 TSM Teacher Support Material A Visual Representation of Motion Teacher Background There are several ways to produce a visual representation

More information

Student Sheet: Self-Assessment

Student Sheet: Self-Assessment Student s Name Date Class Student Sheet: Self-Assessment Directions: Use the space provided to prepare a KWL chart. In the first column, write things you already know about energy, forces, and motion.

More information

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached. 1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At

More information

MSU Urban STEM Lesson Title Marble s At Work. Name Donna Calder. Grade Level: 4 8. Content Area Topic: Science(Energy)

MSU Urban STEM Lesson Title Marble s At Work. Name Donna Calder. Grade Level: 4 8. Content Area Topic: Science(Energy) MSU Urban STEM Lesson Title Marble s At Work Name Donna Calder Grade Level: 4 8 Content Area Topic: Science(Energy) Content Area Standard(s): MS PS3 1 Construct and interpret graphical displays of data

More information

Engage 1. When you exert a force on a balloon, what does the balloon exert on you?

Engage 1. When you exert a force on a balloon, what does the balloon exert on you? Unit 1: Phenomenon The Physics of Skydiving Lesson 3c Newton s Third Law of Motion California Standard Addressed PH1. Newton s laws predict the motion of most objects. As a basis for understanding this

More information

velocity = displacement time elapsed

velocity = displacement time elapsed Section 1 Velocity and Acceleration: The Big Thrill distance time a) Measure the distance the steel ball rolls and the time it takes to reach the end of the track using a ruler and a stopwatch. Record

More information

Answer the following questions. Please, SHOW ALL YOUR WORK:

Answer the following questions. Please, SHOW ALL YOUR WORK: Introduction In this lab you will use conservation of mechanical energy to predict the motion of objects in situations that are difficult to analyze with force concepts. Prelab Activity Read sections 5.3,

More information

Final Project Physics 590. Mary-Kate McGlinchey MISEP Summer 2005

Final Project Physics 590. Mary-Kate McGlinchey MISEP Summer 2005 Final Project Physics 590 Mary-Kate McGlinchey MISEP Summer 2005 Lesson Objectives: Students will be able to Identify the relationship between motion and a reference point. Identify the two factors that

More information

23. A snowmobile pulls a trailer with a force of 450 N while moving at a constant velocity of 15 m/s. How much work is done by the snowmobile in 28 s?

23. A snowmobile pulls a trailer with a force of 450 N while moving at a constant velocity of 15 m/s. How much work is done by the snowmobile in 28 s? Physics 04 Unit Review (June 013) 1. Which represents the rate of work done? (A) efficiency (B) force (C) power (D) work. In which situation is work done on a box? (A) The box is at rest on a table. (B)

More information

Motion and Forces. Describing Motion

Motion and Forces. Describing Motion CHAPTER Motion and Forces LESSON 1 Describing Motion What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with

More information

Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12)

Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12) Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12) *** Experiment with Audacity and Excel to be sure you know how to do what s needed for the lab*** Kinematics is the study

More information

Students who demonstrate understanding can:

Students who demonstrate understanding can: Title: Introduction to Newton s second law Synopsis: Students will use Newton s second law (F=m*a), along with previous knowledge of kinematic equations, to explore the acceleration of a constant-mass

More information

Forces and Motion: Accelerate your Mass of Students

Forces and Motion: Accelerate your Mass of Students FORCES AND MOTION 60 Minute Physical Science Lesson Science-to-Go! Program Grades: 1-5 TEACHER GUIDE Forces and Motion: Accelerate your Mass of Students Description Make sure you have plenty of room for

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

PHYS 1405 Conceptual Physics I Laboratory # 3 Velocity and Acceleration

PHYS 1405 Conceptual Physics I Laboratory # 3 Velocity and Acceleration PHYS 1405 Conceptual Physics I Laboratory # 3 Velocity and Acceleration Investigation #1: How does changing the tilt of a surface affect the speed and acceleration of an object sliding down the surface?

More information

KEY CONCEPTS AND PROCESS SKILLS

KEY CONCEPTS AND PROCESS SKILLS Measuring 74 40- to 2-3 50-minute sessions ACTIVITY OVERVIEW L A B O R AT O R Y Students use a cart, ramp, and track to measure the time it takes for a cart to roll 100 centimeters. They then calculate

More information

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable:

Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Final Review Topics, Terms, Labs, and Relationships Definitions Independent Variable: Dependent Variable: Controlled Variable: Sample Data Table: Sample Graph: Graph shapes and Variable Relationships (written

More information

Practice - Work. b. Explain the results obtained in part (a).

Practice - Work. b. Explain the results obtained in part (a). Practice - Work 1. A weight lifter, Paul Anderson, used a circular platform attached to a harness to lift a class of 30 children and their teacher. While the children and teacher sat on the platform, Paul

More information

Q1. (a) The diagram shows a car being driven at 14 rn/s. The driver has forgotten to clear a thick layer of snow from the roof.

Q1. (a) The diagram shows a car being driven at 14 rn/s. The driver has forgotten to clear a thick layer of snow from the roof. Q1. (a) The diagram shows a car being driven at 14 rn/s. The driver has forgotten to clear a thick layer of snow from the roof. Which of the following has the smallest momentum? Draw a circle around your

More information

PHYS 1405 Conceptual Physics 1 Laboratory #5 Momentum and Collisions. Investigation: Is the total momentum of two objects conserved during collisions?

PHYS 1405 Conceptual Physics 1 Laboratory #5 Momentum and Collisions. Investigation: Is the total momentum of two objects conserved during collisions? PHYS 1405 Conceptual Physics 1 Laboratory #5 Momentum and Collisions Investigation: Is the total momentum of two objects conserved during collisions? What to measure: Velocities of two carts colliding

More information

Student Instruction Sheet: Unit 3, Lesson 3. Solving Quadratic Relations

Student Instruction Sheet: Unit 3, Lesson 3. Solving Quadratic Relations Student Instruction Sheet: Unit 3, Lesson 3 Solving Quadratic Relations Suggested Time: 75 minutes What s important in this lesson: In this lesson, you will learn how to solve a variety of quadratic relations.

More information

Impulse, Momentum, and Energy

Impulse, Momentum, and Energy Impulse, Momentum, and Energy Impulse, Momentum, and Energy 5-1 INTRODUCTION Newton expressed what we now call his second law of motion, 1 not as F = m a, but in terms of the rate of change of momentum

More information

AP PHYSICS 1. Energy 2016 EDITION

AP PHYSICS 1. Energy 2016 EDITION AP PHYSICS 1 Energy 2016 EDITION Copyright 2016 National Math + Initiative, Dallas, Texas. All rights reserved. Visit us online at www.nms.org. 1 Pre-Assessment Questions Consider a system which could

More information

Physics Motion Math. (Read objectives on screen.)

Physics Motion Math. (Read objectives on screen.) Physics 302 - Motion Math (Read objectives on screen.) Welcome back. When we ended the last program, your teacher gave you some motion graphs to interpret. For each section, you were to describe the motion

More information

PHY 221 Lab 8. Momentum and Collisions: Conservation of momentum and kinetic energy

PHY 221 Lab 8. Momentum and Collisions: Conservation of momentum and kinetic energy Name: Partner: Partner: PHY 221 Lab 8 Momentum and Collisions: Conservation of momentum and kinetic energy Goals: To be able to explore how different collisions between carts can be studied to illustrate

More information

Review. 8th grade science STAAR. Name Class. Underline your strong TEKS and circle your weak TEKS: 8.6A Unbalanced Forces

Review. 8th grade science STAAR. Name Class. Underline your strong TEKS and circle your weak TEKS: 8.6A Unbalanced Forces 8th grade science STAAR Review Name Class Underline your strong TEKS and circle your weak TEKS: 8.6A Unbalanced Forces 8.6B Speed, Velocity, & Acceleration 8.6C Newton s Laws 7.7A Work 6.8A Potential and

More information

Worksheet for Exploration 6.1: An Operational Definition of Work

Worksheet for Exploration 6.1: An Operational Definition of Work Worksheet for Exploration 6.1: An Operational Definition of Work This Exploration allows you to discover how work causes changes in kinetic energy. Restart. Drag "handy" to the front and/or the back of

More information

Key Performance Task

Key Performance Task COURSE UNIT PERIOD PAGE SPH3U Energy Conservation of Mechanical Energy 1 of 2 Overall Expectation D2. investigate energy transformations and the law of conservation of energy, and solve related problems

More information

Gravity: How fast do objects fall? Student Advanced Version

Gravity: How fast do objects fall? Student Advanced Version Gravity: How fast do objects fall? Student Advanced Version Kinematics is the study of how things move their position, velocity, and acceleration. Acceleration is always due to some force acting on an

More information

THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY

THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY Background Remember graphs are not just an evil thing your teacher makes you create, they are a means of communication. Graphs are a way of communicating

More information

1. A force is a or a. 2. Forces are described by how they are and in what they are going. 3. forces on an object will change the objects motion.

1. A force is a or a. 2. Forces are described by how they are and in what they are going. 3. forces on an object will change the objects motion. Name period date assigned date due date returned? 1. A force is a or a. 2. Forces are described by how they are and in what they are going. 3. forces on an object will change the objects motion. - - -

More information

Chapter 6. Net or Unbalanced Forces. Copyright 2011 NSTA. All rights reserved. For more information, go to

Chapter 6. Net or Unbalanced Forces. Copyright 2011 NSTA. All rights reserved. For more information, go to Chapter 6 Net or Unbalanced Forces Changes in Motion and What Causes Them Teacher Guide to 6.1/6.2 Objectives: The students will be able to explain that the changes in motion referred to in Newton s first

More information

LAB: MOTION ON HILLS

LAB: MOTION ON HILLS LAB: MOTION ON HILLS Introduction In this three-part activity, you will first study an object whose speed is changing while it moves downhill. In this lab, the two variables you are focusing on are time

More information

Lesson 8: Work and Energy

Lesson 8: Work and Energy Name Period Lesson 8: Work and Energy 8.1 Experiment: What is Kinetic Energy? (a) Set up the cart, meter stick, pulley, hanging mass, and tape as you did in Lesson 5.1. You will examine the distance and

More information

The University of Texas at Austin. Air Resistance

The University of Texas at Austin. Air Resistance UTeach Outreach The University of Texas at Austin Air Resistance Time of Lesson: 50-60 minutes Content Standards Addressed in Lesson: 8.6A demonstrate and calculate how unbalanced forces change the speed

More information

TOPIC 1.1: KINEMATICS

TOPIC 1.1: KINEMATICS TOPIC.: KINEMATICS S4P-- S4P-- Derive the special equations for constant acceleration. Include: v= v+ a t; d = v t+ a t ; v = v + a d Solve problems for objects moving in a straight line with a constant

More information

Newton s Laws of Motion Discovery

Newton s Laws of Motion Discovery Student handout Since the first caveman threw a rock at a sarer- toothed tiger, we ve been intrigued by the study of motion. In our quest to understand nature, we ve looked for simple, fundamental laws

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

Newton s Second Law Knex cars. Vanderbilt Student Volunteers for Science VINSE/VSVS Rural Training Presentation

Newton s Second Law Knex cars. Vanderbilt Student Volunteers for Science VINSE/VSVS Rural Training Presentation Newton s Second Law Knex cars Vanderbilt Student Volunteers for Science 2018-2019 VINSE/VSVS Rural Training Presentation Important!!! Please use this resource to reinforce your understanding of the lesson!

More information

To conduct the experiment, each person in your group should be given a role:

To conduct the experiment, each person in your group should be given a role: Varying Motion NAME In this activity, your group of 3 will collect data based on one person s motion. From this data, you will create graphs comparing displacement, velocity, and acceleration to time.

More information

LAB: MOTION ON HILLS

LAB: MOTION ON HILLS LAB: MOTION ON HILLS Introduction In this three-part activity, you will first study an object whose speed is changing while it moves downhill In this lab, the two variables you are focusing on are time

More information

Blank Activity Template ( put your title here!)

Blank Activity Template ( put your title here!) Key: Yellow highlight = required component Blank Activity Template ( put your title here!) Subject Area(s) Physics Associated Unit Mechanics Associated Lesson Simple Harmonic Motion Activity Title Understanding

More information

Paper Barrier. Name. Teacher. Period. Purpose Design a paper barrier that will safely dissipate the energy of a head-on collision.

Paper Barrier. Name. Teacher. Period. Purpose Design a paper barrier that will safely dissipate the energy of a head-on collision. Paper Barrier Name Teacher Purpose Design a paper barrier that will safely dissipate the energy of a head-on collision. Requirements 1. The elevation and angle of the track will be adjusted to produce

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

Student Sheet: Self-Assessment

Student Sheet: Self-Assessment Student s Name Date Class Student Sheet: Self-Assessment Directions: Use the space provided to prepare a KWL chart. In the first column, write things you already know about energy, forces, and motion.

More information

Conservation of Mechanical Energy Activity Purpose

Conservation of Mechanical Energy Activity Purpose Conservation of Mechanical Energy Activity Purpose During the lab, students will become familiar with solving a problem involving the conservation of potential and kinetic energy. A cart is attached to

More information

Laboratory 3: Acceleration due to gravity

Laboratory 3: Acceleration due to gravity Physics 1020 NAME Laboratory 3: Acceleration due to gravity Prelab: Please do this prelab before you read the lab writeup. In Laboratory 1 you made use of the value of g, the acceleration due to gravity

More information

Reporting Category 2: Force, Motion, and Energy. A is a push or a pull in a specific direction.

Reporting Category 2: Force, Motion, and Energy. A is a push or a pull in a specific direction. Name: Science Teacher: Reporting Category 2: Force, Motion, and Energy Unbalanced Forces 8.6A A is a push or a pull in a specific direction. The combination of all forces acting on an object is called.

More information

How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables

How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables How To Complete and Experiment and Write a Lab Report: Using Questions to Write a Hypothesis With Clear Independent and Dependent Variables 1 I can How to Write a Hypothesis http://www.myteacherpages.com/webpages/jflynt/portfolio.cfm?subpage=1001394

More information

GPE = m g h. GPE = w h. k = f d. PE elastic = ½ k d 2. Work = Force x distance. KE = ½ m v 2

GPE = m g h. GPE = w h. k = f d. PE elastic = ½ k d 2. Work = Force x distance. KE = ½ m v 2 1 NAME PERIOD PHYSICS GUIDESHEET ENERGY CONVERSIONS POTENTIAL AND KINETIC ENERGY ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT CLASS OVERHEAD NOTES (5 pts/page) (Plus 5 pts/page for sample questions)

More information

3rd Grade Motion and Stability

3rd Grade Motion and Stability Slide 1 / 106 Slide 2 / 106 3rd Grade Motion and Stability 2015-11-09 www.njctl.org Slide 3 / 106 Table of Contents Forces and Motion Review Balanced and Unbalanced Forces Motion prediction from patterns

More information

AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

More information

Honors Physics / Unit 01 / CVPM. Name:

Honors Physics / Unit 01 / CVPM. Name: Name: Constant Velocity Model The front of each model packet should serve as a storehouse for things you ll want to be able to quickly look up later. We will usually try to give you some direction on a

More information

Topics include Newton s laws, pressure, work, average velocity, kinetic energy, momentum and conservation of momentum, work-energy theorem

Topics include Newton s laws, pressure, work, average velocity, kinetic energy, momentum and conservation of momentum, work-energy theorem Chapter 3: Safety Overall: Topics include Newton s laws, pressure, work, average velocity, kinetic energy, momentum and conservation of momentum, work-energy theorem Sections 1-2: These two sections introduce

More information

Mathematics Success Grade 8

Mathematics Success Grade 8 T538 Mathematics Success Grade 8 [OBJECTIVE] The student will compare functions represented algebraically, graphically, with verbal descriptions or in tables and identify functions as linear or non-linear.

More information

Forces and Motion. Vocabulary and Concepts. Name Date

Forces and Motion. Vocabulary and Concepts. Name Date Edit File Forces and Motion Unit Test Vocabulary and Concepts A push and a pull are two examples of which of the following? a force a power a law of motion a balanced force Which term names a force of

More information

Topic: Rubber Band Robot Build

Topic: Rubber Band Robot Build Topic: Rubber Band Robot Build Teachers: Laura Scarfogliero and Donna Gobin Genre: Science Grade Level: 8th grade Unit: Energy Estimated Duration: 1 2 single period Essential Question (Domain 1: Planning

More information

Science Skills Station

Science Skills Station Science Skills Station Objective 1. Graph data to study the relationships between kinetic energy, velocity and mass. 2. Analyze and interpret graphical displays to describe how kinetic energy of an object

More information

NAME: EXPLORATION GUIDE CTScienceCenter.org. 250 Columbus Blvd. Hartford, CT 06103

NAME: EXPLORATION GUIDE CTScienceCenter.org. 250 Columbus Blvd. Hartford, CT 06103 EXPLORATION GUIDE 2017-2018 CTScienceCenter.org 250 Columbus Blvd. Hartford, CT 06103 EXPLORATION GUIDE: TEACHERS FORCES: WHY DO THEY MATTER? Objectives Students will conduct an experiment and create

More information

PHYSICS GUIDESHEET UNIT 5. - ENERGY SUBUNIT - ENERGY CONVERSIONS POTENTIAL AND KINETIC ENERGY ACTIVITY LESSON DESCRIPTION SCORE/POINTS

PHYSICS GUIDESHEET UNIT 5. - ENERGY SUBUNIT - ENERGY CONVERSIONS POTENTIAL AND KINETIC ENERGY ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1 NAME PERIOD PHYSICS GUIDESHEET UNIT 5. - ENERGY SUBUNIT - ENERGY CONVERSIONS POTENTIAL AND KINETIC ENERGY ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT CLASS OVERHEAD NOTES (5 pts/page) /20 (Plus 5

More information

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force CH 4 Forces and the Laws of Motion.notebook Chapter 4 A. Force April 09, 2015 Changes in Motion Forces and the Laws of Motion 1. Defined as the cause of an acceleration, or the change in an object s motion,

More information

C 2. The average speed of a car that travels 500 km in 5 hours is a. 10 km/h. b km/h. c. 100 km/h. d. 1,000 km/h

C 2. The average speed of a car that travels 500 km in 5 hours is a. 10 km/h. b km/h. c. 100 km/h. d. 1,000 km/h Name: KEY IP 644 lock: Date: / / Review Packet: Position, Distance, Displacement, Motion, Speed and Velocity Multiple Choice C 1. When a driver checks her speedometer, she is checking a. acceleration.

More information

1. How could you determine the average speed of an object whose motion is represented in the graphs above?

1. How could you determine the average speed of an object whose motion is represented in the graphs above? AP Physics Lesson 1 b Kinematics Graphical Analysis and Kinematic Equation Use Outcomes Interpret graphical evidence of motion (uniform speed & uniform acceleration). Apply an understanding of position

More information

September 16, Read & Annotate the reading individually. When you finish... Scientific Method Foldable: -Cut all dotted lines Glue into the

September 16, Read & Annotate the reading individually. When you finish... Scientific Method Foldable: -Cut all dotted lines Glue into the September 16, 2016 : Glue into the RIGHT side. Then, try to answer the questions using the following as your guide. Quantitative vs. Qualitative Observations: Quantitative= Quantity= #s Qualitative= Quality=

More information

EDUCATION DAY WORKBOOK

EDUCATION DAY WORKBOOK Grades 9 12 EDUCATION DAY WORKBOOK It is with great thanks for their knowledge and expertise that the individuals who devised this book are recognized. MAKING MEASUREMENTS Time: Solve problems using a

More information

Purpose: Materials: WARNING! Section: Partner 2: Partner 1:

Purpose: Materials: WARNING! Section: Partner 2: Partner 1: Partner 1: Partner 2: Section: PLEASE NOTE: You will need this particular lab report later in the semester again for the homework of the Rolling Motion Experiment. When you get back this graded report,

More information

Lab 8 Impulse and Momentum

Lab 8 Impulse and Momentum b Lab 8 Impulse and Momentum What You Need To Know: The Physics There are many concepts in physics that are defined purely by an equation and not by a description. In some cases, this is a source of much

More information

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector Name Date Period Newton s Second Law: Net Force and Acceleration Procedures: Newton s second law describes a relationship between the net force acting on an object and the objects acceleration. In determining

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

Orbital Paths. the Solar System

Orbital Paths. the Solar System Purpose To compare the lengths of the terrestrial planets orbital paths and revolution times. Process Skills Measure, form a hypothesis, predict, observe, collect data, interpret data, communicate, draw

More information

CREATE A MOTION. Purpose Demonstrate your understanding of motion graphs by creating real-world motion(s) that match a graph(s) you ve been given.

CREATE A MOTION. Purpose Demonstrate your understanding of motion graphs by creating real-world motion(s) that match a graph(s) you ve been given. CREATE A MOTION Purpose Demonstrate your understanding of motion graphs by creating real-world motion(s) that match a graph(s) you ve been given. Materials Motion Detector, Interface, Dynamics Cart, Dynamics

More information

ONE-DIMENSIONAL COLLISIONS

ONE-DIMENSIONAL COLLISIONS ONE-DIMENSIONAL COLLISIONS Purpose In this lab we will study conservation of energy and linear momentum in both elastic and perfectly inelastic one-dimensional collisions. To do this, we will consider

More information

Physics 11 Kinematics Review: Vectors, Displacement, Velocity, Acceleration, & Kinematics Equations

Physics 11 Kinematics Review: Vectors, Displacement, Velocity, Acceleration, & Kinematics Equations Physics 11 Kinematics Review: Vectors, Displacement, Velocity, Acceleration, & Kinematics Equations Review of Kinematics in 1 Dimension: True or False? Mark each statement as T (true) or F (false). If

More information

Appearances Can Be Deceiving!

Appearances Can Be Deceiving! Appearances Can Be Deceiving! Overview: Students explore the relationship between angular width, actual size, and distance by using their finger, thumb and fist as a unit of angular measurement in this

More information