# Numerical Approach of Hamilton Equations on Double Pendulum Motion with Axial Forcing Constraint

Save this PDF as:

Size: px
Start display at page:

Download "Numerical Approach of Hamilton Equations on Double Pendulum Motion with Axial Forcing Constraint"

## Transcription

1 Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical Approach of Hamilton Equations on Double Pendulum Motion with Axial Forcing Constraint To cite this article: Intan Indiati et al 016 J. Phys.: Conf. Ser Related content - On Hamiltonian formulations of magnetic field line equations E Pina and T Ortiz - Nonlinear harmonic boson oscillator Bogdan M Mihalcea - Horava-Lifshitz holography Tatsuma Nishioka View the article online for updates and enhancements. This content was downloaded from IP address on 31/1/017 at 10:6

2 Journal of Physics: Conference Series 739 ( doi: / /739/1/01066 Numerical Approach of Hamilton Equations on Double Pendulum Motion with Axial Forcing Constraint Intan Indiati 1,, Joko Saefan 1 and Putut Marwoto 1 Universitas PGRI Semarang Jl Sidodadi Timur No 4 Semarang Indonesia 5015 Pascasarjana Universitas Negeri Semarang Kampus Unnes Bendan Ngisor Semarang Abstract. Double pendulum with axial forcing constraint is considered by using Hamilton equations. In this case, the total Hamiltonian is complicated because of its constraint. There is additional terms which is add to the usual Hamiltonian. Four equations of motion is obtained from the Hamilton equations since the degree of freedom is four. Solutions of the equations are solved numerically by Runge-Kutta method. The results are plotted in poincare maps. In this case, the maps is displayed in various initial value. The chaotic behavior can be indicated which depends on given time function forcing constraint. 1. Introduction The purpose of this article is to solve Hamilton equations on constrained double pendulum motion. This was initialized by given usual Hamiltonian on double pendulum system after the generalized coordinates and momenta had been determined. Total Hamiltonian on constrained system was constructed by axial forcing given on second pendulum. The equations of motion were decomposed from thus Hamiltonian. They were solved by numerical approach. The Runge- Kutta method which is finite difference method was used to solve the differential equations of the equations motion. This method is sophisticated approach in various case. The results of this approach were possed in poincare maps. The chaotic motion was seen clearly from the map since the constraint was time function. The double pendulum system had been considered by [1] in fractional order Langrange equations. This consideration was about constrained system given on second pendulum. In few years ago, [] introduced the equations of motion on constrained Hamiltonian system. It will be interesting to try to solve constrained pendulum on [1] using equation of motion on []. The equations of motion of double pendulum system had been decompossed by [3, 4] without constraint. They include differential equations which consist of four equations. Rungekutta method is usully used on many work of periodic motion as numerical approach. So this approach is used in this work. Otherwise, in this article numerical approach is choosen to solve the equations since constrained system is not easy to solve analitically. This approach usually uses to solve physics system, as shown in [5, 6]. Some people will try to detect chaos behavior on motion which looks like complicated periodic motion. One of method on the detection is a Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s and the title of the work, journal citation and DOI. Published under licence by Ltd 1

3 Journal of Physics: Conference Series 739 ( doi: / /739/1/01066 poincare map. It simplifies the complicated system and useful for stability analysis. Chaotic and other motion can be distinguished visually by distinct point on the poincare map [7, 8, 9].. Double Pendulum.1. The System Figure 1 shows the double pendulum model which consists of simple pendulum system attached to the end of another simple pendulum. First simple pendulum is initialized by mass m 1, thin rod wire length l 1 and the second one by m and l. Axial forcing Q is choosen as constraint of the system. Figure 1. Double pendulum model... Equation of Motion Usual Hamiltonian on double pendulum system is H = m l p θ 1 + (m 1 + m l1 p θ m l 1 l p θ1 p θ cos(θ 1 θ l1 l m [ m1 + m sin (θ 1 θ ] (m 1 +m gl 1 cos θ 1 m gl cos θ, (1 where θ 1, θ are generalized coordinates and p θ1, p θ are generalized momenta. The axial forcing constraint is assumed Q = A sin(θ θ 1, ( where A is a constant. According to the [] equation of motion for the constrained system can be derived as θ i = H p θi where λ can be unknown parameter which can be a function which depends on t, p θi, and λ Q p θi, ṗ θi = H θ i + λ Q θ i, (3 θ i, i = 1,. By a comparison to the Hamiltonian of unconstrained systems, a more general definition for the Hamiltonian of the system can be defined as H total = H λq. (4 In this case, the equations of motion are decomposed from the terms of total Hamiltonian H total. Actually, some steps are needed to obtained the equation of motion in terms of H total, but for this numerical approach, it is assumed that θ i H total p θi, ṗ θi H total θ i. (5

4 Journal of Physics: Conference Series 739 ( doi: / /739/1/01066 For the simulation, assume that two masses are equal m 1 = m = m, two length rods are aqual l 1 = l = l and λ = qp θ + f cos ωt, where q, f, ω are constant, so equation (5 reduces to where θ 1 θ p θ1 p θ c 1 = = and k = (qp θ + f cos ωt cos(θ θ 1. p θ1 p θ cos(θ 1 θ ml [1+sin (θ 1 θ ] p θ p θ1 cos(θ 1 θ ml [1+sin (θ 1 θ ] mgl sin θ 1 c 1 + c + k mgl sin θ + c 1 c k, (6 p θ1 p θ sin(θ 1 θ ml [ 1 + sin ], (7 (θ 1 θ c = p θ 1 + p θ p θ1 p θ cos(θ 1 θ ml [ 1 + sin (θ 1 θ ] sin(θ 1 θ, (8.3. Numerical Approach Numerical approach used is fourth order Runge-Kutta s method. The solution is decomposed according to θ in+1 = θ in (j i1 + j i + j i3 + j i4, (9 p θin+1 = p θin (k i1 + k i + k i3 + k i4, (10 where j i1 = h θ in i, p θi, k i1 = hṗ θin i, p θi, t, j i = h θ in (θ i + j i1, p θi + k i1, k i = hṗ θin (θ i + j i1, p θi + k i1, t + h, j i3 = h θ in (θ i + j i, p θi + k i, k i3 = hṗ θin (θ i + j i, p θi + k i, t + h, j i4 = h θ in (θ i + j i3, p θi + k i3, k i4 = hṗ θin (θ i + j i3, p θi + k i3, t + h, and h is time steps on numerical grid. (11 3. Result and Discussion The results of this paper display in the poincare maps. They are shown in Figure which are displayed for some different initial values. The some initial values which are equal are θ 1 = 30 o, θ = 30 o, p θ1 = 0, and p θ1 = 0. Figure (a is a motion without constraint which is identified by q = 0 and f = 0. Figure (b shows constrained system which is identified by q = 0.5 and f = 0. The constraint is a damped function which depends on p θ. Figure (c includes constrained system which is identified by q = 0 and f = 40. But, in this case, the constraint is a axial forcing which depends on t. Figure (d also shows constrained system which is identified by q = 0.5 and f = 40. In addition, in this case, the constraint consist of a damped function depending on p θ and a axial forcing depending on t Figure (a and (b display the poincare map in closed path. It means that the motions are quasi-periodic [7]. Meanwhile, distinct point are found on the poincare map in Figure (c and (d. This means that the motion is chaotic behavior. While the given constraint depends on time, chaotic behavior can be found in determined initial value. 3

5 Journal of Physics: Conference Series 739 ( doi: / /739/1/01066 Figure. Poincare maps in various initial values on double pendulum system. 4. Conclusion Constrained Hamilton equation on the double pendulum system has been solved using fourth order Runge-Kutta method. The chaotic motion can be identified on double pendulum system which depend on the given constraint related to time function. Acknowledgments This article is dedicated to fulfill of IPA Terapan subject on Doctoral Program at Pascasarjana Unnes. References [1] E Anli and I Ozkol 010 Classical and fractional-order analysis of the free and forced double pendulum Sci. Res. Engineering p [] Y Tavakoli 014 Course in Canonical Gravity Lecture I: Constrained Hamiltonian systems [3] L Sticel 009 The Double Pendulum dhicketh/diffeqns/spring09projects/laurastickel/double Pendulum.pdf accesed on 15 March 015 [4] W Suminsky 01 Dynamic of Multiple Pendula (Olsztyn: University of Zielona Gora [5] VD Nguyen 007 A numerical Approach of Chaotic Motion in A Duffing Van Der Pol Oscillator Vietnam Journal of Mechanics VAST9(0073 p [6] S Balac and F Mahe 013 Embedded Runge-Kutta scheme for step-size control in the interaction picture method Computer Physics Communications 184 (4 p [7] A Bedri Ozer and E Akin 005 Tool for detecting chaos SAU Fen Bilimleri Enstitusu Dergisi 9 Cilt 1 Sayi 4

6 Journal of Physics: Conference Series 739 ( doi: / /739/1/01066 [8] C Skokos et al 014 Detecting order and chaos in Hamiltonian systems by the SALI method Submitted to: J. Phys. A: Math. Gen. arxiv:nlin/ v1 [9] E Marathe and R Govindarajan 011 Nonlinear Instability, bifurcations and chaos (Bangalore: Engineering Mechanics Unit Jawaharlal Nehru Center for Advanced Scientific Research 5

### Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses

Journal of Physics: Conference Series PAPER OPEN ACCESS Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses To cite this article: D Savitri 2018

### Physics 235 Chapter 4. Chapter 4 Non-Linear Oscillations and Chaos

Chapter 4 Non-Linear Oscillations and Chaos Non-Linear Differential Equations Up to now we have considered differential equations with terms that are proportional to the acceleration, the velocity, and

### Physics 106b: Lecture 7 25 January, 2018

Physics 106b: Lecture 7 25 January, 2018 Hamiltonian Chaos: Introduction Integrable Systems We start with systems that do not exhibit chaos, but instead have simple periodic motion (like the SHO) with

### Dynamics of multiple pendula without gravity

June 13, 2013 Institute of Physics University of Zielona Góra Chaos 2013 Istambul, 11-15 June Dynamics of multiple pendula without gravity Wojciech Szumiński http://midori-yama.pl For Anna Finding new

### Chaotic motion. Phys 750 Lecture 9

Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

### Estimation of the Minimizer of the Thomas-Fermi- Dirac-von Weizsäcker Functional of NaCl Crystal Lattice

Journal of Physics: Conference Series PAPER OPEN ACCESS Estimation of the Minimizer of the Thomas-Fermi- Dirac-von Weizsäcker Functional of NaCl Crystal Lattice To cite this article: S Wahyuni et al 2016

### An Analysis of Mimosa pudica Leaves Movement by Using LoggerPro Software

Journal of Physics: Conference Series PAPER OPEN ACCESS An Analysis of Mimosa pudica Leaves Movement by Using LoggerPro Software To cite this article: Sugito et al 2016 J. Phys.: Conf. Ser. 739 012121

### Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

### M2A2 Problem Sheet 3 - Hamiltonian Mechanics

MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

### Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

### Natural frequency analysis of fluid-conveying pipes in the ADINA system

Journal of Physics: Conference Series OPEN ACCESS Natural frequency analysis of fluid-conveying pipes in the ADINA system To cite this article: L Wang et al 2013 J. Phys.: Conf. Ser. 448 012014 View the

### The Dynamics of Pendula: An Introduction to Hamiltonian Systems and Chaos

The Dynamics of Pendula: An Introduction to Hamiltonian Systems and Chaos Adrianne Stroup adriannestroup@gmail.com California Institute of Technology October, Abstract The Laser Interferometer Gravitational

### Seminar 8. HAMILTON S EQUATIONS. p = L q = m q q = p m, (2) The Hamiltonian (3) creates Hamilton s equations as follows: = p ṗ = H = kq (5)

Problem 31. Derive Hamilton s equations for a one-dimensional harmonic oscillator. Seminar 8. HAMILTON S EQUATIONS Solution: The Lagrangian L = T V = 1 m q 1 kq (1) yields and hence the Hamiltonian is

### Modeling and Experimentation: Compound Pendulum

Modeling and Experimentation: Compound Pendulum Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin Fall 2014 Overview This lab focuses on developing a mathematical

### NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis

LECTURE 3: FLOWS NONLINEAR DYNAMICS AND CHAOS Patrick E McSharr Sstems Analsis, Modelling & Prediction Group www.eng.o.ac.uk/samp patrick@mcsharr.net Tel: +44 83 74 Numerical integration Stabilit analsis

### Integrable Hamiltonian systems generated by antisymmetric matrices

Journal of Physics: Conference Series OPEN ACCESS Integrable Hamiltonian systems generated by antisymmetric matrices To cite this article: Alina Dobrogowska 013 J. Phys.: Conf. Ser. 474 01015 View the

### 7 Pendulum. Part II: More complicated situations

MATH 35, by T. Lakoba, University of Vermont 60 7 Pendulum. Part II: More complicated situations In this Lecture, we will pursue two main goals. First, we will take a glimpse at a method of Classical Mechanics

### Physics 5153 Classical Mechanics. Canonical Transformations-1

1 Introduction Physics 5153 Classical Mechanics Canonical Transformations The choice of generalized coordinates used to describe a physical system is completely arbitrary, but the Lagrangian is invariant

### The Simple Double Pendulum

The Simple Double Pendulum Austin Graf December 13, 2013 Abstract The double pendulum is a dynamic system that exhibits sensitive dependence upon initial conditions. This project explores the motion of

### Wave function regulation to accelarate adiabatic dynamics in quantum mechanics

Journal of Physics: Conference Series PAPER OPEN ACCESS Wave function regulation to accelarate adiabatic dynamics in quantum mechanics To cite this article: Iwan Setiawan et al 2016 J. Phys.: Conf. Ser.

### From Last Time. Gravitational forces are apparent at a wide range of scales. Obeys

From Last Time Gravitational forces are apparent at a wide range of scales. Obeys F gravity (Mass of object 1) (Mass of object 2) square of distance between them F = 6.7 10-11 m 1 m 2 d 2 Gravitational

### Limit cycle oscillations at resonances

IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Limit cycle oscillations at resonances To cite this article: K Hellevik and O T Gudmestad 2017 IOP Conf. Ser.: Mater. Sci. Eng.

### Second Quantization Model of Surface Plasmon Polariton at Metal Planar Surface

Journal of Physics: Conference Series PAPER OPEN ACCESS Second Quantization Model of Surface Plasmon Polariton at Metal Planar Surface To cite this article: Dao Thi Thuy Nga et al 2015 J. Phys.: Conf.

### Chasing Chaos With a Magnetic Pendulum

Chasing Chaos With a Magnetic Pendulum PHY 300 - Junior Phyics Laboratory Hassan Bukhari Roll no: 2012-10-0152 Department of Physcis LUMS SSE Saturday, October, 23, 2010 1 Introduction Chaos expresses

### Two-Link Flexible Manipulator Control Using Sliding Mode Control Based Linear Matrix Inequality

IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Two-Link Flexible Manipulator Control Using Sliding Mode Control Based Linear Matrix Inequality To cite this article: Zulfatman

### HAMILTON S PRINCIPLE

HAMILTON S PRINCIPLE In our previous derivation of Lagrange s equations we started from the Newtonian vector equations of motion and via D Alembert s Principle changed coordinates to generalised coordinates

### Lecture 20: ODE V - Examples in Physics

Lecture 20: ODE V - Examples in Physics Helmholtz oscillator The system. A particle of mass is moving in a potential field. Set up the equation of motion. (1.1) (1.2) (1.4) (1.5) Fixed points Linear stability

### Chaos in the Planar Two-Body Coulomb Problem with a Uniform Magnetic Field

Annual Review of Chaos Theory, Bifurcations and Dynamical Systems Vol. 3, (2013) 23-33, www.arctbds.com. Copyright (c) 2013 (ARCTBDS). ISSN 2253 0371. All Rights Reserved. Chaos in the Planar Two-Body

### arxiv: v1 [nlin.ao] 26 Oct 2012

COMMENT ON THE ARTICLE DISTILLING FREE-FORM NATURAL LAWS FROM EXPERIMENTAL DATA CHRISTOPHER HILLAR AND FRIEDRICH T. SOMMER arxiv:1210.7273v1 [nlin.ao] 26 Oct 2012 1. Summary A paper by Schmi and Lipson

### Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter

Journal of Physics: Conference Series PAPER OPEN ACCESS Finite element analysis of combined magnetoelectric- electrodynamic vibration energy converter To cite this article: Sonia Bradai et al 2015 J. Phys.:

### Oscillations Simple Harmonic Motion

Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 1, 2017 Overview oscillations simple harmonic motion (SHM) spring systems energy in SHM pendula damped oscillations Oscillations and

### Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class

Assignments VIII and IX, PHYS 301 (Classical Mechanics) Spring 2014 Due 3/21/14 at start of class Homeworks VIII and IX both center on Lagrangian mechanics and involve many of the same skills. Therefore,

### Lecture D10 - Angular Impulse and Momentum

J. Peraire 6.07 Dynamics Fall 2004 Version.2 Lecture D0 - Angular Impulse and Momentum In addition to the equations of linear impulse and momentum considered in the previous lecture, there is a parallel

### Improving convergence of incremental harmonic balance method using homotopy analysis method

Acta Mech Sin (2009) 25:707 712 DOI 10.1007/s10409-009-0256-4 RESEARCH PAPER Improving convergence of incremental harmonic balance method using homotopy analysis method Yanmao Chen Jike Liu Received: 10

### In-process Measuring of Capacitance Per Unit Length for Single-core Electric Wires

Journal of Physics: Conference Series PAPER OPEN ACCESS In-process Measuring of Capacitance Per Unit Length for Single-core Electric Wires To cite this article: A E Goldshtein et al 016 J. Phys.: Conf.

### Chapter 15 - Oscillations

The pendulum of the mind oscillates between sense and nonsense, not between right and wrong. -Carl Gustav Jung David J. Starling Penn State Hazleton PHYS 211 Oscillatory motion is motion that is periodic

### Triggering of great earthquakes: calculation and analysis of combined tidal effect of the Moon and Sun

IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Triggering of great earthquakes: calculation and analysis of combined tidal effect of the Moon and Sun Related content - INTERACTION

### Dynamics of a mass-spring-pendulum system with vastly different frequencies

Dynamics of a mass-spring-pendulum system with vastly different frequencies Hiba Sheheitli, hs497@cornell.edu Richard H. Rand, rhr2@cornell.edu Cornell University, Ithaca, NY, USA Abstract. We investigate

### Chaotic Motion of the Double Pendulum

MEGL 2016 - Mathematical Art and 3D Printing George Mason University: College of Science December 16, 2016 Table of Contents 1 The Mathematics 2 Inspiration for the Model Planning the Construction of the

### Dynamics of a double pendulum with distributed mass. Abstract

The following article has been accepted by the American Journal of Physics. After it is published, it will be found at http://scitation.aip.org/ajp. Dynamics of a double pendulum with distributed mass

### Analysis of stationary roving mass effect for damage detection in beams using wavelet analysis of mode shapes

Journal of Physics: Conference Series PAPER OPEN ACCESS Analysis of stationary roving mass effect for damage detection in beams using wavelet analysis of mode shapes To cite this article: Mario Solís et

### PH 120 Project # 2: Pendulum and chaos

PH 120 Project # 2: Pendulum and chaos Due: Friday, January 16, 2004 In PH109, you studied a simple pendulum, which is an effectively massless rod of length l that is fixed at one end with a small mass

### Tectonics of the terrestrial litosphere in spherical harmonics

Journal of Physics: Conference Series PAPER OPEN ACCESS Tectonics of the terrestrial litosphere in spherical harmonics To cite this article: A V Mokhnatkin et al 2016 J. Phys.: Conf. Ser. 769 012007 View

### The total solar eclipse prediction by using Meeus Algorithm implemented on MATLAB

Journal of Physics: Conference Series PAPER OPEN ACCESS The 2016-2100 total solar eclipse prediction by using Meeus Algorithm implemented on MATLAB To cite this article: A Melati and S Hodijah 2016 J.

### Research Article Solutions of the Force-Free Duffing-van der Pol Oscillator Equation

International Differential Equations Volume 211, Article ID 852919, 9 pages doi:1.1155/211/852919 Research Article Solutions of the Force-Free Duffing-van der Pol Oscillator Equation Najeeb Alam Khan,

### How beaming of gravitational waves compares to the beaming of electromagnetic waves: impacts to gravitational wave detection

Journal of Physics: Conference Series PAPER OPEN ACCESS How beaming of gravitational waves compares to the beaming of electromagnetic waves: impacts to gravitational wave detection To cite this article:

### Multiple scale methods

Multiple scale methods G. Pedersen MEK 3100/4100, Spring 2006 March 13, 2006 1 Background Many physical problems involve more than one temporal or spatial scale. One important example is the boundary layer

### Wavelet analysis of the parameters of edge plasma fluctuations in the L-2M stellarator

Journal of Physics: Conference Series PAPER OPEN ACCESS Wavelet analysis of the parameters of edge plasma fluctuations in the L-2M stellarator To cite this article: S A Maslov et al 2016 J. Phys.: Conf.

### Stabilizing the dual inverted pendulum

Stabilizing the dual inverted pendulum Taylor W. Barton Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: tbarton@mit.edu) Abstract: A classical control approach to stabilizing a

### CALCULATION OF NONLINEAR VIBRATIONS OF PIECEWISE-LINEAR SYSTEMS USING THE SHOOTING METHOD

Vietnam Journal of Mechanics, VAST, Vol. 34, No. 3 (2012), pp. 157 167 CALCULATION OF NONLINEAR VIBRATIONS OF PIECEWISE-LINEAR SYSTEMS USING THE SHOOTING METHOD Nguyen Van Khang, Hoang Manh Cuong, Nguyen

### Waves & Oscillations

Physics 42200 Waves & Oscillations Lecture 21 Review Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters 1-8 Review

### MHD free convective flow past a vertical plate

Journal of Physics: Conference Series PAPER OPEN ACCESS MHD free convective flow past a vertical plate To cite this article: Nor Raihan Mohamad Asimoni et al 017 J. Phys.: Conf. Ser. 890 01009 View the

### The influence of disc friction losses and labyrinth losses on efficiency of high head Francis turbine

Journal of Physics: Conference Series OPEN ACCESS The influence of disc friction losses and labyrinth losses on efficiency of high head Francis turbine To cite this article: D eli and H Ondráka 2015 J.

### 1.1 To observe the normal modes of oscillation of a two degree of freedom system.

I. BJECTIVES. To observe the normal modes of oscillation of a two degree of freedom system.. To determine the natural frequencies and mode shapes of the system from solution of the Eigenvalue problem..3

### Numerical simulation of steady and unsteady flow for generalized Newtonian fluids

Journal of Physics: Conference Series PAPER OPEN ACCESS Numerical simulation of steady and unsteady flow for generalized Newtonian fluids To cite this article: Radka Keslerová et al 2016 J. Phys.: Conf.

### FRW models in the conformal frame of f(r) gravity

Journal of Physics: Conference Series FRW models in the conformal frame of fr gravity To cite this article: J Miritzis 2011 J. Phys.: Conf. Ser. 283 012024 View the article online for updates and enhancements.

### Fuzzy modeling and control of rotary inverted pendulum system using LQR technique

IOP Conference Series: Materials Science and Engineering OPEN ACCESS Fuzzy modeling and control of rotary inverted pendulum system using LQR technique To cite this article: M A Fairus et al 13 IOP Conf.

### Peculiarities of the thermal regime of the Russian plain depending on tidal oscillation Earth rotation speed

IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Peculiarities of the thermal regime of the Russian plain depending on tidal oscillation Earth rotation speed To cite this article:

### Energy spectrum inverse problem of q-deformed harmonic oscillator and WBK approximation

Journal of Physics: Conference Series PAPER OPEN ACCESS Energy spectrum inverse problem of q-deformed harmonic oscillator and WBK approximation To cite this article: Nguyen Anh Sang et al 06 J. Phys.:

### Kater s Pendulum. Stuart Field and Eric Hazlett

Kater s Pendulum Stuart Field and Eric Hazlett Abstract In this lab we will determine the value of the acceleration of gravity g by using a reversible pendulum, first developed by Henry Kater in 1815.

### The Adiabatic Invariance of the Action Variable in Classical Dynamics

The Adiabatic Invariance of the Action Variable in Classical Dynamics arxiv:physics/6184v1 [physics.class-ph] 11 Oct 26 Clive G. Wells Jesus College, Cambridge CB5 8BL, United Kingdom. Email address: cgw11@cam.ac.uk

### The Nonlinear Pendulum

The Nonlinear Pendulum - Pádraig Ó Conbhuí - 08531749 TP Monday 1. Abstract This experiment was performed to examine the effects that linearizing equations has on the accuracy of results and to find ways

### Quantum radiation force on a moving mirror for a thermal and a coherent field

Journal of Physics: Conference Series Quantum radiation force on a moving mirror for a thermal and a coherent field To cite this article: D T Alves et al 2009 J. Phys.: Conf. Ser. 161 012033 View the article

### Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

### Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody

Lecture 27. THE COMPOUND PENDULUM Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody diagram The term compound is used to distinguish the present

### Unforced Oscillations

Unforced Oscillations Simple Harmonic Motion Hooke s Law Newton s Second Law Method of Force Competition Visualization of Harmonic Motion Phase-Amplitude Conversion The Simple Pendulum and The Linearized

### Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

### Measuring the Top Quark Mass using Kinematic Endpoints

Journal of Physics: Conference Series OPEN ACCESS Measuring the Top Quark Mass using Kinematic Endpoints To cite this article: Benjamin Nachman and the Cms Collaboration 13 J. Phys.: Conf. Ser. 45 156

### Computational Analyses on the Dynamics of the Dipping Bird

Computational Analyses on the Dynamics of the Dipping Bird Sean Murray and Glenn Moynihan Supervised by Prof. Stefan Hutzler Abstract A simple differential equation was designed to display the motion of

### Simple and Physical Pendulums Challenge Problem Solutions

Simple and Physical Pendulums Challenge Problem Solutions Problem 1 Solutions: For this problem, the answers to parts a) through d) will rely on an analysis of the pendulum motion. There are two conventional

### Chasing Chaos with an RL-Diode Circuit

Chasing Chaos with an RL-Diode Circuit Junaid Alam and Sabieh Anwar LUMS School of Science and Engineering Wednesday, March 24, 2010 Have you ever wondered how science can be so organized and streamlined

### Gravitational collapse and the vacuum energy

Journal of Physics: Conference Series OPEN ACCESS Gravitational collapse and the vacuum energy To cite this article: M Campos 2014 J. Phys.: Conf. Ser. 496 012021 View the article online for updates and

### Assignment 8. [η j, η k ] = J jk

Assignment 8 Goldstein 9.8 Prove directly that the transformation is canonical and find a generating function. Q 1 = q 1, P 1 = p 1 p Q = p, P = q 1 q We can establish that the transformation is canonical

### Gravity Data Analysis and Modelling for Basin Sedimen of Eastern Java Blocks

Journal of Physics: Conference Series PAPER OPEN ACCESS Gravity Data Analysis and Modelling for Basin Sedimen of Eastern Java Blocks To cite this article: Luthfia Khoirunnia 2016 J. Phys.: Conf. Ser. 776

### Lecture 19: Calculus of Variations II - Lagrangian

Lecture 19: Calculus of Variations II - Lagrangian 1. Key points Lagrangian Euler-Lagrange equation Canonical momentum Variable transformation Maple VariationalCalculus package EulerLagrange 2. Newton's

### On Quadratic Stochastic Operators Having Three Fixed Points

Journal of Physics: Conference Series PAPER OPEN ACCESS On Quadratic Stochastic Operators Having Three Fixed Points To cite this article: Mansoor Saburov and Nur Atikah Yusof 2016 J. Phys.: Conf. Ser.

### The Pendulum - Stating the Problem

The Pendulum - Stating the Problem The physics of the pendulum evokes a wide range of applications from circuits to ecology. We start with a simple pendulum consisting of a point mass on a negligibly light

### An introduction to Birkhoff normal form

An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

### Earth s Magnetic Field Adapted by MMWaite from Measurement of Earth's Magnetic Field [Horizontal Component] by Dr. Harold Skelton

Adapted by MMWaite from Measurement of Earth's Magnetic Field [Horizontal Component] by Dr. Harold Skelton Object: The purpose of this lab is to determine the horizontal component of the Earth s Magnetic

### Stability solutions of a dumbbell-like system in an elliptical orbit

Journal of Physics: Conference Series PAPER OPEN ACCESS Stability solutions of a dumbbell-like system in an elliptical orbit To cite this article: Denilson Paulo Souza dos Santos et al 2015 J. Phys.: Conf.

### DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS

DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS Morris W. Hirsch University of California, Berkeley Stephen Smale University of California, Berkeley Robert L. Devaney Boston University

### Magnetic properties of soils from landslide potential area (Case study: Pasir Ipis-Lembang, West Bandung)

Journal of Physics: Conference Series PAPER OPEN ACCESS Magnetic properties of soils from landslide potential area (Case study: Pasir Ipis-Lembang, West Bandung) Related content - Magnetic Properties of

### Kinematic Analysis of Four-Link Suspension of Steering Wheel by Means of Equation Sets of Geometrical Constraints with Various Structure

IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Kinematic Analysis of Four-Link Suspension of Steering Wheel by Means of Equation Sets of Geometrical Constraints with Various

### Why are Discrete Maps Sufficient?

Why are Discrete Maps Sufficient? Why do dynamical systems specialists study maps of the form x n+ 1 = f ( xn), (time is discrete) when much of the world around us evolves continuously, and is thus well

### Mathematica tools for uncertainty analysis

Journal of Physics: Conference Series OPEN ACCESS Mathematica tools for uncertainty analysis To cite this article: M D Mikhailov and V Y Aibe 015 J. Phys.: Conf. Ser. 575 0104 View the article online for

### HuLiS, a program to teach mesomerism and more

Journal of Physics: Conference Series PAPER OPEN ACCESS HuLiS, a program to teach mesomerism and more To cite this article: Yannick Carissan et al 2016 J. Phys.: Conf. Ser. 738 012015 View the article

### Vibration analysis of concrete bridges during a train pass-by using various models

Journal of Physics: Conference Series PAPER OPEN ACCESS Vibration analysis of concrete bridges during a train pass-by using various models To cite this article: Qi Li et al 2016 J. Phys.: Conf. Ser. 744

### Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li

Numerical Methods for ODEs Lectures for PSU Summer Programs Xiantao Li Outline Introduction Some Challenges Numerical methods for ODEs Stiff ODEs Accuracy Constrained dynamics Stability Coarse-graining

### How Does the Smaller Alignment Index (SALI) Distinguish Order from Chaos?

Progress of Theoretical Physics Supplement No. 150, 2003 439 How Does the Smaller Alignment Index (SALI) Distinguish Order from Chaos? Charalampos Skokos, 1,2, ) Chris Antonopoulos, 1, ) Tassos C. Bountis

### For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is

Experiment 14 The Physical Pendulum The period of oscillation of a physical pendulum is found to a high degree of accuracy by two methods: theory and experiment. The values are then compared. Theory For

### Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

### Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12

Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109 Experiment Number 12 Outline Simple harmonic motion The vertical mass-spring system Driven oscillations and resonance The pendulum

### Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

### Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine)

Lagrangian and Hamiltonian Mechanics (Symon Chapter Nine Physics A301 Spring 2005 Contents 1 Lagrangian Mechanics 3 1.1 Derivation of the Lagrange Equations...................... 3 1.1.1 Newton s Second

### The alignment of the BESIII drift chamber using cosmic-ray data

Journal of Physics: Conference Series The alignment of the BESIII drift chamber using cosmic-ray data To cite this article: Linghui Wu et al 2012 J. Phys.: Conf. Ser. 396 022059 View the article online

### A Numerical Solution of Classical Van der Pol-Duffing Oscillator by He s Parameter-Expansion Method

Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 15, 709-71 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijcms.2013.355 A Numerical Solution of Classical Van der Pol-Duffing Oscillator by

### A study of π and ρ mesons with a nonperturbative

Journal of Physics: Conference Series PAPER OPEN ACCESS A study of π and ρ mesons with a nonperturbative approach To cite this article: Rocio Bermudez et al 2015 J. Phys.: Conf. Ser. 651 012002 Related

### Numerical Simulation Bidirectional Chaotic Synchronization of Spiegel-Moore Circuit and Its Application for Secure Communication

IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Numerical Simulation Bidirectional Chaotic Snchronization of Spiegel-Moore Circuit and Its Application for Secure Communication