Transactions on Engineering Sciences vol 13, 1996 WIT Press, ISSN

Size: px
Start display at page:

Download "Transactions on Engineering Sciences vol 13, 1996 WIT Press, ISSN"

Transcription

1 Computational debonding analysis of a thermally stressed fiber/matrix composite cylinder F.-G. Buchholz," O. Koca* "Institute ofapplied Mechanics, University ofpaderborn, D Paderborn, Germany ^Institute of Strength of Materials, University of Tirana, Tirana, Albania Abstract An axisymmetric fiber/matrix composite cylinder of finite length and diameter, subjected to a stationary and homogeneous change in temperature, with respect to the unstressed state, is considered. Emphasis is on SD-efFects in the state of stress, which are not covered by 2D-models, but have a strong impact on the kind of fracture and failure processes that may develop. In particular a thermally induced axial debonding process between fiber and matrix is analysed in detail, including the effects of contact and sliding friction along the crack faces. 1. Introduction Aircraft- and spacecraft structures manufactured from composite materials are frequently subjected to superimposed mechanical and thermal loadings during service in flight, orbit or space. Both types of loadings may cause fracture and failure of composite structures respectively and that is why fracture analysis of mechanically and /or thermally stresses composites are important subjects in materials - and engineering science. Due to the complexity of the corresponding problems of thermoelasticity these investigations often take a micromechanical approach by considering only small representative material sections (unit cells) and frequently they are limited to the related ID-problems /1-4/. Here for a 3D fiber/matrix (f7m) composite cylinder of finite length and diameter (see Fig. 1 and Tab. 1), which is considered to be subjected to a stationary and homogeneous change in temperature with respect to the unstressed initial state, the analysis of a thermally induced axial debonding process between fiber and matrix is presented in detail, including the effects of contact and sliding friction along the crack faces. Even for this simple loading case (AT=const.>0) a complex state of stress is created in this f/m composite cylinder, due to the thermoelastic mismatch of the SiC-fiber and Al-matrix (Tab. 2).

2 684 Localized Damage The analysis is based on the FEM for the state of stress and on global- and local energy methods for the mixed-mode axial debonding process, which is strongly affected by crack face contact and friction. It is shown that also for this complex application a generalized form of the straight forward and numerically effective Virtual Crack Closure Integral (VCCI)-method can be utilized, in combination with some essential data that can be extracted from the solution of the nonlinear contact problem by the ABAQUS FE-code. H v H V Fig. 1 Unit cell model of thefiber/matrixcomposite cylinder and corresponding undeformed and deformed finite element model (axisym. 8-noded elem.) Parameter fiber radius matrix radius length or heigth of cylinder aspect ratio fiber volume fraction change of temperature coeff. of fiber/matrix friction Notation i^= mm rrn = 10mm H = 10mm H/rm = l Vf /V = 30% AT=100 deg U= 0, 0.25, 0.5 Tab. 1 Geometrical and loading parameters of the f7m composite cylinder Notation YOUNG'S modulus E [N/mm^] POISSON's ratio v Linear coefficient of thermal expansion a [deg"" ] fiber (SiQ » < "^ «matrix (Al) Tab. 2 Thermoelastic material parameters of the f/m composite cylinder

3 2. Stress analysis results Localized Damage 685 Detailed stress analysis results for the 3D fiber/matrix composite cylinder are given in /8/ and also for the corresponding 2D-cases of plane stress, plane strain and generalized plane strain. Here we focus our interest on a remarkable 3Deffect in the radial stress c%, which develops next to the free edges of the f7m cylinder (z/h»±1, Fig. 1) and that will have a strong impact on the axial debonding process to be considered. From the undeformed and deformed FEmesh in Fig 1 a distinct radial- and axial expansion of the f/m composite cylinder can be noticed, which is due to the thermal loading (AT=100deg) and the thermoelastic mismatch of the constituents with otm»af (Tab. 2). 250 fiber nterface matrix radius r [mm] Fig. 2 Radial stress distribution in the f/m comp. cylinder with z/h as parameter In Fig. 2 the radial stresses o^ are plotted versus the radius r of the f/m cylinder with z/h as parameter, increasing from z/h = 0 in the plane of symmetry to z/h = 1 at the upper free edge of the composite cylinder. In the plane of symmetry of the cylinder (z/h=0) a^ f «const.»0 is found in the fiber (0<r<rf) and thus at the f/m interface (r=rf) high radial tensile stresses (%»() are acting. This will create a radial crack opening (mode I) for f/m debonding in the cylinder at z/h=l, which corresponds well to the radial debonding behavior of all 2Dmodels cited above. But for z/h>0.5 the radial stress distribution in the fiber changes remarkably and for z/h>0.95 high compressive stresses o^<0 are acting at the f/m interface. So in contrast to the 2D-models no crack opening can be expected to develop during axial f/m debonding at the free edge of the 3D composite cylinder, which is driven by the out of plane shear stress o^ at the f7m interface. This is confirmed by Fig. 3a, in which a FE-mesh detail of the

4 686 Localized Damage cylinder shows a fiber/matrix intersection in the model for a state of axial f/m debonding with a/h=0.1. This defect with respect to the mechanical relevance of the FE-model has been avoided in Fig. 3b, by taking the corresponding contact problem into account. In the related debonding analysis several new aspects had to be considered in order to cover the problems of contact and sliding friction along the crack faces 79,107 by the well experienced approaches with global- and local energy methods 74,6,77. Fig. 3 FE-mesh details of the f7m debonding process (DMF=50) with f7m intersection and contact model (a7h=0.1) Fig. 4 FE-mesh details of the f7m debonding process with contact model (a/h=0.2)and crack opening (a/h=0.3) 3. Debonding Analysis with Crack Face Contact and Friction According to IRWIN the total SERR GT for quasi static crack extension in a brittle material can be defined on the basis of a global energy balance as follows Gr(a) = - = _ lim t da Aa-»0 taa (1)

5 Localized Damage 687 In Eq. (1) EKU-W is the total potential of a plane elastic body, U=l/2 u_t u is the elastic strain energy and W = u_t F is the potential of the external loads (t thickness of the specimen). For finite crack extension Aa ij (2) is holding, where W denotes the crack opening work. From comparisons with reference solutions it is known that this method, denoted as global energy method EN2 here, is numerically highly accurate, even for rather coarse meshes, but has the disadvantage that the total SERR G * can not be separated into the individual modes Gj, i = I,II,III in cases of mixed-mode crack front conditions. For those cases one can refer to IRWIN's basic idea, that for elastic bodies crack opening and crack closure are reversible processes. This means w.9 = wf (3) is holding and consequently, instead of using Eq. (2) in order to calculate W, we can utilize a local energy method, namely the VCCI- or 2C-method /5,6/ for s~\ computing the crack closure work W and the correlated total SERR Gy^ through the separated normal (mode I) and tangential (mode II) parts. Thus with Eq. (2) we find o.o crack length a [mm] Fig. 5 Relative normal displacements (opening) between corresponding nodal points along the crack fraces for debonding lengths 0.175<a/H<0.3.

6 688 Localized Damage W + w or ij ij ij ij T where, respectively, the agreement between both sides of Eq. (4) provide a quantitative measure of accuracy if both methods have been applied. For a more complex problem with contact and sliding friction along the crack faces Eq. (2) has to be replaced by, (5) ij ij ij ^ stating that in this case the change of total potential has to cover the energy for two different processes, namely the crack opening work W^ and the work W^ dissipated due to sliding friction along the crack faces. Thus at least one of the right hand side quantities has to be determined in addition, but preferably both and independently, because then Eq. (5) will also provide a quantitative measure of accuracy for the different approaches that have been taken. The first important step to the solution of the generalized problem was the finding that the local energy method VCCI or 2C is also valid in the case of crack face contact and friction. The second step was the finding that the work W^ which is dissipated due to sliding friction along the crack faces during quasi static crack extension from crack length a to a+aa, can be calculated by Wif = - (6) In Eq. (6) thefirstterm covers the frictional work done by thefirstcrack tip element during crack extension from a to a+aa, whereas the second term is the sum of the work, which is dissipated due to sliding friction along the entire crack face contact zone. In Eq. (6) e.g. C^~ (a + Aa) denotes the tangential component of the contact force at a nodal point with position j-1 and Au^~ (a + Aa) is the relative tangential displacement between the correlated nodal points at the upper and lower crack faces. Thus for quasi static crack extension we find w + W (7) and the excellent agreement between both sides of Eq. (7) for the axial f/m debonding with 0<a/H<0.3, as plotted in Fig. 6, can be taken as a proof of this

7 Localized Damage 689 x L_ en CD C CD ^ WF WC DU WF-fWC 1 js 0.0-0H ^ crock length a [mm] Fig. 6 Development of crack closure work WC, crack face slinding frictional work WF and change of elastic strain energy DU with increasing debonding lengths o.o crack length a [mm] Fig. 7 Effects of contact and sliding friction along the crack faces on crack closure work WC and frictional work WF during axial debonding approach, because all three quantities are computed seperately and independently by different methods. From the FE-meshes in Figs. 3 and 4 it can be realized that the axial debonding process along the f7m interface (r=rf) initiates at the free edge of the composite cylinder (z/h=l). From there it extends with the crack faces remaining in complete or partly contact until for a/h>0.3 full crack opening has developed. This can be followed in more detail in Fig. 5 on the basis of the relative radial or

8 690 Localized Damage crock length a [mm] Fig. 8 Effects of contact and slidingfrictionalong the crack faces on the strain energy release rates during axial debonding normal displacements (opening) between corresponding nodal points along the crack faces as plotted. It shows that the first local crack opening develops for a/h=0.175 (but not at the crack tip!) and how the contact zone decreases with increasing debonding lengths (0.175<a/H<0.3). This also explains why in Figs. 6 and 7 for shorter crack lengths a stronger factional influence is effective, which slowly vanishes for a/h»0.3. Figure 7 also indicates how the crack closure work WC at the crack tip and thus the correlated total SERR G^ (see also Fig. 8) is reduced with increasing frictiona! work W^ due to higher coefficients of friction (0<fj,<0.5). For debonding lengths a/h>0.3 an excellent between Grp^(a) and Gy (a) is found in Fig. 8 with respect to Eq. (4), because full crack opening has developed (mode I) and the further bebonding process is a typical mixed-mode fracture process, with predominat in plane shear loading (mode II) at the crack front for debonding lengths up to a/h<0.9. For a/h>0.3 the quantitative results shown in Fig. 8 agree well with those given in /?/, but where for a/h<0.3 crack face contact and friction could not be considered. 4. Conclusions Through this computational analysis of a thermally induced axial debonding process in a 3D f7m composite cylinder it has been shown how a3d-effect can strongly affect a fracture or failure process. Furthermore it has been found that the numerically effective VCCI-method can also be applied to more complex problems including contact and sliding friction along the crack faces. Acknowledgement The grant ERB-CIPA-CT , prop. No provided by the Commission of the European Communities is gratefully acknowleged.

9 References Localized Damage Hashin, Z, "Analysis of Composite Materials", J. of Applied Mechanics, Vol.50, 1983, pp Mahishi, J.M., "An Integrated Micromechanical and Macromechanical Approach to Fracture Behavior of Fiber-Reinforced Composites", Engng. Fracture Mechanics, Vol.25, 1986, pp Bohm, H.J., Rammerstorfer, F.F., Weissenbek, E, "Some Simple Models for Micromechanical Investigations of Fiber Arrangement Effects in MMCs", Computational Materials Science, Vol. 1, 1993, pp Buchholz, F.-G., "On Correlations between Thermal Stresses, Elastic Strain Energy and Debonding in Thermally Loaded Fibre-Reinforced Composite Materials", In Composites Design for Space Application, ESA SP-243, Noordwijk, 1986, pp Rybicki, E.F., Kanninen, M.F., "A Finite Element Calculation of Stress Intensity Factors by a Modified Crack Closure Integral", Engng. Fracture Mech., Vol. 9, 1977, pp Buchholz, F.-G., "Improved Formulae for the Finite Element Calculation of the Strain Energy Release Rate by the Modified Crack Closure Integral Method", In Accuracy, Reliability and Training in FEM Technology, Robinson and Associates, Dorset, 1984, pp Buchholz, F.-G., Schulte-Frankenfeld, N., Meiners, B., "Fracture Analysis of Mixed-Mode Failure Processes in a 3D-Fiber/Matrix Composite Cylinder", In Proc. of the 6th Int. Conf. on Composite Materials (ICCM- VI), Vol. 3, (Eds. F.L. Matthews et al.) Elsevier Applied Science Publ., London, 1987, Koca, O, Buchholz, F.-G., "Analytical- and Computational Stress Analysis of Fiber/Matrix Composite Models", In Proc. of the 3rd Int. Workshop on Computational Modelling of the Mechanical Behavior of Materials (Ed. S. Schmauder), Max-Planck-Institut fur Metallforschung Stuttgart, November Computational Materials Science, Vol. 3 (1994), Buchholz, F.-G., Koca, O, "Stress- and Fracture Analysis of Thermally Stressed Fibre/Matrix Composite Models", In Localized Damage Ill- Computer Aided Assessment and Control (Eds. M.H. Aliabadi et al), Proc. of the 3rd Int. Conf, Int. Centre for Mechanical Sciences, Udine, Italy, June Computational Mechanics Publ., Southampton/Boston, 1994, Buchholz, F.-G., Wang, H., Ding, S., Rikards, R,: "Delamination Analysis for Cross-Ply Laminates Under Bending With Consideration of Crack Face Contact and Friction", In Proc. of the 10th Int. Conf. on Composite Materials (ICCM 10), Vol. I (Eds. A. Poursatip, K. Street), Vancouver, BC, Canada, August Woodhead Publ. Ltd, Cambridge, 1995,

Stress intensity factor analysis for an interface crack between dissimilar isotropic materials

Stress intensity factor analysis for an interface crack between dissimilar isotropic materials Stress intensity factor analysis for an interface crack between dissimilar isotropic materials under thermal stress T. Ikeda* & C. T. Sun* I Chemical Engineering Group, Department of Materials Process

More information

SKIN-STRINGER DEBONDING AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS

SKIN-STRINGER DEBONDING AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS SKIN-STRINER DEBONDIN AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS R. Rikards, K. Kalnins & O. Ozolinsh Institute of Materials and Structures, Riga Technical University, Riga 1658, Latvia ABSTRACT

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load

Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load Sriram Chintapalli 1, S.Srilakshmi 1 1 Dept. of Mech. Engg., P. V. P. Siddhartha Institute of Technology.

More information

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP)

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) 1 University of Science & Technology Beijing, China, niukm@ustb.edu.cn 2 Tsinghua University, Department of Engineering Mechanics, Beijing, China,

More information

Transactions on Engineering Sciences vol 6, 1994 WIT Press, ISSN

Transactions on Engineering Sciences vol 6, 1994 WIT Press,  ISSN Strain energy release rate calculation from 3-D singularity finite elements M.M. Abdel Wahab, G. de Roeck Department of Civil Engineering, Katholieke Universiteit, Leuven, B-3001 Heverlee, Belgium ABSTRACT

More information

CHARACTERIZATION, ANALYSIS AND PREDICTION OF DELAMINATION IN COMPOSITES USING FRACTURE MECHANICS

CHARACTERIZATION, ANALYSIS AND PREDICTION OF DELAMINATION IN COMPOSITES USING FRACTURE MECHANICS Oral Reference Number: ICF100942OR CHARACTERIZATION, ANALYSIS AND PREDICTION OF DELAMINATION IN COMPOSITES USING FRACTURE MECHANICS T. Kevin O Brien U.S. Army Research Laboratory Vehicle Technology Directorate

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011 Interlaminar failure analysis of FRP cross ply laminate with elliptical cutout Venkateswara Rao.S 1, Sd. Abdul Kalam 1, Srilakshmi.S 1, Bala Krishna Murthy.V 2 1 Mechanical Engineering Department, P. V.

More information

THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES

THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES L.V. Smith 1 *, M. Salavatian 1 1 School of Mechanical and Materials

More information

Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach

Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach University of Liège Aerospace & Mechanical Engineering Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach Ludovic Noels Computational & Multiscale Mechanics of

More information

Prediction of Delamination Growth Behavior in a Carbon Fiber Composite Laminate Subjected to Constant Amplitude Compression-Compression Fatigue Loads

Prediction of Delamination Growth Behavior in a Carbon Fiber Composite Laminate Subjected to Constant Amplitude Compression-Compression Fatigue Loads Prediction of Delamination Growth Behavior in a Carbon Fiber Composite Laminate Subjected to Constant Amplitude Compression-Compression Fatigue Loads J. Raju 1*, D.S. Sreedhar 2, & C.M. Manjunatha 1 1

More information

Numerical simulation of delamination onset and growth in laminated composites

Numerical simulation of delamination onset and growth in laminated composites Numerical simulation of delamination onset and growth in laminated composites G. Wimmer, C. Schuecker, H.E. Pettermann Austrian Aeronautics Research (AAR) / Network for Materials and Engineering at the

More information

ANALYTICAL FRACTURE MECHANICS ANALYSIS OF THE PULL-OUT TEST INCLUDING THE EFFECTS OF FRICTION AND THERMAL STRESSES

ANALYTICAL FRACTURE MECHANICS ANALYSIS OF THE PULL-OUT TEST INCLUDING THE EFFECTS OF FRICTION AND THERMAL STRESSES Advanced Composite Letters, Vol. 9, No. 6, 373-383 000 Full Article ANALYTICAL FRACTURE MECHANICS ANALYSIS OF THE PULL-OUT TEST INCLUDING THE EFFECTS OF FRICTION AND THERMAL STRESSES John A. Nairn Material

More information

Open-hole compressive strength prediction of CFRP composite laminates

Open-hole compressive strength prediction of CFRP composite laminates Open-hole compressive strength prediction of CFRP composite laminates O. İnal 1, A. Ataş 2,* 1 Department of Mechanical Engineering, Balikesir University, Balikesir, 10145, Turkey, inal@balikesir.edu.tr

More information

Modeling and Simulations of Aircraft Structures Stiffness, Damage, and Failure Prediction for Laminated Composites

Modeling and Simulations of Aircraft Structures Stiffness, Damage, and Failure Prediction for Laminated Composites Modeling and Simulations of Aircraft Structures Stiffness, Damage, and Failure Prediction for Laminated Composites H.E.Pettermann 1, C.Schuecker 1, D.H.Pahr 2, F.G.Rammerstorfer 2 1 Austrian Aeronautics

More information

THREE DIMENSIONAL STRESS ANALYSIS OF THE T BOLT JOINT

THREE DIMENSIONAL STRESS ANALYSIS OF THE T BOLT JOINT THREE DIMENSIONAL STRESS ANALYSIS OF THE T BOLT JOINT Víctor Martínez 1, Alfredo Güemes 2, Norbert Blanco 1, Josep Costa 1 1 Escola Politècnica Superior. Universitat de Girona. Girona, Spain (17071) 2

More information

The Rotating Inhomogeneous Elastic Cylinders of. Variable-Thickness and Density

The Rotating Inhomogeneous Elastic Cylinders of. Variable-Thickness and Density Applied Mathematics & Information Sciences 23 2008, 237 257 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. The Rotating Inhomogeneous Elastic Cylinders of Variable-Thickness and

More information

Debonding process in composites using BEM

Debonding process in composites using BEM Boundary Elements XXVII 331 Debonding process in composites using BEM P. Prochazka & M. Valek Czech Technical University, Prague, Czech Republic Abstract The paper deals with the debonding fiber-matrix

More information

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Abstract: FRP laminated composites have been extensively used in Aerospace and allied industries

More information

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains Introduction In this lecture we are going to introduce a new micromechanics model to determine the fibrous composite effective properties in terms of properties of its individual phases. In this model

More information

Finite element analysis of longitudinal debonding between fibre and matrix interface

Finite element analysis of longitudinal debonding between fibre and matrix interface Indian Journal of Engineering & Materials Sciences Vol. 11, February 2004, pp. 43-48 Finite element analysis of longitudinal debonding between fibre and matrix interface K Aslantaş & S Taşgetiren Department

More information

SSRG International Journal of Mechanical Engineering (SSRG-IJME) volume1 issue5 September 2014

SSRG International Journal of Mechanical Engineering (SSRG-IJME) volume1 issue5 September 2014 Finite Element Modeling for Delamination Analysis of Double Cantilever Beam Specimen Mohammed Waseem H.S. 1, Kiran Kumar N. 2 1 Post Graduate Student, 2 Asst. Professor Dept. of Mechanical Engineering,

More information

BRIDGING LAW SHAPE FOR LONG FIBRE COMPOSITES AND ITS FINITE ELEMENT CONSTRUCTION

BRIDGING LAW SHAPE FOR LONG FIBRE COMPOSITES AND ITS FINITE ELEMENT CONSTRUCTION Proceedings of ALGORITMY 2012 pp. 353 361 BRIDGING LAW SHAPE FOR LONG FIBRE COMPOSITES AND ITS FINITE ELEMENT CONSTRUCTION VLADISLAV KOZÁK AND ZDENEK CHLUP Abstract. Ceramic matrix composites reinforced

More information

Finite element modelling of infinitely wide Angle-ply FRP. laminates

Finite element modelling of infinitely wide Angle-ply FRP. laminates www.ijaser.com 2012 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Finite element modelling of infinitely wide Angle-ply FRP laminates

More information

Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 9, 1995 WIT Press,   ISSN X Elastic-plastic model of crack growth under fatigue using the boundary element method M. Scibetta, O. Pensis LTAS Fracture Mechanics, University ofliege, B-4000 Liege, Belgium Abstract Life of mechanic

More information

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations W. Van Paepegem *, I. De Baere and J. Degrieck Ghent

More information

FRACTURE MECHANICS OF COMPOSITES WITH RESIDUAL STRESSES, TRACTION-LOADED CRACKS, AND IMPERFECT INTERFACES

FRACTURE MECHANICS OF COMPOSITES WITH RESIDUAL STRESSES, TRACTION-LOADED CRACKS, AND IMPERFECT INTERFACES Proc. 2 nd ESIS TC4 Conference on Polymers and Composites, in press, 1999 Author prepared reprint FRACTURE MECHANICS OF COMPOSITES WITH RESIDUAL STRESSES, TRACTION-LOADED CRACKS, AND IMPERFECT INTERFACES

More information

Influence of impact velocity on transition time for V-notched Charpy specimen*

Influence of impact velocity on transition time for V-notched Charpy specimen* [ 溶接学会論文集第 35 巻第 2 号 p. 80s-84s (2017)] Influence of impact velocity on transition time for V-notched Charpy specimen* by Yasuhito Takashima** and Fumiyoshi Minami** This study investigated the influence

More information

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Ever J. Barbero Department of Mechanical and Aerospace Engineering West Virginia University USA CRC Press Taylor &.Francis Group Boca Raton London New York

More information

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing, China, August 7-12, 25 SMiRT18-G8-5 INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE

More information

FLOATING NODE METHOD AND VIRTUAL CRACK CLOSURE TECHNIQUE FOR MODELING MATRIX CRACKING- DELAMINATION MIGRATION

FLOATING NODE METHOD AND VIRTUAL CRACK CLOSURE TECHNIQUE FOR MODELING MATRIX CRACKING- DELAMINATION MIGRATION THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FLOATING NODE METHOD AND VIRTUAL CRACK CLOSURE TECHNIQUE FOR MODELING MATRIX CRACKING- DELAMINATION MIGRATION N. V. De Carvalho 1*, B. Y. Chen

More information

Modeling Fracture and Failure with Abaqus

Modeling Fracture and Failure with Abaqus Modeling Fracture and Failure with Abaqus Day 1 Lecture 1 Lecture 2 Lecture 3 Workshop 1 Workshop 2 Basic Concepts of Fracture Mechanics Modeling Cracks Fracture Analysis Crack in a Three-point Bend Specimen

More information

DEVELOPMENT OF TEST GUIDANCE FOR COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS CONTAINING NOTCHES INSTEAD OF FATIGUE PRE-CRACKS

DEVELOPMENT OF TEST GUIDANCE FOR COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS CONTAINING NOTCHES INSTEAD OF FATIGUE PRE-CRACKS Transactions, SMiRT-23 Division II, Paper ID 287 Fracture Mechanics and Structural Integrity DEVELOPMENT OF TEST GUIDANCE FOR COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS CONTAINING NOTCHES INSTEAD OF

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Contact analysis for the modelling of anchors in concrete structures H. Walter*, L. Baillet** & M. Brunet* *Laboratoire de Mecanique des Solides **Laboratoire de Mecanique des Contacts-CNRS UMR 5514 Institut

More information

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading Indian Journal of Engineering & Materials Sciences Vol. 15, October 2008, pp. 382-390 Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading K Sivaji Babu a *, K Mohana

More information

Elastic-plastic deformation near the contact surface of the circular disk under high loading

Elastic-plastic deformation near the contact surface of the circular disk under high loading Elastic-plastic deformation near the contact surface of the circular disk under high loading T. Sawada & M. Horiike Department of Mechanical Systems Engineering Tokyo University of Agriculture and Technology,

More information

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium

Example-3. Title. Description. Cylindrical Hole in an Infinite Mohr-Coulomb Medium Example-3 Title Cylindrical Hole in an Infinite Mohr-Coulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elasto-plastic

More information

17th European Conference on Fracture 2-5 September,2008, Brno, Czech Republic. Thermal Fracture of a FGM/Homogeneous Bimaterial with Defects

17th European Conference on Fracture 2-5 September,2008, Brno, Czech Republic. Thermal Fracture of a FGM/Homogeneous Bimaterial with Defects -5 September,8, Brno, Czech Republic Thermal Fracture of a FGM/Homogeneous Bimaterial with Defects Vera Petrova, a, Siegfried Schmauder,b Voronezh State University, University Sq., Voronezh 3946, Russia

More information

3D Finite Element analysis of stud anchors with large head and embedment depth

3D Finite Element analysis of stud anchors with large head and embedment depth 3D Finite Element analysis of stud anchors with large head and embedment depth G. Periškić, J. Ožbolt & R. Eligehausen Institute for Construction Materials, University of Stuttgart, Stuttgart, Germany

More information

On characterising fracture resistance in mode-i delamination

On characterising fracture resistance in mode-i delamination 9 th International Congress of Croatian Society of Mechanics 18-22 September 2018 Split, Croatia On characterising fracture resistance in mode-i delamination Leo ŠKEC *, Giulio ALFANO +, Gordan JELENIĆ

More information

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS H. Kumazawa and T. Takatoya Airframes and Structures Group, Japan Aerospace Exploration Agency 6-13-1, Ohsawa, Mitaka,

More information

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE Daxu Zhang and D. R. Hayhurst School of Mechanical, Aerospace and Civil Engineering,

More information

Transactions on Engineering Sciences vol 6, 1994 WIT Press, ISSN

Transactions on Engineering Sciences vol 6, 1994 WIT Press,  ISSN Significance of the characteristic length for micromechanical modelling of ductile fracture D.-Z. Sun, A. Honig Fraunhofer-Institut fur Werkstoffmechanik, Wohlerstr. 11, D-79108 Freiburg, Germany ABSTRACT

More information

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Fig. 1. Circular fiber and interphase between the fiber and the matrix. Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In

More information

Prediction of Elastic Constants on 3D Four-directional Braided

Prediction of Elastic Constants on 3D Four-directional Braided Prediction of Elastic Constants on 3D Four-directional Braided Composites Prediction of Elastic Constants on 3D Four-directional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,

More information

Crash and Impact Simulation of Composite Structures by Using CAE Process Chain

Crash and Impact Simulation of Composite Structures by Using CAE Process Chain Crash and Impact Simulation of Composite Structures by Using CAE Process Chain Madhukar Chatiri 1, Thorsten Schütz 2, Anton Matzenmiller 3, Ulrich Stelzmann 1 1 CADFEM GmbH, Grafing/Munich, Germany, mchatiri@cadfem.de

More information

PREDICTION OF FATIGUE LIFE OF COLD FORGING TOOLS BY FE SIMULATION AND COMPARISON OF APPLICABILITY OF DIFFERENT DAMAGE MODELS

PREDICTION OF FATIGUE LIFE OF COLD FORGING TOOLS BY FE SIMULATION AND COMPARISON OF APPLICABILITY OF DIFFERENT DAMAGE MODELS PREDICTION OF FATIGUE LIFE OF COLD FORGING TOOLS BY FE SIMULATION AND COMPARISON OF APPLICABILITY OF DIFFERENT DAMAGE MODELS M. Meidert and C. Walter Thyssen/Krupp Presta AG Liechtenstein FL-9492 Eschen

More information

NUMERICAL INVESTIGATION OF DELAMINATION IN L-SHAPED CROSS-PLY COMPOSITE BRACKET

NUMERICAL INVESTIGATION OF DELAMINATION IN L-SHAPED CROSS-PLY COMPOSITE BRACKET NUMERICAL INVESTIGATION OF DELAMINATION IN L-SHAPED CROSS-PLY COMPOSITE BRACKET M.Gümüş a*, B.Gözlüklü a, D.Çöker a a Department of Aerospace Eng., METU, Ankara, Turkey *mert.gumus@metu.edu.tr Keywords:

More information

Initiation de fissure dans les milieux fragiles - Prise en compte des contraintes résiduelles

Initiation de fissure dans les milieux fragiles - Prise en compte des contraintes résiduelles Initiation de fissure dans les milieux fragiles - Prise en compte des contraintes résiduelles D. Leguillon Institut Jean le Rond d Alembert CNRS/UPMC Paris, France Parvizi, Garrett and Bailey experiments

More information

Prediction of geometric dimensions for cold forgings using the finite element method

Prediction of geometric dimensions for cold forgings using the finite element method Journal of Materials Processing Technology 189 (2007) 459 465 Prediction of geometric dimensions for cold forgings using the finite element method B.Y. Jun a, S.M. Kang b, M.C. Lee c, R.H. Park b, M.S.

More information

Failure modes of glass panels subjected to soft missile impact

Failure modes of glass panels subjected to soft missile impact Failure modes of glass panels subjected to soft missile impact L. R. Dharani & J. Yu Dept. of Mech. and Aerospace Engineering and Engineering Mechanics, University of Missouri-Rolla, U.S.A. Abstract Damage

More information

ANALYTICAL PENDULUM METHOD USED TO PREDICT THE ROLLOVER BEHAVIOR OF A BODY STRUCTURE

ANALYTICAL PENDULUM METHOD USED TO PREDICT THE ROLLOVER BEHAVIOR OF A BODY STRUCTURE The 3rd International Conference on Computational Mechanics and Virtual Engineering COMEC 2009 29 30 OCTOBER 2009, Brasov, Romania ANALYTICAL PENDULUM METHOD USED TO PREDICT THE ROLLOVER BEHAVIOR OF A

More information

Modeling and simulation of continuous fiberreinforced

Modeling and simulation of continuous fiberreinforced Scholars' Mine Doctoral Dissertations Student Research & Creative Works 2014 Modeling and simulation of continuous fiberreinforced ceramic composites Venkata Bheemreddy Follow this and additional works

More information

PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE

PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE 7th European Workshop on Structural Health Monitoring July 8-11, 2014. La Cité, Nantes, France More Info at Open Access Database www.ndt.net/?id=17206 PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE

More information

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics Dr. A. Johnson DLR Dr. A. K. Pickett ESI GmbH EURO-PAM 99 Impact and Crash Modelling of Composite Structures: A Challenge

More information

Enhancing Prediction Accuracy In Sift Theory

Enhancing Prediction Accuracy In Sift Theory 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS Enhancing Prediction Accuracy In Sift Theory J. Wang 1 *, W. K. Chiu 1 Defence Science and Technology Organisation, Fishermans Bend, Australia, Department

More information

Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su. ME 563: Nonlinear Finite Element Analysis.

Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su. ME 563: Nonlinear Finite Element Analysis. ME 563: Nonlinear Finite Element Analysis Spring 2016 Nonlinear Finite Element Modeling of Nano- Indentation Group Members: Shuaifang Zhang, Kangning Su Department of Mechanical and Nuclear Engineering,

More information

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING N. Krishna Vihari 1, P. Phani Prasanthi 1, V. Bala Krishna Murthy 2* and A. Srihari Prasad 3 1 Mech. Engg. Dept., P. V. P. Siddhartha

More information

A FINITE ELEMENT MODEL FOR THE ANALYSIS OF DELAMINATIONS IN FRP SHELLS

A FINITE ELEMENT MODEL FOR THE ANALYSIS OF DELAMINATIONS IN FRP SHELLS TRENDS IN COMPUTATIONAL STRUCTURAL MECHANICS W.A. Wall, K.-U. Bletzinger and K. Schweizerhof (Eds.) c CIMNE, Barcelona, Spain 2001 A FINITE ELEMENT MODEL FOR THE ANALYSIS OF DELAMINATIONS IN FRP SHELLS

More information

Tensile behaviour of anti-symmetric CFRP composite

Tensile behaviour of anti-symmetric CFRP composite Available online at www.sciencedirect.com Procedia Engineering 1 (211) 1865 187 ICM11 Tensile behaviour of anti-symmetric CFRP composite K. J. Wong a,b, *, X. J. Gong a, S. Aivazzadeh a, M. N. Tamin b

More information

Fluid driven cohesive crack propagation in quasi-brittle materials

Fluid driven cohesive crack propagation in quasi-brittle materials Fluid driven cohesive crack propagation in quasi-brittle materials F. Barpi 1, S. Valente 2 Department of Structural and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129

More information

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure ISSN : 48-96, Vol. 6, Issue 8, ( Part -4 August 06, pp.3-38 RESEARCH ARTICLE Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure Dr.Ragbe.M.Abdusslam Eng. Khaled.S.Bagar ABSTRACT

More information

APPLICATION OF A SCALAR STRAIN-BASED DAMAGE ONSET THEORY TO THE FAILURE OF A COMPLEX COMPOSITE SPECIMEN

APPLICATION OF A SCALAR STRAIN-BASED DAMAGE ONSET THEORY TO THE FAILURE OF A COMPLEX COMPOSITE SPECIMEN 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES APPLICATION OF A SCALAR STRAIN-BASED DAMAGE ONSET THEORY TO THE FAILURE OF A COMPLEX COMPOSITE SPECIMEN Tuyen Tran*, Dan Simkins**, Shen Hin Lim*,

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

J. Sladek, V. Sladek & M. Hrina Institute of Construction and Architecture, Slovak Academy of Sciences, Bratislava, Slovakia

J. Sladek, V. Sladek & M. Hrina Institute of Construction and Architecture, Slovak Academy of Sciences, Bratislava, Slovakia Evaluation of fracture parameters for functionally gradient materials J. Sladek, V. Sladek & M. Hrina Institute of Construction and Architecture, Slovak Academy of Sciences, 842 20 Bratislava, Slovakia

More information

2 Experiment of GFRP bolt

2 Experiment of GFRP bolt 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FATIGUE LIFE EVALUATION OF BOLT MADE OF WOVEN FABRIC FRP Takeshi INOUE*, Hiroaki NAKAI**, Tetsusei KURASHIKI**, Masaru ZAKO**, Yuji KOMETANI*** *Graduate

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013 Delamination Studies in Fibre-Reinforced Polymer Composites K.Kantha Rao, Dr P. Shailesh, K. Vijay Kumar 1 Associate Professor, Narasimha Reddy Engineering College Hyderabad. 2 Professor, St. Peter s Engineering

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,  ISSN X Parameters controlling the numerical simulation validity of damageable composite toughness testing S. Yotte, C. Currit, E. Lacoste, J.M. Quenisset Laboratoire de Genie Meanique - IUT 'A\ Domaine Universitaire,

More information

Fatigue Damage Development in a Steel Based MMC

Fatigue Damage Development in a Steel Based MMC Fatigue Damage Development in a Steel Based MMC V. Tvergaard 1,T.O/ rts Pedersen 1 Abstract: The development of fatigue damage in a toolsteel metal matrix discontinuously reinforced with TiC particulates

More information

A simple plane-strain solution for functionally graded multilayered isotropic cylinders

A simple plane-strain solution for functionally graded multilayered isotropic cylinders Structural Engineering and Mechanics, Vol. 24, o. 6 (2006) 000-000 1 A simple plane-strain solution for functionally graded multilayered isotropic cylinders E. Pan Department of Civil Engineering, The

More information

COMELD TM JOINTS: A NOVEL TECHNIQUE FOR BONDING COMPOSITES AND METAL

COMELD TM JOINTS: A NOVEL TECHNIQUE FOR BONDING COMPOSITES AND METAL COMELD TM JOINTS: A NOVEL TECHNIQUE FOR BONDING COMPOSITES AND METAL F.J. Guild *, P.J. Hogg + and W. Tu School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS, UK

More information

Transactions on Engineering Sciences vol 14, 1997 WIT Press, ISSN

Transactions on Engineering Sciences vol 14, 1997 WIT Press,  ISSN On the Computation of Elastic Elastic Rolling Contact using Adaptive Finite Element Techniques B. Zastrau^, U. Nackenhorst*,J. Jarewski^ ^Institute of Mechanics and Informatics, Technical University Dresden,

More information

Lecture #2: Split Hopkinson Bar Systems

Lecture #2: Split Hopkinson Bar Systems Lecture #2: Split Hopkinson Bar Systems by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing 2015 1 1 1 Uniaxial Compression

More information

Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation. Mark Hardiman

Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation. Mark Hardiman Nanoindentation of Fibrous Composite Microstructures: Experimentation and Finite Element Investigation Mark Hardiman Materials and Surface Science Institute (MSSI), Department of Mechanical and Aeronautical

More information

Composite models 30 and 131: Ply types 0 and 8 calibration

Composite models 30 and 131: Ply types 0 and 8 calibration Model calibration Composite Bi-Phase models 30 and 3 for elastic, damage and failure PAM-CRASH material model 30 is for solid and 3 for multi-layered shell elements. Within these models different ply types

More information

Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites

Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites Copyright c 2007 ICCES ICCES, vol.1, no.2, pp.61-67, 2007 Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites K. Gordnian 1, H. Hadavinia 1, G. Simpson 1 and A.

More information

Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach

Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach Numerical modeling of standard rock mechanics laboratory tests using a finite/discrete element approach S. Stefanizzi GEODATA SpA, Turin, Italy G. Barla Department of Structural and Geotechnical Engineering,

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information

Interlaminar fracture characterization in composite materials by using acoustic emission

Interlaminar fracture characterization in composite materials by using acoustic emission 5th International Symposium on NDT in Aerospace, 13-15th November 2013, Singapore Interlaminar fracture characterization in composite materials by using acoustic emission Ian SILVERSIDES 1, Ahmed MASLOUHI

More information

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

More information

Transactions on Engineering Sciences vol 6, 1994 WIT Press, ISSN

Transactions on Engineering Sciences vol 6, 1994 WIT Press,   ISSN A computational method for the analysis of viscoelastic structures containing defects G. Ghazlan," C. Petit," S. Caperaa* " Civil Engineering Laboratory, University of Limoges, 19300 Egletons, France &

More information

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Hany El Naggar, Ph.D., P. Eng. and M. Hesham El Naggar, Ph.D., P. Eng. Department of Civil Engineering

More information

PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP

PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP R. R. Pinto 1, P. P. Camanho 2 1 INEGI - Instituto de Engenharia Mecanica e Gestao Industrial, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal 2 DEMec,

More information

Finite element simulations of fretting contact systems

Finite element simulations of fretting contact systems Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VII 45 Finite element simulations of fretting contact systems G. Shi, D. Backman & N. Bellinger Structures and Materials

More information

Fracture Mechanics of Composites with Residual Thermal Stresses

Fracture Mechanics of Composites with Residual Thermal Stresses J. A. Nairn Material Science & Engineering, University of Utah, Salt Lake City, Utah 84 Fracture Mechanics of Composites with Residual Thermal Stresses The problem of calculating the energy release rate

More information

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP

MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MESH MODELING OF ANGLE-PLY LAMINATED COMPOSITE PLATES FOR DNS AND IPSAP Wanil Byun*, Seung Jo Kim*, Joris Wismans** *Seoul National University, Republic

More information

Powerful Modelling Techniques in Abaqus to Simulate

Powerful Modelling Techniques in Abaqus to Simulate Powerful Modelling Techniques in Abaqus to Simulate Necking and Delamination of Laminated Composites D. F. Zhang, K.M. Mao, Md. S. Islam, E. Andreasson, Nasir Mehmood, S. Kao-Walter Email: sharon.kao-walter@bth.se

More information

A synergistic damage mechanics approach to mechanical response of composite laminates with ply cracks

A synergistic damage mechanics approach to mechanical response of composite laminates with ply cracks Article A synergistic damage mechanics approach to mechanical response of composite laminates with ply cracks JOURNAL OF COMPOSITE MATERIALS Journal of Composite Materials 0(0) 7! The Author(s) 0 Reprints

More information

Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach

Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach Mechanics and Mechanical Engineering Vol. 22, No. 4 (2018) 931 938 c Technical University of Lodz Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach O. Zebri LIDRA Laboratory, Research team

More information

Calculation of Damage-dependent Directional Failure Indices from the Tsai-Wu Static Failure Criterion

Calculation of Damage-dependent Directional Failure Indices from the Tsai-Wu Static Failure Criterion Van Paepegem, W. and Degrieck, J. (3. alculation of Damage-dependent Directional Failure Indices from the sai-wu Static Failure riterion. omposites Science and echnology, 63(, 35-3. alculation of Damage-dependent

More information

IMPACT OF LAMINATE DIRECTIONS ON IN- PLANE SHEAR STIFFNESS OF CROSS- LAMINATED TIMBER

IMPACT OF LAMINATE DIRECTIONS ON IN- PLANE SHEAR STIFFNESS OF CROSS- LAMINATED TIMBER IMPACT OF LAMINATE DIRECTIONS ON IN- PLANE SHEAR STIFFNESS OF CROSS- LAMINATED TIMBER Turesson, J. 1 & Ekevad, M. 2 ABSTRACT Twenty-three finite element models of cross-laminated timber (CLT) with different

More information

Evaluation Axisymmetric Analysis of Thermal Stress Residual Near Fiber/Epoxy Interface

Evaluation Axisymmetric Analysis of Thermal Stress Residual Near Fiber/Epoxy Interface Materials Research, Vol. 12, No. 2, 133-137, 2009 2009 Evaluation Axisymmetric Analysis of Thermal Stress Residual Near Fiber/Epoxy Interface Aboubakar Seddik Bouchikhi Department of Mechanical Engineering,

More information

VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS

VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS K.

More information

Numerical Analysis of Delamination Behavior in Laminated Composite with Double Delaminations Embedded in Different Depth Positions

Numerical Analysis of Delamination Behavior in Laminated Composite with Double Delaminations Embedded in Different Depth Positions Numerical Analysis of Delamination Behavior in Laminated Composite with Double Delaminations Embedded in Different Depth Positions Numerical Analysis of Delamination Behavior in Laminated Composite with

More information

PROGRESSIVE DAMAGE ANALYSES OF SKIN/STRINGER DEBONDING. C. G. Dávila, P. P. Camanho, and M. F. de Moura

PROGRESSIVE DAMAGE ANALYSES OF SKIN/STRINGER DEBONDING. C. G. Dávila, P. P. Camanho, and M. F. de Moura PROGRESSIVE DAMAGE ANALYSES OF SKIN/STRINGER DEBONDING C. G. Dávila, P. P. Camanho, and M. F. de Moura Abstract The debonding of skin/stringer constructions is analyzed using a step-by-step simulation

More information

Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension, compression or shear

Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension, compression or shear Xi an 2-25 th August 217 Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension compression or shear Heyin Qi 1 Mingming Chen 2 Yonghong Duan 3 Daxu

More information

Finite element analysis of indentation experiments J.M. Olaf Fraunhofer-Insitut fur Werkstoffmechanik, Wohlerstr. 11, D-W Freiburg, Germany

Finite element analysis of indentation experiments J.M. Olaf Fraunhofer-Insitut fur Werkstoffmechanik, Wohlerstr. 11, D-W Freiburg, Germany Finite element analysis of indentation experiments J.M. Olaf Fraunhofer-Insitut fur Werkstoffmechanik, Wohlerstr. 11, D-W- 7800 Freiburg, Germany ABSTRACT There are only a few methods suitable for a quantitative

More information

A Constitutive Model for DYNEEMA UD composites

A Constitutive Model for DYNEEMA UD composites A Constitutive Model for DYNEEMA UD composites L Iannucci 1, D J Pope 2, M Dalzell 2 1 Imperial College, Department of Aeronautics London, SW7 2AZ l.iannucci@imperial.ac.uk 2 Dstl, Porton Down, Salisbury,

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

High Fidelity Failure Analysis for A Composite Fuselage Section 1

High Fidelity Failure Analysis for A Composite Fuselage Section 1 High Fidelity Failure Analysis for A Composite Fuselage Section 1 Jian Li Engineer/Scientist, The Boeing Company Mesa, Arizona Jian.Li@Boeing.com Carlos G. Dávila Aerospace Engineer, NASA Langley Research

More information