Chapter 15 Confidence Intervals for Mean Difference Between Two Delta-Distributions

Size: px
Start display at page:

Download "Chapter 15 Confidence Intervals for Mean Difference Between Two Delta-Distributions"

Transcription

1 Chapter 15 Confidence Intervals for Mean Difference Between Two Delta-Distributions Karen V. Rosales and Joshua D. Naranjo Abstract Traditional two-sample estimation procedures like pooled-t, Welch s t, and the Wilcoxon-Hodges-Lehmann are often used for skewed data and data inflated with zero values. We investigate how well these work compared to dedicated procedures that consider the specialized nature of the data. Keywords Two-sample estimation Confidence intervals Skewed distribution Zero-inflated data Delta distribution 15.1 Introduction Some data are inherently nonnegative and contain a large number of zeros. Aitchison (1955) first described a distribution that contains both zero and positive values in an application to household expenditures. Some households spend nothing on, say, children s clothing while others allocate high amounts that make the distribution skewed and approximately follow the lognormal curve. On marine surveys, data are frequently inflated with zeros. Pennington (1983) examined a series of ichthyoplankton surveys aimed at estimating the total egg production of Atlantic mackerel in the study region. When zeros are mixed with lognormal positive values, this type of distribution is referred to as delta distribution (Aitchison 1955). One-sample confidence intervals for the mean of a delta distribution were investigated by Owen and DeRouen (1980), Pennington (1983), Zhou and Tu (2000a), Fletcher (2008), and Rosales (2009). Zhou and Tu (2000a) explored different methods of constructing confidence intervals for the mean of a delta distribution, including a bootstrap and two likelihood-based intervals. Fletcher (2008) investigated a profile-likelihood K.V. Rosales MMS Holdings, Inc., Canton, MI, USA krosales@mmsholdings.com J.D. Naranjo ( ) Department of Statistics, Western Michigan University, Kalamazoo, MI 49008, USA joshua.naranjo@wmich.edu Springer International Publishing Switzerland 2016 R.Y. Liu, J.W. McKean (eds.), Robust Rank-Based and Nonparametric Methods, Springer Proceedings in Mathematics & Statistics 168, DOI / _15 261

2 262 K.V. Rosales and J.D. Naranjo approach. Zhou and Tu (2000b) proposed a maximum likelihood-based method and a bootstrap method for constructing confidence intervals for the ratio in means of medical costs data that contained both lognormal and zero observations. It remains unclear how well various two-sample confidence intervals work. For example, can we simply ignore the delta distribution structure of data and use traditional LS methods for estimating difference between means? Will more robust versions work better? In this paper, we focus on commonly used two-sample confidence intervals, and compare them to confidence intervals specifically derived under delta-distribution theory. We investigate how relative performance depends on sample size, proportion of zeros, the population means, and the population variances. In Sect. 15.2, we set up notation and terminology. In Sect. 15.3, we describe the confidence intervals included in the simulation study. In Sect. 15.4, we discuss results of a simulation study Notation and Terminology Consider a population in which a proportion ı of the observations are zeros, and the non-zero values follow a lognormal distribution with parameters and 2.The population is said to have a Delta distribution, denoted as (ı; ; 2 ). We will index the populations of interest by j D 1; 2. Thus the jth population is said to have distribution (ı j ; j ;j 2), with mean j and variance j 2. The population mean and variance of the jth population are j D EŒY j D.1 ı j /e jc 2 j =2 (15.1) j D VarŒY j D.1 ı j /e 2 jc 2 j.e 2 j.1 ı j // (15.2) Let y 1j ;:::;y nj j be a random sample from the jth population. Assume, without loss of generality, that the n j1 nonzero observations are listed first and the n j0 D n j n j1 zero observations are listed last. For the nonzero observations let x ij D log y ij and O j D Oı j D n j0 =n j (15.3) P nj1 id1 log y P nj1 ij id1 D x ij DNx j (15.4) n j1 n j1 s 2 j D P nj1 id1.log y ij O j / 2 P nj1 id1 D.x ij Nx j / 2 n j1 1 n j1 1 (15.5) Note that O j and s 2 j are simply the sample mean and variance of the log-transformed nonzero observations from the jth sample. The proportion of nonzero observations in the jth sample is 1 O ı j. Finney (1941) derived minimum-variance unbiased

3 15 Confidence Intervals for Mean Difference Between Two Delta-Distributions 263 estimators for the lognormal mean and variance. Extending his results, Aitchison (1955) showed that the following is a minimum variance unbiased estimator of the mean of the -distribution. 8 n j1 ˆ< n j e O s j G 2 j nj1 if n 2 j1 >1 O j D x j1 n ˆ: j if n j1 D 1 (15.6) 0 if n j1 D 0 where G nj1.t/ is a Bessel function defined as, G nj1.t/ D 1 C n j1 1 t C n j1 1X id2.n j1 1/ 2i 1 t i n i j1.n j1 C 1/.n j1 C 3/.n j1 C 2i 3/iŠ An estimate of asymptotic variance is given by Aitchison and Brown (1969) O 1.O j / D e2 O j C S 2 j n j " Oı j.1 ı O j / C.1 ı O j /.2Sj 2 C Sj 4/ # 2 (15.7) Owen and DeRouen (1980) suggested confidence interval estimates based on these estimates of mean and variance. Pennington (1983) proposed an interval estimate using an alternative estimate of the variance, as follows: 8 n j1 ˆ< n j e 2 O n j j1 s n j G 2 j nj1 n j1 1 2 n j 1 G nj1 2 n j1 n j1 1 s2 j if n j1 >1 O pen.o j / D. x j1 n ˆ: j / 2 if n j1 D 1 0 if n j1 D 0 (15.8) 15.3 Two-Sample Confidence Intervals We are interested in confidence interval estimates for the difference between means 1 2 of two delta distributions. We first consider traditional least-squares confidence intervals based on Student s t-distribution, using either the pooled-sd version or the unpooled-sd Welch Satterthwaite version. The pooled-t 100(1- )% confidence interval is given by s s # 1 ".Ny 1 Ny 2 / t =2;df S p C 1 1 ;.Ny 1 Ny 2 / C t =2;df S p C 1 (15.9) n 1 n 2 n 1 n 2

4 264 K.V. Rosales and J.D. Naranjo n X j where Ny j D 1 n j y ij is the sample mean for the jth sample, t =2;df is the upper id1 percentile of the t-distribution, n j is the sample size, df Dn 1 C n 2 2, and S p is the pooled standard deviation. We refer to this method as Pooled-t in the simulation study. A 100(1- )% confidence interval based on Welch s statistic is 2 4.Ny 1 Ny 2 / t =2; s s 2 1 n 1 C s2 2 n 2 ;.Ny 1 Ny 2 / C t =2; s 3 s 2 1 C s2 2 5 (15.10) n 1 n 2 The degrees of freedom associated with this variance estimate is approximated using the Welch-Satterthwaite equation D. s2 1 n 1 C s2 2 n 2 / 2 s 4 1 n 2 1.n 1 1/ C s4 2 n 2 2.n 2 1/ This method will be denoted as Welch-t in the simulation study. Since the lognormal is right skewed, more robust alternatives might work better than the t-based methods. A rank-based alternative is the confidence interval based on the Wilcoxon rank sum test. See, for example, Hollander et al. (2014). The Wilcoxon interval may be computed as follows. Form all possible.n 1 /.n 2 / pairwise differences y h1 y i2 between the first group and the second group. Let O.1/ ; O.2/ ;:::;O.n 1n 2 / denote these ordered differences. The Hodges-Lehmann point estimator of 1 2 is the median of these differences. A 100(1- )% confidence interval is given by O.C / ; O.n 1n 2 C1 C (15.11) where C D n 1.2n 2 Cn 1 C1/ 2 C 1 w =2, and w =2 is an appropriate percentile of the rank sum distribution. For large samples, a normal approximation of C is given by C D n 1n 2 2 Z =2 n1 n 2.n 1 C n 2 C 1/ This method is denoted as Wilcoxon in the simulation study. Both versions of the t-interval and the Wilcoxon interval ignore the zero-inflated nature of the data. One may construct a confidence interval based on Aitchison s minimum variance unbiased estimator O and Pennington s estimator of the variance of O. A 100(1- )% confidence interval for. 1 2 / is 12 1=2.O 1 O 2 / z =2 qo pen.o 1 / CO pen.o 2 / (15.12) where O and O pen are given in Eqs. (15.6) and (15.8), respectively. This method will be referred to as MVUE1 in the simulation study.

5 15 Confidence Intervals for Mean Difference Between Two Delta-Distributions 265 An alternative confidence interval can be constructed based on the variance estimate from Aitchison and Brown (1969). This 100(1- )% confidence interval for. 1 2 / is.o 1 O 2 / z =2 p O1.O 1 / CO 1.O 2 / (15.13) where O and O 1 are given in Eqs. (15.6) and (15.7), respectively. We refer to this method as MVUE2 for the rest of this dissertation. In addition to the above confidence intervals, we propose two additional robust confidence intervals. Since the sample mean and the sample variance lack robustness, Al-Khouli (1999) proposed to directly replace O and s 2 in (15.4) and (15.5) with robust M-estimators to obtain robust estimators of and. In his simulation, using (T H, Sb 2) in place of ( O, s2 ) seemed to work best, where T H is the one-step Huber M-estimator of location and Sb 2 is a bi-weight A-estimator of scale. Directly substituting T H and Sb 2 in place of O and s2 in (15.6) and (15.8), we get a robust version of the MVUE1 interval (15.12). The confidence interval is.o M1 O M2 / z =2 p OM.O M1 / CO M.O M2 / (15.14) where 8 n j1 ˆ< n j e T Sb Hj j G nj1 if n 2 j1 >1 O Mj D x 1 ˆ: nj if n j1 D 1 0 if n j1 D 0 and 8 n n j1 ˆ< n j e 2T nj1 Sb o Hj j n j G nj1 n j1 1 2 n j 1 G nj1 2 n j1 n j1 1 S b j if n j1 >1 O M.O Mj / D. ˆ: x 1 nj / 2 if n j1 D 1 0 if n j1 D 0 This method is referred as RMVUE1 in the simulation study. Similarly, a robust version of the MVUE2 confidence interval (15.13) replaces O and s in Eqs. (15.6) and (15.7) with their robust versions. The confidence interval is.o M1 O M2 / z =2 p O1.O M1 / CO 1.O M2 / (15.15) where O Mj D n j1 n j e T Hj G nj1 Sbj 2

6 266 K.V. Rosales and J.D. Naranjo and O 1.O Mj / D e2t Hj CS bj n j " Oı j.1 ı O j / C.1 ı O # j /.2S bj C Sb 2 j / 2 We denote this method as RMVUE2 in the simulation study Simulation To assess the general performance and robustness of the interval estimators (15.9) (15.15), we conducted a simulation study under various parameter combinations of the -distribution. Performance of the different estimates will be assessed using the following criteria: Coverage Probability (CP): proportion of times that the 95 % confidence interval contains the true value of 1 2. Coverage Error (CE): absolute difference between the coverage probability and 95 %. Lower Error Rate (LER): proportion of times that the true value 1 2 falls below the interval Upper Error Rate (UER): proportion of times that the true value 1 2 falls above the interval Average Width (Width): average width of 95 % confidence interval Note that all confidence intervals have confidence level set at 95 %. Ideally an estimation procedure will have CP=0.95, CE=0.0, LER=0.025, and UER= We also report the average width of each method. We evaluate performance at balanced sample sizes of 15 and 50. Ten thousand simulations are done for each combination of parameters and sample size. Table 15.1 shows simulation results when the two delta distributions are the same. MVUE1 and RMVUE1 seem to do best, achieving narrower intervals without sacrificing coverage probability. Coverage probabilities all exceed 0.95, maybe due to overinflated standard error estimates because of skewness. The naive t-based intervals seem competitive, with reasonable width and coverage probability. The Wilcoxon interval has the shortest width. Table 15.2 shows simulation results when ı 1 ı 2. Again, MVUE1 and RMVUE1 seem to do best, with narrower intervals without sacrificing coverage probability. The naive t-based intervals remain competitive, with reasonable width and coverage probability. The Wilcoxon interval still has significantly shortest width but achieves this at the price of unacceptably low coverage probability, especially for larger differences in ı. Table 15.3 shows simulation results when 1 2. MVUE1 and RMVUE1 still seem to do best, with RMVUE1 edging out MVUE1 in coverage probability

7 15 Confidence Intervals for Mean Difference Between Two Delta-Distributions 267 Table % CI under equal distributions 1.0:2; 0:5; 1/ and 2.0:2; 0:5; 1/ W 1 2 D 0 Method Sample size CP CE LER UER Width Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE and width. MVUE2 and RMVUE2 attain better coverage probabilities at the cost of significantly wider intervals. The naive procedures pooled-t and Welch-t are surprisingly competitive, with reasonable width and coverage probability. The Wilcoxon interval has unacceptably low coverage probability, especially for larger differences in. Table 15.4 shows simulation results when All intervals have problems maintaining close to 95 % coverage probability, especially for larger differences in 2. The simulations show two notable features of Wilcoxon confidence intervals: they tend to be shorter and have low coverage probability. Wilcoxon intervals are a function of the ordered pairwise differences between the two samples [see e.g. Hollander et al. (2014)]. If.ı 1 ;ı 2 / are both large, then enough pairwise differences are 0 regardless of the values of the positive observations. This seems to reduce length of the Wilcoxon interval more than the others. Low coverage probability may be a result of the Wilcoxon interval estimating the wrong parameter. The Wilcoxon point estimator is the median of pairwise differences, which is naturally a better estimate of the true median of differences (i.e. the median of F Y1 Y 2 ) rather than the difference in means 1 2. For example, given two distributions.0:1; 0:5; 1/ and.0:5; 0:5; 1/, the difference in means is 1 2 D 1:0873 while the median of the difference is m D 0:7988. In Table 15.5, we reassess the performance of Wilcoxon by looking at the percentage of time it contains the median of differences m instead of 1 2. The Wilcoxon 95 % interval coverage probability for 1 2 D 1:0873 are quite low at and , respectively, but the coverage probability for m D 0:7988 are and , respectively, as

8 268 K.V. Rosales and J.D. Naranjo Table % CI under varying proportion of zeros ı Method Sample size CP CE LER UER Width 1.0:2; 0:5; 1/ and 2.0:4; 0:5; 1/ W 1 2 D 0:5437 Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE :1; 0:5; 1/ and 2.0:5; 0:5; 1/ W 1 2 D 1:0873 Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE found in the entry labeled W(for m). In fact, in all cases (see the rest of Table 15.5), as long as we measure the percentage of times that Wilcoxon interval contains the appropriate parameter m instead of 1 2, then the Wilcoxon has best coverage probability and narrowest width. Since the performance of MVUE2 and RMVUE2 trail MVUE1 and RMVUE1 in Tables 15.2, 15.3, and 15.4, they have been removed from Table 15.5 for space considerations.

9 15 Confidence Intervals for Mean Difference Between Two Delta-Distributions 269 Table % CI under varying lognormal parameter Method Sample size CP CE LER UER Width 1 (0.2, 0, 1) and 2 (0.2, 0.5, 1): 1 2 D 0:8556 Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE (0.2, 0, 1) and 2 (0.2, 0.9, 1): 1 2 D 1:9252 Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE Conclusion Traditional two-sample estimation procedures like pooled-t and Welch t that require normal distribution are often used for skewed data and data inflated with zero values. Our simulations show that these naive nonrobust approaches do not do too badly compared to dedicated delta distribution procedures, in terms of coverage probabilities and interval width. Among the dedicated approaches, we would recommend the MVUE1 and its robust version RMVUE1. The MVUE1 procedure is based on the mean estimator

10 270 K.V. Rosales and J.D. Naranjo Table % CI under varying lognormal parameter 2 Method Sample Size CP CE LER UER Width 1 (0.2, 0.5, 0.15) and 2 (0.2, 0.5, 1.0): 1 2 D 0:7529 Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE (0.2, 0.5, 0.15) and 2 (0.2, 0.5, 2.0): 1 2 D 2:1636 Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE Pooled-t Welch-t Wilcoxon MVUE MVUE RMVUE RMVUE O by Aitchison (1955) and the variance estimator by Pennington (1983). The RMVUE1 is similar to MVUE1 but uses M-estimates for the lognormal parameters and 2. The Wilcoxon two-sample interval performed consistently badly, but only when it was asked to estimate the difference in means 1 2. When used to estimate the median of differences m, it performed very well in terms of coverage probability, and generally had the shortest interval width. Of course, usefulness of the Wilcoxon interval will depend more on whether the user wants to estimate the median of differences instead of the difference in means.

11 15 Confidence Intervals for Mean Difference Between Two Delta-Distributions 271 Table % CI under varying parameters and sample size Method Sample Size CP CE LER UER Width Varying ı: 1 (0.1, 0.5, 1.0) and 2 (0.5, 0.5, 1.0) 1 2 = , m= Pooled-t Welch-t Wilcoxon (for 1 2 ) Wilcoxon (for m) MVUE MVUE RMVUE Pooled-t Welch-t Wilcoxon (for 1 2 ) Wilcoxon (for m) MVUE RMVUE Varying : 1 (0.2, 0, 1) and 2 (0.2, 0.9, 1) 1 2 D 1:9252, m= Pooled-t Welch-t Wilcoxon (for 1 2 ) Wilcoxon (for m) MVUE RMVUE Pooled-t Welch-t Wilcoxon (for 1 2 ) Wilcoxon (for m) MVUE RMVUE Varying 2 : 1 (0.2, 0.5, 0.15) and 2 (0.2, 0.5, 2.0) 1 2 = , m=0.0 Pooled-t Welch-t Wilcoxon (for 1 2 ) Wilcoxon (for m) MVUE RMVUE Pooled-t Welch-t Wilcoxon (for 1 2 ) Wilcoxon (for m) MVUE RMVUE The Wilcoxon interval is assessed for containing both 1 2 and the median of difference m

12 272 K.V. Rosales and J.D. Naranjo References Aitchison, J. (1955). On the distribution of a positive random variable having a discrete probability mass at the origin. Journal of the American Statistical Association, 50(271), Aitchison, J., & Brown, J. (1969). The lognormal distribution. Cambridge: Cambridge University Press. Al-Khouli, A. (1999). Robust estimation and bootstrap testing for the delta distribution with applications in marine sciences. Ph.D. dissertation, Texas A&M University. Finney, D. J. (1941). On the distribution of a variate whose logarithm is normally distributed. Journal of the Royal Statistical Society, Series B, 7, Fletcher, D. (2008). Confidence intervals for the mean of the delta-lognormal distribution. Environmental and Ecological Statistics, 15(2), Hollander, M., Wolfe, D., & Chicken, E. (2014). Nonparametric statistical methods. Hoboken: Wiley. Owen, W., & DeRouen, T. (1980). Estimation of the mean for lognormal data containing zeroes and left-censored values, with applications to the measurement of worker exposure to air contaminants. Biometrics, 36(4), Pennington, M. (1983). Efficient estimators of abundance, for fish and plankton surveys, Biometrics, 39(1), Rosales, M. (2009). The robustness of confidence intervals for the mean of delta distribution. Ph.D. dissertation, Western Michigan University. Zhou, X. H., & Tu, W. (2000a). Confidence intervals for the mean of diagnostic test charge data containing zeros. Biometrics, 56(4), Zhou, X. H., & Tu, W. (2000b). Interval estimation for the ratio in means of log-normally distributed medical costs with zero values. Computational Statistics and Data Analysis, 35(2),

Confidence Intervals and Tests on the Difference of Means of Two Delta Distributions

Confidence Intervals and Tests on the Difference of Means of Two Delta Distributions Western Michigan University ScholarWorks at WMU Dissertations Graduate College 12-2010 Confidence Intervals and Tests on the Difference of Means of Two Delta Distributions Karen Grace Villarente Rosales

More information

Robust Outcome Analysis for Observational Studies Designed Using Propensity Score Matching

Robust Outcome Analysis for Observational Studies Designed Using Propensity Score Matching The work of Kosten and McKean was partially supported by NIAAA Grant 1R21AA017906-01A1 Robust Outcome Analysis for Observational Studies Designed Using Propensity Score Matching Bradley E. Huitema Western

More information

Robust Non-Parametric Techniques to Estimate the Growth Elasticity of Poverty

Robust Non-Parametric Techniques to Estimate the Growth Elasticity of Poverty International Journal of Contemporary Mathematical Sciences Vol. 14, 2019, no. 1, 43-52 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2019.936 Robust Non-Parametric Techniques to Estimate

More information

Unit 14: Nonparametric Statistical Methods

Unit 14: Nonparametric Statistical Methods Unit 14: Nonparametric Statistical Methods Statistics 571: Statistical Methods Ramón V. León 8/8/2003 Unit 14 - Stat 571 - Ramón V. León 1 Introductory Remarks Most methods studied so far have been based

More information

AN IMPROVEMENT TO THE ALIGNED RANK STATISTIC

AN IMPROVEMENT TO THE ALIGNED RANK STATISTIC Journal of Applied Statistical Science ISSN 1067-5817 Volume 14, Number 3/4, pp. 225-235 2005 Nova Science Publishers, Inc. AN IMPROVEMENT TO THE ALIGNED RANK STATISTIC FOR TWO-FACTOR ANALYSIS OF VARIANCE

More information

Increasing Power in Paired-Samples Designs. by Correcting the Student t Statistic for Correlation. Donald W. Zimmerman. Carleton University

Increasing Power in Paired-Samples Designs. by Correcting the Student t Statistic for Correlation. Donald W. Zimmerman. Carleton University Power in Paired-Samples Designs Running head: POWER IN PAIRED-SAMPLES DESIGNS Increasing Power in Paired-Samples Designs by Correcting the Student t Statistic for Correlation Donald W. Zimmerman Carleton

More information

Least Absolute Value vs. Least Squares Estimation and Inference Procedures in Regression Models with Asymmetric Error Distributions

Least Absolute Value vs. Least Squares Estimation and Inference Procedures in Regression Models with Asymmetric Error Distributions Journal of Modern Applied Statistical Methods Volume 8 Issue 1 Article 13 5-1-2009 Least Absolute Value vs. Least Squares Estimation and Inference Procedures in Regression Models with Asymmetric Error

More information

THE ROYAL STATISTICAL SOCIETY 2015 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 3

THE ROYAL STATISTICAL SOCIETY 2015 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 3 THE ROYAL STATISTICAL SOCIETY 015 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 3 The Society is providing these solutions to assist candidates preparing for the examinations in 017. The solutions are

More information

Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances

Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances Advances in Decision Sciences Volume 211, Article ID 74858, 8 pages doi:1.1155/211/74858 Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances David Allingham 1 andj.c.w.rayner

More information

Empirical Likelihood Inference for Two-Sample Problems

Empirical Likelihood Inference for Two-Sample Problems Empirical Likelihood Inference for Two-Sample Problems by Ying Yan A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics in Statistics

More information

Finite Population Correction Methods

Finite Population Correction Methods Finite Population Correction Methods Moses Obiri May 5, 2017 Contents 1 Introduction 1 2 Normal-based Confidence Interval 2 3 Bootstrap Confidence Interval 3 4 Finite Population Bootstrap Sampling 5 4.1

More information

CCR RULE GROUNDWATER STATISTICAL METHOD SELECTION CERTIFICATION

CCR RULE GROUNDWATER STATISTICAL METHOD SELECTION CERTIFICATION This document summarizes the statistical methods which will be utilized for evaluating groundwater analytical results associated with the s (hereafter referred to as the Harrison CCR unit ) CCR groundwater

More information

Extending the Robust Means Modeling Framework. Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie

Extending the Robust Means Modeling Framework. Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie Extending the Robust Means Modeling Framework Alyssa Counsell, Phil Chalmers, Matt Sigal, Rob Cribbie One-way Independent Subjects Design Model: Y ij = µ + τ j + ε ij, j = 1,, J Y ij = score of the ith

More information

Asymptotic Relative Efficiency in Estimation

Asymptotic Relative Efficiency in Estimation Asymptotic Relative Efficiency in Estimation Robert Serfling University of Texas at Dallas October 2009 Prepared for forthcoming INTERNATIONAL ENCYCLOPEDIA OF STATISTICAL SCIENCES, to be published by Springer

More information

CCR RULE GROUNDWATER STATISTICAL METHOD SELECTION CERTIFICATION

CCR RULE GROUNDWATER STATISTICAL METHOD SELECTION CERTIFICATION This document summarizes the statistical methods which will be utilized for evaluating groundwater analytical results associated with the Pleasants Power Station Coal Combustion Byproduct Landfill and

More information

Week 14 Comparing k(> 2) Populations

Week 14 Comparing k(> 2) Populations Week 14 Comparing k(> 2) Populations Week 14 Objectives Methods associated with testing for the equality of k(> 2) means or proportions are presented. Post-testing concepts and analysis are introduced.

More information

Stat 427/527: Advanced Data Analysis I

Stat 427/527: Advanced Data Analysis I Stat 427/527: Advanced Data Analysis I Review of Chapters 1-4 Sep, 2017 1 / 18 Concepts you need to know/interpret Numerical summaries: measures of center (mean, median, mode) measures of spread (sample

More information

A nonparametric two-sample wald test of equality of variances

A nonparametric two-sample wald test of equality of variances University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 211 A nonparametric two-sample wald test of equality of variances David

More information

Contents 1. Contents

Contents 1. Contents Contents 1 Contents 1 One-Sample Methods 3 1.1 Parametric Methods.................... 4 1.1.1 One-sample Z-test (see Chapter 0.3.1)...... 4 1.1.2 One-sample t-test................. 6 1.1.3 Large sample

More information

Rank-sum Test Based on Order Restricted Randomized Design

Rank-sum Test Based on Order Restricted Randomized Design Rank-sum Test Based on Order Restricted Randomized Design Omer Ozturk and Yiping Sun Abstract One of the main principles in a design of experiment is to use blocking factors whenever it is possible. On

More information

CCR RULE GROUNDWATER STATISTICAL METHOD SELECTION CERTIFICATION

CCR RULE GROUNDWATER STATISTICAL METHOD SELECTION CERTIFICATION This document summarizes the statistical methods which will be utilized for evaluating groundwater analytical results associated with the s (hereafter referred to as the Hatfield CCR unit ) CCR groundwater

More information

Regression models. Categorical covariate, Quantitative outcome. Examples of categorical covariates. Group characteristics. Faculty of Health Sciences

Regression models. Categorical covariate, Quantitative outcome. Examples of categorical covariates. Group characteristics. Faculty of Health Sciences Faculty of Health Sciences Categorical covariate, Quantitative outcome Regression models Categorical covariate, Quantitative outcome Lene Theil Skovgaard April 29, 2013 PKA & LTS, Sect. 3.2, 3.2.1 ANOVA

More information

Confidence Intervals, Testing and ANOVA Summary

Confidence Intervals, Testing and ANOVA Summary Confidence Intervals, Testing and ANOVA Summary 1 One Sample Tests 1.1 One Sample z test: Mean (σ known) Let X 1,, X n a r.s. from N(µ, σ) or n > 30. Let The test statistic is H 0 : µ = µ 0. z = x µ 0

More information

Two-sample scale rank procedures optimal for the generalized secant hyperbolic distribution

Two-sample scale rank procedures optimal for the generalized secant hyperbolic distribution Two-sample scale rank procedures optimal for the generalized secant hyperbolic distribution O.Y. Kravchuk School of Physical Sciences, School of Land and Food Sciences, University of Queensland, Australia

More information

Conditional Inference in Two-Stage Adaptive Experiments via the Bootstrap

Conditional Inference in Two-Stage Adaptive Experiments via the Bootstrap Conditional Inference in Two-Stage Adaptive Experiments via the Bootstrap Adam Lane, HaiYing Wang, and Nancy Flournoy Abstract We study two-stage adaptive designs in which data accumulated in the first

More information

TESTS FOR EQUIVALENCE BASED ON ODDS RATIO FOR MATCHED-PAIR DESIGN

TESTS FOR EQUIVALENCE BASED ON ODDS RATIO FOR MATCHED-PAIR DESIGN Journal of Biopharmaceutical Statistics, 15: 889 901, 2005 Copyright Taylor & Francis, Inc. ISSN: 1054-3406 print/1520-5711 online DOI: 10.1080/10543400500265561 TESTS FOR EQUIVALENCE BASED ON ODDS RATIO

More information

CCR RULE GROUNDWATER STATISTICAL METHOD SELECTION CERTIFICATION

CCR RULE GROUNDWATER STATISTICAL METHOD SELECTION CERTIFICATION This document summarizes the statistical methods which will be utilized for evaluating groundwater analytical results associated with the s CCR groundwater monitoring program. There are two neighboring

More information

Robust Bayesian Variable Selection for Modeling Mean Medical Costs

Robust Bayesian Variable Selection for Modeling Mean Medical Costs Robust Bayesian Variable Selection for Modeling Mean Medical Costs Grace Yoon 1,, Wenxin Jiang 2, Lei Liu 3 and Ya-Chen T. Shih 4 1 Department of Statistics, Texas A&M University 2 Department of Statistics,

More information

Chapter 7 Comparison of two independent samples

Chapter 7 Comparison of two independent samples Chapter 7 Comparison of two independent samples 7.1 Introduction Population 1 µ σ 1 1 N 1 Sample 1 y s 1 1 n 1 Population µ σ N Sample y s n 1, : population means 1, : population standard deviations N

More information

Comparison of Two Population Means

Comparison of Two Population Means Comparison of Two Population Means Esra Akdeniz March 15, 2015 Independent versus Dependent (paired) Samples We have independent samples if we perform an experiment in two unrelated populations. We have

More information

Resampling Methods. Lukas Meier

Resampling Methods. Lukas Meier Resampling Methods Lukas Meier 20.01.2014 Introduction: Example Hail prevention (early 80s) Is a vaccination of clouds really reducing total energy? Data: Hail energy for n clouds (via radar image) Y i

More information

Bayesian inference for sample surveys. Roderick Little Module 2: Bayesian models for simple random samples

Bayesian inference for sample surveys. Roderick Little Module 2: Bayesian models for simple random samples Bayesian inference for sample surveys Roderick Little Module : Bayesian models for simple random samples Superpopulation Modeling: Estimating parameters Various principles: least squares, method of moments,

More information

Joseph W. McKean 1. INTRODUCTION

Joseph W. McKean 1. INTRODUCTION Statistical Science 2004, Vol. 19, No. 4, 562 570 DOI 10.1214/088342304000000549 Institute of Mathematical Statistics, 2004 Robust Analysis of Linear Models Joseph W. McKean Abstract. This paper presents

More information

An Approximate Test for Homogeneity of Correlated Correlation Coefficients

An Approximate Test for Homogeneity of Correlated Correlation Coefficients Quality & Quantity 37: 99 110, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 99 Research Note An Approximate Test for Homogeneity of Correlated Correlation Coefficients TRIVELLORE

More information

One-Sample and Two-Sample Means Tests

One-Sample and Two-Sample Means Tests One-Sample and Two-Sample Means Tests 1 Sample t Test The 1 sample t test allows us to determine whether the mean of a sample data set is different than a known value. Used when the population variance

More information

Regression Analysis for Data Containing Outliers and High Leverage Points

Regression Analysis for Data Containing Outliers and High Leverage Points Alabama Journal of Mathematics 39 (2015) ISSN 2373-0404 Regression Analysis for Data Containing Outliers and High Leverage Points Asim Kumer Dey Department of Mathematics Lamar University Md. Amir Hossain

More information

A Simulation Comparison Study for Estimating the Process Capability Index C pm with Asymmetric Tolerances

A Simulation Comparison Study for Estimating the Process Capability Index C pm with Asymmetric Tolerances Available online at ijims.ms.tku.edu.tw/list.asp International Journal of Information and Management Sciences 20 (2009), 243-253 A Simulation Comparison Study for Estimating the Process Capability Index

More information

MATH Notebook 3 Spring 2018

MATH Notebook 3 Spring 2018 MATH448001 Notebook 3 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2010 2018 by Jenny A. Baglivo. All Rights Reserved. 3 MATH448001 Notebook 3 3 3.1 One Way Layout........................................

More information

Additional Problems Additional Problem 1 Like the http://www.stat.umn.edu/geyer/5102/examp/rlike.html#lmax example of maximum likelihood done by computer except instead of the gamma shape model, we will

More information

Non-parametric (Distribution-free) approaches p188 CN

Non-parametric (Distribution-free) approaches p188 CN Week 1: Introduction to some nonparametric and computer intensive (re-sampling) approaches: the sign test, Wilcoxon tests and multi-sample extensions, Spearman s rank correlation; the Bootstrap. (ch14

More information

On Selecting Tests for Equality of Two Normal Mean Vectors

On Selecting Tests for Equality of Two Normal Mean Vectors MULTIVARIATE BEHAVIORAL RESEARCH, 41(4), 533 548 Copyright 006, Lawrence Erlbaum Associates, Inc. On Selecting Tests for Equality of Two Normal Mean Vectors K. Krishnamoorthy and Yanping Xia Department

More information

Statistical Practice

Statistical Practice Statistical Practice A Note on Bayesian Inference After Multiple Imputation Xiang ZHOU and Jerome P. REITER This article is aimed at practitioners who plan to use Bayesian inference on multiply-imputed

More information

A Monte Carlo Simulation of the Robust Rank- Order Test Under Various Population Symmetry Conditions

A Monte Carlo Simulation of the Robust Rank- Order Test Under Various Population Symmetry Conditions Journal of Modern Applied Statistical Methods Volume 12 Issue 1 Article 7 5-1-2013 A Monte Carlo Simulation of the Robust Rank- Order Test Under Various Population Symmetry Conditions William T. Mickelson

More information

PubHlth 540 Estimation Page 1 of 69. Unit 6 Estimation

PubHlth 540 Estimation Page 1 of 69. Unit 6 Estimation PubHlth 540 Estimation Page 1 of 69 Unit 6 Estimation Topic 1. Introduction........ a. Goals of Estimation. b. Notation and Definitions. c. How to Interpret a Confidence Interval. Preliminaries: Some Useful

More information

Zero-Inflated Models in Statistical Process Control

Zero-Inflated Models in Statistical Process Control Chapter 6 Zero-Inflated Models in Statistical Process Control 6.0 Introduction In statistical process control Poisson distribution and binomial distribution play important role. There are situations wherein

More information

Model Fitting. Jean Yves Le Boudec

Model Fitting. Jean Yves Le Boudec Model Fitting Jean Yves Le Boudec 0 Contents 1. What is model fitting? 2. Linear Regression 3. Linear regression with norm minimization 4. Choosing a distribution 5. Heavy Tail 1 Virus Infection Data We

More information

AN ALTERNATIVE APPROACH TO EVALUATION OF POOLABILITY FOR STABILITY STUDIES

AN ALTERNATIVE APPROACH TO EVALUATION OF POOLABILITY FOR STABILITY STUDIES Journal of Biopharmaceutical Statistics, 16: 1 14, 2006 Copyright Taylor & Francis, LLC ISSN: 1054-3406 print/1520-5711 online DOI: 10.1080/10543400500406421 AN ALTERNATIVE APPROACH TO EVALUATION OF POOLABILITY

More information

THE 'IMPROVED' BROWN AND FORSYTHE TEST FOR MEAN EQUALITY: SOME THINGS CAN'T BE FIXED

THE 'IMPROVED' BROWN AND FORSYTHE TEST FOR MEAN EQUALITY: SOME THINGS CAN'T BE FIXED THE 'IMPROVED' BROWN AND FORSYTHE TEST FOR MEAN EQUALITY: SOME THINGS CAN'T BE FIXED H. J. Keselman Rand R. Wilcox University of Manitoba University of Southern California Winnipeg, Manitoba Los Angeles,

More information

STATISTICS 4, S4 (4769) A2

STATISTICS 4, S4 (4769) A2 (4769) A2 Objectives To provide students with the opportunity to explore ideas in more advanced statistics to a greater depth. Assessment Examination (72 marks) 1 hour 30 minutes There are four options

More information

Lecture 12: Small Sample Intervals Based on a Normal Population Distribution

Lecture 12: Small Sample Intervals Based on a Normal Population Distribution Lecture 12: Small Sample Intervals Based on a Normal Population MSU-STT-351-Sum-17B (P. Vellaisamy: MSU-STT-351-Sum-17B) Probability & Statistics for Engineers 1 / 24 In this lecture, we will discuss (i)

More information

Resampling and the Bootstrap

Resampling and the Bootstrap Resampling and the Bootstrap Axel Benner Biostatistics, German Cancer Research Center INF 280, D-69120 Heidelberg benner@dkfz.de Resampling and the Bootstrap 2 Topics Estimation and Statistical Testing

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

Graphical Presentation of a Nonparametric Regression with Bootstrapped Confidence Intervals

Graphical Presentation of a Nonparametric Regression with Bootstrapped Confidence Intervals Graphical Presentation of a Nonparametric Regression with Bootstrapped Confidence Intervals Mark Nicolich & Gail Jorgensen Exxon Biomedical Science, Inc., East Millstone, NJ INTRODUCTION Parametric regression

More information

Business Statistics. Lecture 5: Confidence Intervals

Business Statistics. Lecture 5: Confidence Intervals Business Statistics Lecture 5: Confidence Intervals Goals for this Lecture Confidence intervals The t distribution 2 Welcome to Interval Estimation! Moments Mean 815.0340 Std Dev 0.8923 Std Error Mean

More information

Introduction to Statistical Analysis. Cancer Research UK 12 th of February 2018 D.-L. Couturier / M. Eldridge / M. Fernandes [Bioinformatics core]

Introduction to Statistical Analysis. Cancer Research UK 12 th of February 2018 D.-L. Couturier / M. Eldridge / M. Fernandes [Bioinformatics core] Introduction to Statistical Analysis Cancer Research UK 12 th of February 2018 D.-L. Couturier / M. Eldridge / M. Fernandes [Bioinformatics core] 2 Timeline 9:30 Morning I I 45mn Lecture: data type, summary

More information

Nonparametric tests. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 704: Data Analysis I

Nonparametric tests. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 704: Data Analysis I 1 / 16 Nonparametric tests Timothy Hanson Department of Statistics, University of South Carolina Stat 704: Data Analysis I Nonparametric one and two-sample tests 2 / 16 If data do not come from a normal

More information

Two-Sample Inferential Statistics

Two-Sample Inferential Statistics The t Test for Two Independent Samples 1 Two-Sample Inferential Statistics In an experiment there are two or more conditions One condition is often called the control condition in which the treatment is

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

Model Selection, Estimation, and Bootstrap Smoothing. Bradley Efron Stanford University

Model Selection, Estimation, and Bootstrap Smoothing. Bradley Efron Stanford University Model Selection, Estimation, and Bootstrap Smoothing Bradley Efron Stanford University Estimation After Model Selection Usually: (a) look at data (b) choose model (linear, quad, cubic...?) (c) fit estimates

More information

Rank-Based Estimation and Associated Inferences. for Linear Models with Cluster Correlated Errors

Rank-Based Estimation and Associated Inferences. for Linear Models with Cluster Correlated Errors Rank-Based Estimation and Associated Inferences for Linear Models with Cluster Correlated Errors John D. Kloke Bucknell University Joseph W. McKean Western Michigan University M. Mushfiqur Rashid FDA Abstract

More information

On the Existence and Uniqueness of the Maximum Likelihood Estimators of Normal and Lognormal Population Parameters with Grouped Data

On the Existence and Uniqueness of the Maximum Likelihood Estimators of Normal and Lognormal Population Parameters with Grouped Data Florida International University FIU Digital Commons Department of Mathematics and Statistics College of Arts, Sciences & Education 6-16-2009 On the Existence and Uniqueness of the Maximum Likelihood Estimators

More information

y, x k estimates of Y, X k.

y, x k estimates of Y, X k. The uncertainty of a measurement is a parameter associated with the result of the measurement, that characterises the dispersion of the values that could reasonably be attributed to the quantity being

More information

Non-parametric tests, part A:

Non-parametric tests, part A: Two types of statistical test: Non-parametric tests, part A: Parametric tests: Based on assumption that the data have certain characteristics or "parameters": Results are only valid if (a) the data are

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

Inference for Distributions Inference for the Mean of a Population. Section 7.1

Inference for Distributions Inference for the Mean of a Population. Section 7.1 Inference for Distributions Inference for the Mean of a Population Section 7.1 Statistical inference in practice Emphasis turns from statistical reasoning to statistical practice: Population standard deviation,

More information

Distribution Theory. Comparison Between Two Quantiles: The Normal and Exponential Cases

Distribution Theory. Comparison Between Two Quantiles: The Normal and Exponential Cases Communications in Statistics Simulation and Computation, 34: 43 5, 005 Copyright Taylor & Francis, Inc. ISSN: 0361-0918 print/153-4141 online DOI: 10.1081/SAC-00055639 Distribution Theory Comparison Between

More information

Bootstrap Procedures for Testing Homogeneity Hypotheses

Bootstrap Procedures for Testing Homogeneity Hypotheses Journal of Statistical Theory and Applications Volume 11, Number 2, 2012, pp. 183-195 ISSN 1538-7887 Bootstrap Procedures for Testing Homogeneity Hypotheses Bimal Sinha 1, Arvind Shah 2, Dihua Xu 1, Jianxin

More information

Permutation Tests. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods

Permutation Tests. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods Permutation Tests Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods The Two-Sample Problem We observe two independent random samples: F z = z 1, z 2,, z n independently of

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 00 MODULE : Statistical Inference Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks. The

More information

Comparison of Two Samples

Comparison of Two Samples 2 Comparison of Two Samples 2.1 Introduction Problems of comparing two samples arise frequently in medicine, sociology, agriculture, engineering, and marketing. The data may have been generated by observation

More information

Inferences About the Difference Between Two Means

Inferences About the Difference Between Two Means 7 Inferences About the Difference Between Two Means Chapter Outline 7.1 New Concepts 7.1.1 Independent Versus Dependent Samples 7.1. Hypotheses 7. Inferences About Two Independent Means 7..1 Independent

More information

Interval Estimation for the Ratio and Difference of Two Lognormal Means

Interval Estimation for the Ratio and Difference of Two Lognormal Means UW Biostatistics Working Paper Series 12-7-2005 Interval Estimation for the Ratio and Difference of Two Lognormal Means Yea-Hung Chen University of Washington, yeahung@u.washington.edu Xiao-Hua Zhou University

More information

Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test

Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test la Contents The two sample t-test generalizes into Analysis of Variance. In analysis of variance ANOVA the population consists

More information

Approximate and Fiducial Confidence Intervals for the Difference Between Two Binomial Proportions

Approximate and Fiducial Confidence Intervals for the Difference Between Two Binomial Proportions Approximate and Fiducial Confidence Intervals for the Difference Between Two Binomial Proportions K. Krishnamoorthy 1 and Dan Zhang University of Louisiana at Lafayette, Lafayette, LA 70504, USA SUMMARY

More information

Computational rank-based statistics

Computational rank-based statistics Article type: Advanced Review Computational rank-based statistics Joseph W. McKean, joseph.mckean@wmich.edu Western Michigan University Jeff T. Terpstra, jeff.terpstra@ndsu.edu North Dakota State University

More information

1 One-way Analysis of Variance

1 One-way Analysis of Variance 1 One-way Analysis of Variance Suppose that a random sample of q individuals receives treatment T i, i = 1,,... p. Let Y ij be the response from the jth individual to be treated with the ith treatment

More information

Statistics for Managers Using Microsoft Excel Chapter 9 Two Sample Tests With Numerical Data

Statistics for Managers Using Microsoft Excel Chapter 9 Two Sample Tests With Numerical Data Statistics for Managers Using Microsoft Excel Chapter 9 Two Sample Tests With Numerical Data 999 Prentice-Hall, Inc. Chap. 9 - Chapter Topics Comparing Two Independent Samples: Z Test for the Difference

More information

Bootstrap (Part 3) Christof Seiler. Stanford University, Spring 2016, Stats 205

Bootstrap (Part 3) Christof Seiler. Stanford University, Spring 2016, Stats 205 Bootstrap (Part 3) Christof Seiler Stanford University, Spring 2016, Stats 205 Overview So far we used three different bootstraps: Nonparametric bootstrap on the rows (e.g. regression, PCA with random

More information

Confidence Intervals of the Simple Difference between the Proportions of a Primary Infection and a Secondary Infection, Given the Primary Infection

Confidence Intervals of the Simple Difference between the Proportions of a Primary Infection and a Secondary Infection, Given the Primary Infection Biometrical Journal 42 (2000) 1, 59±69 Confidence Intervals of the Simple Difference between the Proportions of a Primary Infection and a Secondary Infection, Given the Primary Infection Kung-Jong Lui

More information

Confidence Intervals for the Coefficient of Variation in a Normal Distribution with a Known Mean and a Bounded Standard Deviation

Confidence Intervals for the Coefficient of Variation in a Normal Distribution with a Known Mean and a Bounded Standard Deviation KMUTNB Int J Appl Sci Technol, Vol. 10, No. 2, pp. 79 88, 2017 Research Article Confidence Intervals for the Coefficient of Variation in a Normal Distribution with a Known Mean and a Bounded Standard Deviation

More information

COMPARISON OF THE ESTIMATORS OF THE LOCATION AND SCALE PARAMETERS UNDER THE MIXTURE AND OUTLIER MODELS VIA SIMULATION

COMPARISON OF THE ESTIMATORS OF THE LOCATION AND SCALE PARAMETERS UNDER THE MIXTURE AND OUTLIER MODELS VIA SIMULATION (REFEREED RESEARCH) COMPARISON OF THE ESTIMATORS OF THE LOCATION AND SCALE PARAMETERS UNDER THE MIXTURE AND OUTLIER MODELS VIA SIMULATION Hakan S. Sazak 1, *, Hülya Yılmaz 2 1 Ege University, Department

More information

SIMULTANEOUS CONFIDENCE BANDS FOR THE PTH PERCENTILE AND THE MEAN LIFETIME IN EXPONENTIAL AND WEIBULL REGRESSION MODELS. Ping Sa and S.J.

SIMULTANEOUS CONFIDENCE BANDS FOR THE PTH PERCENTILE AND THE MEAN LIFETIME IN EXPONENTIAL AND WEIBULL REGRESSION MODELS. Ping Sa and S.J. SIMULTANEOUS CONFIDENCE BANDS FOR THE PTH PERCENTILE AND THE MEAN LIFETIME IN EXPONENTIAL AND WEIBULL REGRESSION MODELS " # Ping Sa and S.J. Lee " Dept. of Mathematics and Statistics, U. of North Florida,

More information

Bootstrap tests. Patrick Breheny. October 11. Bootstrap vs. permutation tests Testing for equality of location

Bootstrap tests. Patrick Breheny. October 11. Bootstrap vs. permutation tests Testing for equality of location Bootstrap tests Patrick Breheny October 11 Patrick Breheny STA 621: Nonparametric Statistics 1/14 Introduction Conditioning on the observed data to obtain permutation tests is certainly an important idea

More information

Multiple Regression Methods

Multiple Regression Methods Chapter 1: Multiple Regression Methods Hildebrand, Ott and Gray Basic Statistical Ideas for Managers Second Edition 1 Learning Objectives for Ch. 1 The Multiple Linear Regression Model How to interpret

More information

Generalized Multivariate Rank Type Test Statistics via Spatial U-Quantiles

Generalized Multivariate Rank Type Test Statistics via Spatial U-Quantiles Generalized Multivariate Rank Type Test Statistics via Spatial U-Quantiles Weihua Zhou 1 University of North Carolina at Charlotte and Robert Serfling 2 University of Texas at Dallas Final revision for

More information

A Note on Bayesian Inference After Multiple Imputation

A Note on Bayesian Inference After Multiple Imputation A Note on Bayesian Inference After Multiple Imputation Xiang Zhou and Jerome P. Reiter Abstract This article is aimed at practitioners who plan to use Bayesian inference on multiplyimputed datasets in

More information

Introduction to Statistical Analysis

Introduction to Statistical Analysis Introduction to Statistical Analysis Changyu Shen Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology Beth Israel Deaconess Medical Center Harvard Medical School Objectives Descriptive

More information

9/2/2010. Wildlife Management is a very quantitative field of study. throughout this course and throughout your career.

9/2/2010. Wildlife Management is a very quantitative field of study. throughout this course and throughout your career. Introduction to Data and Analysis Wildlife Management is a very quantitative field of study Results from studies will be used throughout this course and throughout your career. Sampling design influences

More information

Psychology 282 Lecture #4 Outline Inferences in SLR

Psychology 282 Lecture #4 Outline Inferences in SLR Psychology 282 Lecture #4 Outline Inferences in SLR Assumptions To this point we have not had to make any distributional assumptions. Principle of least squares requires no assumptions. Can use correlations

More information

BOOTSTRAPPING WITH MODELS FOR COUNT DATA

BOOTSTRAPPING WITH MODELS FOR COUNT DATA Journal of Biopharmaceutical Statistics, 21: 1164 1176, 2011 Copyright Taylor & Francis Group, LLC ISSN: 1054-3406 print/1520-5711 online DOI: 10.1080/10543406.2011.607748 BOOTSTRAPPING WITH MODELS FOR

More information

Power; sample size; significance level; detectable difference; standard error; influence function.

Power; sample size; significance level; detectable difference; standard error; influence function. Abstract rbn Generalized power calculations Author: Roger Newson, Imperial College London, UK. Email: r.newson@imperial.ac.uk Date: 26 March 202. The program powercal carries out generalized power and

More information

Confidence Intervals for a Ratio of Binomial Proportions Based on Unbiased Estimators

Confidence Intervals for a Ratio of Binomial Proportions Based on Unbiased Estimators Proceedings of The 6th Sino-International Symposium Date published: October 3, 2009 on Probability, Statistics, and Quantitative Management pp. 2-5 Conference held on May 30, 2009 at Fo Guang Univ., Taiwan,

More information

BE540W Estimation Page 1 of 72. Topic 6 Estimation

BE540W Estimation Page 1 of 72. Topic 6 Estimation BE540W Estimation Page 1 of 7 Topic 6 Estimation Topics 1. Introduction......... Goals of Estimation.... 3. Some notation and definitions,..... 4. How to Interpret a Confidence Interval..... 5. Normal:

More information

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests Chapters 3.5.1 3.5.2, 3.3.2 Prof. Tesler Math 283 Fall 2018 Prof. Tesler z and t tests for mean Math

More information

Statistics for Managers Using Microsoft Excel Chapter 10 ANOVA and Other C-Sample Tests With Numerical Data

Statistics for Managers Using Microsoft Excel Chapter 10 ANOVA and Other C-Sample Tests With Numerical Data Statistics for Managers Using Microsoft Excel Chapter 10 ANOVA and Other C-Sample Tests With Numerical Data 1999 Prentice-Hall, Inc. Chap. 10-1 Chapter Topics The Completely Randomized Model: One-Factor

More information

arxiv: v1 [stat.co] 26 May 2009

arxiv: v1 [stat.co] 26 May 2009 MAXIMUM LIKELIHOOD ESTIMATION FOR MARKOV CHAINS arxiv:0905.4131v1 [stat.co] 6 May 009 IULIANA TEODORESCU Abstract. A new approach for optimal estimation of Markov chains with sparse transition matrices

More information

Population Variance. Concepts from previous lectures. HUMBEHV 3HB3 one-sample t-tests. Week 8

Population Variance. Concepts from previous lectures. HUMBEHV 3HB3 one-sample t-tests. Week 8 Concepts from previous lectures HUMBEHV 3HB3 one-sample t-tests Week 8 Prof. Patrick Bennett sampling distributions - sampling error - standard error of the mean - degrees-of-freedom Null and alternative/research

More information

Application of Variance Homogeneity Tests Under Violation of Normality Assumption

Application of Variance Homogeneity Tests Under Violation of Normality Assumption Application of Variance Homogeneity Tests Under Violation of Normality Assumption Alisa A. Gorbunova, Boris Yu. Lemeshko Novosibirsk State Technical University Novosibirsk, Russia e-mail: gorbunova.alisa@gmail.com

More information

Introduction to Linear regression analysis. Part 2. Model comparisons

Introduction to Linear regression analysis. Part 2. Model comparisons Introduction to Linear regression analysis Part Model comparisons 1 ANOVA for regression Total variation in Y SS Total = Variation explained by regression with X SS Regression + Residual variation SS Residual

More information

Introduction to hypothesis testing

Introduction to hypothesis testing Introduction to hypothesis testing Review: Logic of Hypothesis Tests Usually, we test (attempt to falsify) a null hypothesis (H 0 ): includes all possibilities except prediction in hypothesis (H A ) If

More information