Formulation of the displacement-based Finite Element Method and General Convergence Results

Size: px
Start display at page:

Download "Formulation of the displacement-based Finite Element Method and General Convergence Results"

Transcription

1 Formulation of the displacement-based Finite Element Method and General Convergence Results

2 z Basics of Elasticity Theory strain e: measure of relative distortions u r r' y for small displacements : x r : before deformation r' : after deformation u : displacement compatibility of the strain field: d/dx u e int. + comp.

3 Basics of Elasticity Theory deformation creates internal forces C: material matrix (symmetric) e : strain ti : stress b.c. deformed solid solid in equilibrium the problem of elasticity: find u in the presence of boundary conditions: (essential) (natural)

4 The principle of virtual displacements for any U that obey the b.c. and the true equilibrium stress field: internal virtual work virtual work by external forces stress field in equilibrium with virt. strain derived from virt. displacements U assume true U U is the solution implicitly contains: e force boundary conditions direct stiffness method (in FEM formulation) no yes t p. o. v. d. satisfied for any U?

5 FEM: domain discretization global, nodal displacements: node displ. in global coord. interpolation matrix H(m): strain-displacement matrix B(m): it holds: global coord. system local coord. system of m-th element solid decomposed into assemly of finite elements: no overlap no holes nodal points coincide principle of virtual displacements for the discretized body:

6 FEM: matrix equations ansatz for displacement field discretized principle of virt. displ. ansatz for virt. displacement field solution when p.o.v.d. fullfilled with one obtains: implicit direct stiffness especially: = ei, where boundary forces contained discrete displacement field to be determined

7 FEM: matrix equations dynamic case with dissipative forces ~ du/dt: modified body forces: define: inertial forces damping forces K and M are symmetric

8 FEM: Two-element bar assemblage two 2-point elements, polynomial ansatz u(m)(x) linear: interpolation condition: 1 m=1

9 FEM: Two-element bar assemblage calculate B(1)(x) for given u(1)(x): m = 1: analogous: material matrix:

10 FEM: Two-element bar assemblage slow load application:, RS= RI=0 obtain U(t*) by solving:

11 FEM: Exact stiffness vs. FEM approx. from variational principle: A=(1+x/40)2 exact solution w. b.c. u(0) = 0 and u(80) = 1: forces at the ends of the bar: FEM (exact stiffness matrix) displacement ansatz too rigid (FEM approx., prev. example) overestimate of stiffness

12 FEM: Displacement constraints decompose U = FEM equations: : unconstrained : constrained modified force vector if constraints don't coincide with Ub, try: where Ub can be constrained need to transform FEM matrices accordingly:

13 Refining the FEM solution keep element size keep order of interpolation p refinement h/p refinement: both simultaneously h refinement

14 Convergence of a FEM solution strain energy pos. def. bilinear form Convergence in the norm induced by a: measures discretization and interpolation errors, only monotonic convergence: a(uh,uh) necessary: a(u,u) compatibility of mesh and elements completeness of elements 1/h

15 mon. Conv.: Compatibility Compatibility: continuity of u within and across element boundaries discontinuity different interpolation is adjacent elements Example: discontinuity calculation of a(uh,uh): u d/dx e e C t delta function gives unphysical contributions to a (uh,uh) and destroys monotonic convergence different element size in adjacent elements

16 mon. Conv.: Completeness Completeness: element must be able to represent all rigid-body modes and states of constant strain Reason: Number of rigid-body modes: 1,...ln #rbm = dim(ker(k)) rbm determined by the eigenvectors of K:

17 Convergence rates Assumptions: interpolation w. complete polynomials up to order k Lack of smoothness slower convergence non-uniform grid: h refinement: exact solution is smooth enough, such that Sobolev-Norm of order k+1 is finite: h/p refinement: uniform mesh Estimate (p-refinement): Def.: (Sobolev-Norm of order 0)

18 Error assessment FEM solution violates differential equilibrium: non-continous stress possible Graphical assement: Isoband-plots

19 Thank you for your attention!

Stress analysis of a stepped bar

Stress analysis of a stepped bar Stress analysis of a stepped bar Problem Find the stresses induced in the axially loaded stepped bar shown in Figure. The bar has cross-sectional areas of A ) and A ) over the lengths l ) and l ), respectively.

More information

Structural Analysis of Truss Structures using Stiffness Matrix. Dr. Nasrellah Hassan Ahmed

Structural Analysis of Truss Structures using Stiffness Matrix. Dr. Nasrellah Hassan Ahmed Structural Analysis of Truss Structures using Stiffness Matrix Dr. Nasrellah Hassan Ahmed FUNDAMENTAL RELATIONSHIPS FOR STRUCTURAL ANALYSIS In general, there are three types of relationships: Equilibrium

More information

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method

Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method 9210-203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached

More information

Finite Element Method in Geotechnical Engineering

Finite Element Method in Geotechnical Engineering Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 5-8, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps

More information

CRITERIA FOR SELECTION OF FEM MODELS.

CRITERIA FOR SELECTION OF FEM MODELS. CRITERIA FOR SELECTION OF FEM MODELS. Prof. P. C.Vasani,Applied Mechanics Department, L. D. College of Engineering,Ahmedabad- 380015 Ph.(079) 7486320 [R] E-mail:pcv-im@eth.net 1. Criteria for Convergence.

More information

Mathematics FINITE ELEMENT ANALYSIS AS COMPUTATION. What the textbooks don't teach you about finite element analysis. Chapter 3

Mathematics FINITE ELEMENT ANALYSIS AS COMPUTATION. What the textbooks don't teach you about finite element analysis. Chapter 3 Mathematics FINITE ELEMENT ANALYSIS AS COMPUTATION What the textbooks don't teach you about finite element analysis Chapter 3 Completeness and continuity: How to choose shape functions? Gangan Prathap

More information

BAR ELEMENT WITH VARIATION OF CROSS-SECTION FOR GEOMETRIC NON-LINEAR ANALYSIS

BAR ELEMENT WITH VARIATION OF CROSS-SECTION FOR GEOMETRIC NON-LINEAR ANALYSIS Journal of Computational and Applied Mechanics, Vol.., No. 1., (2005), pp. 83 94 BAR ELEMENT WITH VARIATION OF CROSS-SECTION FOR GEOMETRIC NON-LINEAR ANALYSIS Vladimír Kutiš and Justín Murín Department

More information

Code No: RT41033 R13 Set No. 1 IV B.Tech I Semester Regular Examinations, November - 2016 FINITE ELEMENT METHODS (Common to Mechanical Engineering, Aeronautical Engineering and Automobile Engineering)

More information

Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS

Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS Bilinear Quadrilateral (Q4): CQUAD4 in GENESIS The Q4 element has four nodes and eight nodal dof. The shape can be any quadrilateral; we ll concentrate on a rectangle now. The displacement field in terms

More information

Chapter 1: The Finite Element Method

Chapter 1: The Finite Element Method Chapter 1: The Finite Element Method Michael Hanke Read: Strang, p 428 436 A Model Problem Mathematical Models, Analysis and Simulation, Part Applications: u = fx), < x < 1 u) = u1) = D) axial deformation

More information

Chapter 5 Structural Elements: The truss & beam elements

Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations

More information

Chapter 3 Variational Formulation & the Galerkin Method

Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 1 Chapter 3 Variational Formulation & the Galerkin Method Institute of Structural Engineering Page 2 Today s Lecture Contents: Introduction Differential formulation

More information

Development of Truss Equations

Development of Truss Equations CIVL 7/87 Chapter 3 - Truss Equations - Part /53 Chapter 3a Development of Truss Equations Learning Objectives To derive the stiffness matri for a bar element. To illustrate how to solve a bar assemblage

More information

Lecture 7: The Beam Element Equations.

Lecture 7: The Beam Element Equations. 4.1 Beam Stiffness. A Beam: A long slender structural component generally subjected to transverse loading that produces significant bending effects as opposed to twisting or axial effects. MECH 40: Finite

More information

Lecture 27 Introduction to finite elements methods

Lecture 27 Introduction to finite elements methods Fall, 2017 ME 323 Mechanics of Materials Lecture 27 Introduction to finite elements methods Reading assignment: News: Instructor: Prof. Marcial Gonzalez Last modified: 10/24/17 7:02:00 PM Finite element

More information

Introduction to Finite Element Method

Introduction to Finite Element Method Introduction to Finite Element Method Dr. Rakesh K Kapania Aerospace and Ocean Engineering Department Virginia Polytechnic Institute and State University, Blacksburg, VA AOE 524, Vehicle Structures Summer,

More information

Advanced Vibrations. Distributed-Parameter Systems: Approximate Methods Lecture 20. By: H. Ahmadian

Advanced Vibrations. Distributed-Parameter Systems: Approximate Methods Lecture 20. By: H. Ahmadian Advanced Vibrations Distributed-Parameter Systems: Approximate Methods Lecture 20 By: H. Ahmadian ahmadian@iust.ac.ir Distributed-Parameter Systems: Approximate Methods Rayleigh's Principle The Rayleigh-Ritz

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module - 01 Lecture - 13 In the last class, we have seen how

More information

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method

Measurement of deformation. Measurement of elastic force. Constitutive law. Finite element method Deformable Bodies Deformation x p(x) Given a rest shape x and its deformed configuration p(x), how large is the internal restoring force f(p)? To answer this question, we need a way to measure deformation

More information

Preprocessor Geometry Properties )Nodes, Elements(, Material Properties Boundary Conditions(displacements, Forces )

Preprocessor Geometry Properties )Nodes, Elements(, Material Properties Boundary Conditions(displacements, Forces ) در برنامه يك تدوين براي بعدي دو يك سازه محيط MATLAB Preprocessor Geometry Properties )Nodes, Elements(, Material Properties Boundary Conditions(displacements, Forces ) Definition of Stiffness Matrices

More information

Development of discontinuous Galerkin method for linear strain gradient elasticity

Development of discontinuous Galerkin method for linear strain gradient elasticity Development of discontinuous Galerkin method for linear strain gradient elasticity R Bala Chandran Computation for Design and Optimizaton Massachusetts Institute of Technology Cambridge, MA L. Noels* Aerospace

More information

A.0 IDUKKI ARCH DAM - ANALYSIS FOR VARIOUS LOAD CASES AND DISCRETISATIONS

A.0 IDUKKI ARCH DAM - ANALYSIS FOR VARIOUS LOAD CASES AND DISCRETISATIONS Annexure A.0 IDUKKI ARCH DAM - ANALYSIS FOR VARIOUS LOAD CASES AND DISCRETISATIONS In this Annexure, Idukki arch dam chosen for case study is analyzed with the developed program for various load conditions

More information

Contents. Prologue Introduction. Classical Approximation... 19

Contents. Prologue Introduction. Classical Approximation... 19 Contents Prologue........................................................................ 15 1 Introduction. Classical Approximation.................................. 19 1.1 Introduction................................................................

More information

MEC-E8001 FINITE ELEMENT ANALYSIS

MEC-E8001 FINITE ELEMENT ANALYSIS MEC-E800 FINIE EEMEN ANAYSIS 07 - WHY FINIE EEMENS AND IS HEORY? Design of machines and structures: Solution to stress or displacement by analytical method is often impossible due to complex geometry,

More information

OBJECTIVES & ASSUMPTIONS

OBJECTIVES & ASSUMPTIONS OBJECTIVES & ASSUMPTIONS Z Project Objectives: Construct a template for the 5-node pyramid element Conduct higher-order patch tests Verify element formulation Determine the optimal element in bending X

More information

Geometric Misfitting in Structures An Interval-Based Approach

Geometric Misfitting in Structures An Interval-Based Approach Geometric Misfitting in Structures An Interval-Based Approach M. V. Rama Rao Vasavi College of Engineering, Hyderabad - 500 031 INDIA Rafi Muhanna School of Civil and Environmental Engineering Georgia

More information

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma).

Structural Dynamics. Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). Structural Dynamics Spring mass system. The spring force is given by and F(t) is the driving force. Start by applying Newton s second law (F=ma). We will now look at free vibrations. Considering the free

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

Chapter 2. Formulation of Finite Element Method by Variational Principle

Chapter 2. Formulation of Finite Element Method by Variational Principle Chapter 2 Formulation of Finite Element Method by Variational Principle The Concept of Variation of FUNCTIONALS Variation Principle: Is to keep the DIFFERENCE between a REAL situation and an APPROXIMATE

More information

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

More information

APPLICATIONS OF PURE AND COMBINED BUCKLING MODE CALCULATION OF THIN-WALLED MEMBERS USING THE FINITE ELEMENT METHOD

APPLICATIONS OF PURE AND COMBINED BUCKLING MODE CALCULATION OF THIN-WALLED MEMBERS USING THE FINITE ELEMENT METHOD SDSS Rio 2010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 2010 APPLICATIONS OF PURE AND COMBINED BUCKLING MODE CALCULATION

More information

JEPPIAAR ENGINEERING COLLEGE

JEPPIAAR ENGINEERING COLLEGE JEPPIAAR ENGINEERING COLLEGE Jeppiaar Nagar, Rajiv Gandhi Salai 600 119 DEPARTMENT OFMECHANICAL ENGINEERING QUESTION BANK VI SEMESTER ME6603 FINITE ELEMENT ANALYSIS Regulation 013 SUBJECT YEAR /SEM: III

More information

Variational principles in mechanics

Variational principles in mechanics CHAPTER Variational principles in mechanics.1 Linear Elasticity n D Figure.1: A domain and its boundary = D [. Consider a domain Ω R 3 with its boundary = D [ of normal n (see Figure.1). The problem of

More information

Topic 5: Finite Element Method

Topic 5: Finite Element Method Topic 5: Finite Element Method 1 Finite Element Method (1) Main problem of classical variational methods (Ritz method etc.) difficult (op impossible) definition of approximation function ϕ for non-trivial

More information

Finite Elements for Thermal Analysis

Finite Elements for Thermal Analysis Chapter 4 Finite Elements for Thermal Analysis 4.1 Governing Equations for the Thermal Problem CONSTITUTIVE EQUATIONS Introducing the temperature field T(x i,t ), the heat flux vector q(x i,t) q n (x i,t)

More information

Finite Element Modelling of Finite Single and Double Quantum Wells

Finite Element Modelling of Finite Single and Double Quantum Wells Finite Element Modelling of Finite Single and Double Quantum Wells A Major Qualifying Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfilment of the requirements

More information

The CR Formulation: BE Plane Beam

The CR Formulation: BE Plane Beam 6 The CR Formulation: BE Plane Beam 6 Chapter 6: THE CR FORMUATION: BE PANE BEAM TABE OF CONTENTS Page 6. Introduction..................... 6 4 6.2 CR Beam Kinematics................. 6 4 6.2. Coordinate

More information

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems

MECh300H Introduction to Finite Element Methods. Finite Element Analysis (F.E.A.) of 1-D Problems MECh300H Introduction to Finite Element Methods Finite Element Analysis (F.E.A.) of -D Problems Historical Background Hrenikoff, 94 frame work method Courant, 943 piecewise polynomial interpolation Turner,

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

A brief introduction to finite element methods

A brief introduction to finite element methods CHAPTER A brief introduction to finite element methods 1. Two-point boundary value problem and the variational formulation 1.1. The model problem. Consider the two-point boundary value problem: Given a

More information

Generalized Single Degree of Freedom Systems

Generalized Single Degree of Freedom Systems Single Degree of Freedom http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March, 8 Outline Until now our were described

More information

The Plane Stress Problem

The Plane Stress Problem The Plane Stress Problem Martin Kronbichler Applied Scientific Computing (Tillämpad beräkningsvetenskap) February 2, 2010 Martin Kronbichler (TDB) The Plane Stress Problem February 2, 2010 1 / 24 Outline

More information

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen

Steps in the Finite Element Method. Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen Steps in the Finite Element Method Chung Hua University Department of Mechanical Engineering Dr. Ching I Chen General Idea Engineers are interested in evaluating effects such as deformations, stresses,

More information

Inverse Design (and a lightweight introduction to the Finite Element Method) Stelian Coros

Inverse Design (and a lightweight introduction to the Finite Element Method) Stelian Coros Inverse Design (and a lightweight introduction to the Finite Element Method) Stelian Coros Computational Design Forward design: direct manipulation of design parameters Level of abstraction Exploration

More information

Truss Structures: The Direct Stiffness Method

Truss Structures: The Direct Stiffness Method . Truss Structures: The Companies, CHAPTER Truss Structures: The Direct Stiffness Method. INTRODUCTION The simple line elements discussed in Chapter introduced the concepts of nodes, nodal displacements,

More information

Continuum mechanics of beam-like structures using one-dimensional finite element based on Serendipity Lagrange cross-sectional discretisation, Mayank Patni, Prof. Paul Weaver, Dr Alberto Pirrera Bristol

More information

CIVL 7/8117 Chapter 4 - Development of Beam Equations - Part 2 1/34. Chapter 4b Development of Beam Equations. Learning Objectives

CIVL 7/8117 Chapter 4 - Development of Beam Equations - Part 2 1/34. Chapter 4b Development of Beam Equations. Learning Objectives CIV 7/87 Chapter 4 - Development of Beam Equations - Part /4 Chapter 4b Development of Beam Equations earning Objectives To introduce the work-equivalence method for replacing distributed loading by a

More information

Lecture 2: Finite Elements

Lecture 2: Finite Elements Materials Science & Metallurgy Master of Philosophy, Materials Modelling, Course MP7, Finite Element Analysis, H. K. D. H. Bhadeshia Lecture 2: Finite Elements In finite element analysis, functions of

More information

University of Illinois at Urbana-Champaign College of Engineering

University of Illinois at Urbana-Champaign College of Engineering University of Illinois at Urbana-Champaign College of Engineering CEE 570 Finite Element Methods (in Solid and Structural Mechanics) Spring Semester 03 Quiz # April 8, 03 Name: SOUTION ID#: PS.: A the

More information

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices

Outline. Structural Matrices. Giacomo Boffi. Introductory Remarks. Structural Matrices. Evaluation of Structural Matrices Outline in MDOF Systems Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano May 8, 014 Additional Today we will study the properties of structural matrices, that is the operators that

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Continuum Mechanics and the Finite Element Method

Continuum Mechanics and the Finite Element Method Continuum Mechanics and the Finite Element Method 1 Assignment 2 Due on March 2 nd @ midnight 2 Suppose you want to simulate this The familiar mass-spring system l 0 l y i X y i x Spring length before/after

More information

Chapter 2 Finite Element Formulations

Chapter 2 Finite Element Formulations Chapter 2 Finite Element Formulations The governing equations for problems solved by the finite element method are typically formulated by partial differential equations in their original form. These are

More information

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES

CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES CHAPTER 14 BUCKLING ANALYSIS OF 1D AND 2D STRUCTURES 14.1 GENERAL REMARKS In structures where dominant loading is usually static, the most common cause of the collapse is a buckling failure. Buckling may

More information

Stiffness Matrices, Spring and Bar Elements

Stiffness Matrices, Spring and Bar Elements CHAPTER Stiffness Matrices, Spring and Bar Elements. INTRODUCTION The primary characteristics of a finite element are embodied in the element stiffness matrix. For a structural finite element, the stiffness

More information

Analytical formulation of Modified Upper Bound theorem

Analytical formulation of Modified Upper Bound theorem CHAPTER 3 Analytical formulation of Modified Upper Bound theorem 3.1 Introduction In the mathematical theory of elasticity, the principles of minimum potential energy and minimum complimentary energy are

More information

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method

Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under

More information

4 NON-LINEAR ANALYSIS

4 NON-LINEAR ANALYSIS 4 NON-INEAR ANAYSIS arge displacement elasticity theory, principle of virtual work arge displacement FEA with solid, thin slab, and bar models Virtual work density of internal forces revisited 4-1 SOURCES

More information

International Journal of Advanced Engineering Technology E-ISSN

International Journal of Advanced Engineering Technology E-ISSN Research Article INTEGRATED FORCE METHOD FOR FIBER REINFORCED COMPOSITE PLATE BENDING PROBLEMS Doiphode G. S., Patodi S. C.* Address for Correspondence Assistant Professor, Applied Mechanics Department,

More information

Course in. Geometric nonlinearity. Nonlinear FEM. Computational Mechanics, AAU, Esbjerg

Course in. Geometric nonlinearity. Nonlinear FEM. Computational Mechanics, AAU, Esbjerg Course in Nonlinear FEM Geometric nonlinearity Nonlinear FEM Outline Lecture 1 Introduction Lecture 2 Geometric nonlinearity Lecture 3 Material nonlinearity Lecture 4 Material nonlinearity it continued

More information

AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS

AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS th Pan-American Congress of Applied Mechanics January 04-08, 00, Foz do Iguaçu, PR, Brazil AN ALTERNATIVE TECHNIQUE FOR TANGENTIAL STRESS CALCULATION IN DISCONTINUOUS BOUNDARY ELEMENTS Otávio Augusto Alves

More information

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation

Quintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

Methods of Analysis. Force or Flexibility Method

Methods of Analysis. Force or Flexibility Method INTRODUCTION: The structural analysis is a mathematical process by which the response of a structure to specified loads is determined. This response is measured by determining the internal forces or stresses

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 06 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 06 In the last lecture, we have seen a boundary value problem, using the formal

More information

DISPENSA FEM in MSC. Nastran

DISPENSA FEM in MSC. Nastran DISPENSA FEM in MSC. Nastran preprocessing: mesh generation material definitions definition of loads and boundary conditions solving: solving the (linear) set of equations components postprocessing: visualisation

More information

EXTENDED ABSTRACT. Dynamic analysis of elastic solids by the finite element method. Vítor Hugo Amaral Carreiro

EXTENDED ABSTRACT. Dynamic analysis of elastic solids by the finite element method. Vítor Hugo Amaral Carreiro EXTENDED ABSTRACT Dynamic analysis of elastic solids by the finite element method Vítor Hugo Amaral Carreiro Supervisor: Professor Fernando Manuel Fernandes Simões June 2009 Summary The finite element

More information

Effect of Mass Matrix Formulation Schemes on Dynamics of Structures

Effect of Mass Matrix Formulation Schemes on Dynamics of Structures Effect of Mass Matrix Formulation Schemes on Dynamics of Structures Swapan Kumar Nandi Tata Consultancy Services GEDC, 185 LR, Chennai 600086, India Sudeep Bosu Tata Consultancy Services GEDC, 185 LR,

More information

Transactions on Modelling and Simulation vol 9, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 9, 1995 WIT Press,  ISSN X An alternative boundary element formulation for plate bending analysis J.B. Paiva, L.O. Neto Structures Department, Sao Carlos Civil Engineering School, f, BrazzY Abstract This work presents an alternative

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 11 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 11 Last class, what we did is, we looked at a method called superposition

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems

Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Finite Element Method-Part II Isoparametric FE Formulation and some numerical examples Lecture 29 Smart and Micro Systems Introduction Till now we dealt only with finite elements having straight edges.

More information

Bearing Capacity of Spatially Random Cohesive Soil Using Numerical Limit Analyses

Bearing Capacity of Spatially Random Cohesive Soil Using Numerical Limit Analyses Bearing Capacity of Spatially Random Cohesive Soil Using Numerical Limit Analyses The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

BHAR AT HID AS AN ENGIN E ERI N G C O L L E G E NATTR A MPA LL I

BHAR AT HID AS AN ENGIN E ERI N G C O L L E G E NATTR A MPA LL I BHAR AT HID AS AN ENGIN E ERI N G C O L L E G E NATTR A MPA LL I 635 8 54. Third Year M E C H A NICAL VI S E M ES TER QUE S T I ON B ANK Subject: ME 6 603 FIN I T E E LE ME N T A N A L YSIS UNI T - I INTRODUCTION

More information

Modal Analysis: What it is and is not Gerrit Visser

Modal Analysis: What it is and is not Gerrit Visser Modal Analysis: What it is and is not Gerrit Visser What is a Modal Analysis? What answers do we get out of it? How is it useful? What does it not tell us? In this article, we ll discuss where a modal

More information

FEM Validation. 12th January David Schmid Teamleader Structural Analysis

FEM Validation. 12th January David Schmid Teamleader Structural Analysis FEM Validation 12th January 2012 David Schmid Teamleader Structural Analysis FEM Validation and Verification Each FE model which is used to substantiate flight material must be verified Depending on the

More information

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass CIV 8/77 Chapter - /75 Introduction To discuss the dynamics of a single-degree-of freedom springmass system. To derive the finite element equations for the time-dependent stress analysis of the one-dimensional

More information

Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

BECAS - an Open-Source Cross Section Analysis Tool

BECAS - an Open-Source Cross Section Analysis Tool BECAS - an Open-Source Cross Section Analysis Tool José P. Blasques and Robert D. Bitsche Presented at DTU Wind Energy stand at the EWEA 2012 conference, Copenhagen, 16.4.2012 BECAS-DTUWind@dtu.dk Motivation

More information

BACKGROUNDS. Two Models of Deformable Body. Distinct Element Method (DEM)

BACKGROUNDS. Two Models of Deformable Body. Distinct Element Method (DEM) BACKGROUNDS Two Models of Deformable Body continuum rigid-body spring deformation expressed in terms of field variables assembly of rigid-bodies connected by spring Distinct Element Method (DEM) simple

More information

LIMIT LOAD OF A MASONRY ARCH BRIDGE BASED ON FINITE ELEMENT FRICTIONAL CONTACT ANALYSIS

LIMIT LOAD OF A MASONRY ARCH BRIDGE BASED ON FINITE ELEMENT FRICTIONAL CONTACT ANALYSIS 5 th GRACM International Congress on Computational Mechanics Limassol, 29 June 1 July, 2005 LIMIT LOAD OF A MASONRY ARCH BRIDGE BASED ON FINITE ELEMENT FRICTIONAL CONTACT ANALYSIS G.A. Drosopoulos I, G.E.

More information

MITOCW MITRES2_002S10nonlinear_lec05_300k-mp4

MITOCW MITRES2_002S10nonlinear_lec05_300k-mp4 MITOCW MITRES2_002S10nonlinear_lec05_300k-mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

More information

Virtual Work & Energy Methods. External Energy-Work Transformation

Virtual Work & Energy Methods. External Energy-Work Transformation External Energy-Work Transformation Virtual Work Many structural problems are statically determinate (support reactions & internal forces can be found by simple statics) Other methods are required when

More information

G. R. Liu 1,2,, Received 17 July 2008; Revised 6 June 2009; Accepted 23 June 2009 KEY WORDS:

G. R. Liu 1,2,, Received 17 July 2008; Revised 6 June 2009; Accepted 23 June 2009 KEY WORDS: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2010; 81:1127 1156 Published online 17 August 2009 in Wiley InterScience (www.interscience.wiley.com)..2720 A G space

More information

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2

Index. C 2 ( ), 447 C k [a,b], 37 C0 ( ), 618 ( ), 447 CD 2 CN 2 Index advection equation, 29 in three dimensions, 446 advection-diffusion equation, 31 aluminum, 200 angle between two vectors, 58 area integral, 439 automatic step control, 119 back substitution, 604

More information

CE-570 Advanced Structural Mechanics - Arun Prakash

CE-570 Advanced Structural Mechanics - Arun Prakash Ch1-Intro Page 1 CE-570 Advanced Structural Mechanics - Arun Prakash The BIG Picture What is Mechanics? Mechanics is study of how things work: how anything works, how the world works! People ask: "Do you

More information

Basic Energy Principles in Stiffness Analysis

Basic Energy Principles in Stiffness Analysis Basic Energy Principles in Stiffness Analysis Stress-Strain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting

More information

Chapter 3: Stress and Equilibrium of Deformable Bodies

Chapter 3: Stress and Equilibrium of Deformable Bodies Ch3-Stress-Equilibrium Page 1 Chapter 3: Stress and Equilibrium of Deformable Bodies When structures / deformable bodies are acted upon by loads, they build up internal forces (stresses) within them to

More information

Lecture 8: Assembly of beam elements.

Lecture 8: Assembly of beam elements. ecture 8: Assembly of beam elements. 4. Example of Assemblage of Beam Stiffness Matrices. Place nodes at the load application points. Assembling the two sets of element equations (note the common elemental

More information

Lecture notes Models of Mechanics

Lecture notes Models of Mechanics Lecture notes Models of Mechanics Anders Klarbring Division of Mechanics, Linköping University, Sweden Lecture 7: Small deformation theories Klarbring (Mechanics, LiU) Lecture notes Linköping 2012 1 /

More information

Simulation in Computer Graphics Elastic Solids. Matthias Teschner

Simulation in Computer Graphics Elastic Solids. Matthias Teschner Simulation in Computer Graphics Elastic Solids Matthias Teschner Outline Introduction Elastic forces Miscellaneous Collision handling Visualization University of Freiburg Computer Science Department 2

More information

Lecture 12: Finite Elements

Lecture 12: Finite Elements Materials Science & Metallurgy Part III Course M6 Computation of Phase Diagrams H. K. D. H. Bhadeshia Lecture 2: Finite Elements In finite element analysis, functions of continuous quantities such as temperature

More information

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Fig. 1. Circular fiber and interphase between the fiber and the matrix. Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In

More information

GEO E1050 Finite Element Method Autumn Lecture. 9. Nonlinear Finite Element Method & Summary

GEO E1050 Finite Element Method Autumn Lecture. 9. Nonlinear Finite Element Method & Summary GEO E1050 Finite Element Method Autumn 2016 Lecture. 9. Nonlinear Finite Element Method & Summary To learn today The lecture should give you overview of how non-linear problems in Finite Element Method

More information

Back Analysis of Measured Displacements of Tunnels

Back Analysis of Measured Displacements of Tunnels Rock Mechanics and Rock Engineering 16, 173--180 (1983) Rock Mechanics and Rock Engineering 9 by Springer-Verlag 1983 Back Analysis of Measured Displacements of Tunnels By S. Sakurai and K. Takeuchi Kobe

More information

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

UNIT IV FLEXIBILTY AND STIFFNESS METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup,

Using MATLAB and. Abaqus. Finite Element Analysis. Introduction to. Amar Khennane. Taylor & Francis Croup. Taylor & Francis Croup, Introduction to Finite Element Analysis Using MATLAB and Abaqus Amar Khennane Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information