Newton s Lab. - Relationship Involving Acceleration, Total Force, and Mass - Mr.Chung SPH3U-W April 10, Ingrid Ho Wenjing Zhang

Size: px
Start display at page:

Download "Newton s Lab. - Relationship Involving Acceleration, Total Force, and Mass - Mr.Chung SPH3U-W April 10, Ingrid Ho Wenjing Zhang"

Transcription

1 Newton s Lab - Relationship Involving Acceleration, Total Force, and Mass - Mr.Chung SPH3U-W April 10, 2007 Ingrid Ho Wenjing Zhang

2 - Abstract - An exploration of Newton s second law (F=ma) by discovering the relationship between mass, force, and acceleration. The three variables were observed and recorded from a moving object by using weights and tickertape. Certain variables were kept constant in parts of the experiment so that the other two may be compared. The results were that as force increases, acceleration increases and as mass decreases, acceleration increases. These results lead to the proof and verification that Newton s second law of dynamics holds true. Real life applications of this relation are also noted. - Introduction - The concept of motion, more specifically, the fundamental cause of motions has been a topic of discussion from scientists since centuries back in time. There were endeavored theories, speculations, debates, but never was there an accepted explanation for the phenomenon known today as, dynamics. The Greek philosopher Aristotle hypothesized in 330 BC that a force was needed to keep an object moving. However, Italian physicist Galileo Galilei purposed that an object could continue with constant velo city without any force being applied (1). Isaac Newton, through various laboratorial and personal experiments, concluded in 1664 a law that solved the puzzling physics of motion and forces. It is known as Newton s second law of motion. According to Newton s first law, all objects will remain at equilibrium when all the force acting upon it is balanced. Unbalanced forces, or net force, will undeniably cause acceleration upon the object. From such fact, Newton derived the law stating that acceleration is inversely dependent on mass and directly dependent on the net force applied. Such relationship can be express as, F net = ma. (1) The objective is obvious to observe the relationship between mass, force, and acceleration in this attempt to verify Newton s second law of motion. Before hypothesizing the lab, one must take in consideration of real life application of

3 Newton s second law. By applying the same amount for force, throwing a ping-pong ball straight ahead would be likely to produce a higher acceleration than throwing a bowling ball. From such example, it can be hypothesized that an increase in mass would decrease acceleration, and vise versa. Similarly, smashing a ping-pong ball would logically cause greater acceleration than lightly to ssing the ball. Therefore, applying a greater force would result in greater acceleration, and vise versa. - Methods and Materials - To set up both experiments, first the mass of the cart was weighted and recorded in grams. A ticker tape with length approximately equal to the height between the floor and the desk is taped onto the back of a cart on one end, and connected to the ticker tape timer on the other end. A string of length equal to the ticker tape was taped onto the front of the cart. The cart was placed on the desk, which provided measurement for the tape and string, and pulled back so that the maximum length of string is on the desk. The pulley and clamp was attached to the side of the desk, with the string resting on top of it. Figure 1. A mod el of Experiment A increasing net force and decreasing mass with constant mass of system For Experiment A, the cart was kept stationary while a weight of 200g was placed on the it, and a weight of 100g (approx. 1N) was tied to the string. Apparatus was setup as shown in Figure 1. To start Experiment A, the ticker tape timer was turned on so it would draw dots at equal time intervals on the tape. The force of the weight applied and natural gravitational pull caused the cart to accelerate towards the pulley. The cart was stopped as it reached the

4 pulley, the ticker tape timer was turned off and a ticker tape record of its motion was recorded. The distances between dots were measured to yield displacement of the cart, and the total distances between the dots were measured for usage in the results section. This resulted the data for A1. For the trial 2, a 100g weight from the cart was removed and added on to the end of the string. The experiment performed as identical, and data from the ticker tape was recorded. This resulted in A2. For trial 3, yet another 100g weight was removed from the cart and tied to the end the string. Identical experiment was performed, and data for A3 and A4 was recorded. Logically, the mass of system in this case was kept constant. Figure 2. A model of Experiment B increase mass of object and mass of system with constant net force. For Experiment B, 300g weight was kept on end of the string, while a mass of 1000g (1kg) was placed on the cart. Apparatus was setup as shown in Figure 2. The process itself was unchanged from Experiment A. The ticker tape data for A5 was recorded, and displacement and time was measured. For A6, an additional 1000g (1kg) was added on the cart. Other weights were not altered. The data was again recorded and measured. - Results - In Experiment A, the total mass of the system was kept constant. The mass of the cart measured to be 100g. For each trial, mass of object is reduced while the net force is increased by the same magnitude of 100g. Figure 1 shows the setup of the three trials of the experiment.

5 Table 1. Mass of object and net force recorded from Experiment A Mass of Object Net Force (g) (g) A A A Use unit of Force instead of grams (e.g. 1 F, 2 F, and 3F) In Experiment B, the net force was kept constant. For each trial, the mass of object was increased by 1000g (1kg), thus resulting in an equivalent increase in mass of system. Figure 2 shows setup of the three trials of the experiment. Table 2. Mass of the object and net force recorded from Experiment B. Mass of Object Net Force (g) (g) A A A Use unit of Force instead of grams (e.g. 1 F, 2 F, and 3F) The acceleration of the object in the above experiments can be calculated using data extracted from the ticker tape produced during the experiments. V1 is the initial velocity of the object. Measuring the distance between three dots at the beginning of the ticker tape would yield the displacement. Each interval represented 1/60s, thus making total time in this case 1/30s. V2 is the final velocity of the object. This time, the distance between three dots at the end of the ticker take was recorded. V1 and V2 can both be calculated using the formula below. r d V = t Total displacement was reached by measuring the full length of the ticker tape, from the first do used in V1 to the last dot used in V2. Using the data from above, the acceleration of the object can be calculated by using this

6 formula; r a = ( 1 v ² v ²) 2 2d Table 3. The acceleration of the object in Experiment A Initial Final Total Acceleration Velocity Velocity Displacement (m/s² (m/s (m/s (m Forward) Forward) Forward) Forward) A A A Table 4. The acceleration of the object in Experiment B Initial Final Total Acceleration Velocity Vel ocity Displacement (m/s² (m/s (m/s (m Forward) Forward) Forward) Forward) A A A The mass of system is yet another quantity that can be calculated from the experiment. In Experiment A, it was evident that the mass of system stayed the same. In Experiment B, additional mass of object was added for each trial. Using the equation below, the mass of system of both experiments can be calculated. It was also converted to kg for convenience in further discussions. Mass of System = Mass of object + Net Force (in grams) Table 5. The mass of system for Experiment A Mass of System Mass of System (g) (kg) A A A

7 Table 6. The mass of system for Experiment B Mass of System Mass of System (g) (kg) A A A The net force should be presented in Newton instead of grams. To do such conversion, it is necessary to understand that 1N is equal to approximately 100g. Theref ore, 1N = 100g Utilizing the data collected so far, net force can also be converted using the formula from Newton s second law. Such method of conversion would yield same results as the method demonstrated above, not only so, it will provide essential evidence that can establish the relationship between the three quantities in the discussion section. F net = ma Example conversion; Fnet = 9.81*0.1 Fnet = N Fnet 1 N Table 7. Observational data for Experiment A Initial Final Total Mass of Net Acceleration Mass of Velocity Velocity Displacement Object Force (m/s² System (m/s (m/s (m Forward) (g) (N) Forward) (kg) Forward) Forward) A A A

8 Table 8. Observation data for Experiment 2 Initial Final Total Mass of Net Acceleratio Mass of Velocity Velocity Displacement Object Force n (m/s² System (m/s (m/s (m Forward) (g) (N) Forward) (kg) Forward) Forward) A A A Combining results from all the above calculations will provide adequate data from the experiments. A glance at the results will already provide some interesting trends. In Experiment A, acceleration appears to be increasing as mass of object decrease. The reverse is true in Experiment B; acceleration appears to be decreasing as mass of object increase. However, it must be noted that Experiment A was performed with changing net force while Experiment B was performed with constant net force. Such seemly confusing results will be thoroughly explained and discussed in the next section to prove the true relationship between acceleration, net force, and mass of object. - Discussion - From the data obtained in results, the relationship between acceleration, net force, and mass of object can be derived. It is essential, however, to look at the relationships one piece at a time before putting the big picture together. From experiment A, it is possible to compare acceleration and net force as mass was kept constant. By plotting a graph the relation becomes evident.

9 Acceleration Vs. Net Force 8 7 Acceleration (m/s^2) Net Force (N) Figure 3. A graph of the relation between acceleration and net force when mass of system is kept constant As shown by the graph, acceleration is directly proportional to net force in other words, acceleration increases proportionally as net force increases. This can be written as a a F. It can be said, then, Newton was right in saying that acceleration is directly dependent on net force. Any minor discrepancies may be do to the error explained later on. Next, in experiment B, acceleration and mass of system can be compared as net force was kept constant. Again, a graph is plotted.

10 Acceleration Vs. Mass of System 8 7 Acceleration (m/s^2) Mass of System (kg) Figure 4. A graph of the relation between acceleration and mass of system when net force is kept constant As illustrated by the graph, as mass of system increases, acceleration decreases. Since this is the case, it can be said that acceleration is inversely proportional to mass. This can be written as a a 1/m. This proves that the second part of Newton s law was correct: acceleration is inversely dependent on the mass. Having the relation between acceleration and force and acceleration and mass, naturally the final piece of the puzzle is the relation between force and mass. To analyze the two together, the two variables are put into a ratio of net force to mass of system in tables 9 and 10. Table 9. A table of the net force to mass of system ratio for experiment A. Ratio of Fnet to Mass of System (N/kg)

11 Table 10. A table of the net force to mass of system ratio for experiment B. Ratio of Fnet to Mass of System (N/kg) Upon careful inspection, it can be noted that the values for the ratios are highly similar to the values for the acceleration calculated in the results. Also, 1N is also 1kg*m/s 2 (2). Substituting this knowledge into the ratio (N/kg) we would find that the result is a unit of m/s 2. It just so happens that the unit for acceleration is also m/s 2. So, it is possible to say that the two are actually one and the same then. This would make sense since putting the two relations from before together would also yield the same indication, as shown below: a a F + a a 1/m = a a F/m which can be rewritten as a=f/m The evidence does not stop there. If a graph is plotted for acceleration against the reciprocal of mass (Figure 5) then, theoretically speaking, its slope should represent force since a/(1/m) = ma (which is the result of rearranging the formula: F = ma).

12 Acceleration Vs. Reciprocal of Mass 8 7 Acceleration (m/s^2) Reciprocal of Mass (kg) Figure 5. A graph of acceleration against the reciprocal of mass when force was kept constant. The slope of the graph is nearly exactly 3 which is the constant force used. Therefore, the slope of an acceleration-mass graph does represent the force. This in turn proves that F=ma holds true. To display that acceleration is the same as the net force to mass of system ratio and thus that a = f/m (or rearranged as F=ma), a graph can be set up (Figure 6).

13 Acceleration Vs. Force/Mass Ratio 8 7 Acceleration (m/s^2) Net Force/ Mass of System (N/kg) Figure 6. A graph of the similarity and relation of acceleration and the net force to mass of system ratio. All the points in the graph follow the line of best fit. However, they do not hit the line exactly. The reason for this is because the force to mass ratio is the theoretical acceleration, an acceleration without the interference of anything. The actual acceleration was subjected to friction against the surface of which the object ran on. Had there been dents and bumps on the table, the distance from the line would be greater even still. In the end, Newton s second law holds true; acceleration is directly dependent on force and inversely dependent on mass in which case the relation can be summarized as F=ma. It is interesting to note that Newton s second law of also corresponds to his first law which states that all objects will remain at equilibrium when all the force acting upon it is balanced as shown: Fnet = ma Fnet =m(0m/s 2 ) Fnet = 0N

14 If there is no acceleration, then the net force would also be zero. Therefore, the two laws correspond to one another. Finally, in every experiment, there is room for improvement and further verification. The primary possible source of error would be human error. Also, although negligible, the smoothness of the surface on which the object moved on adds to the percentage of error because of friction. Repetition of the experiment should be made because with each duplicate result, the findings become more solid. Also, doing the same experiment with different weights would also verify that Newton s second law is consistent. It is important to explain that Newton s second law of dynamics does play a role in the lives of people. For example, condominiums and skyscrapers would be a nightmare if elevators did not exist. Elevators rely heavily on Newton s law to operate safe and soundly. Had engineers not applied their physics, elevators may be going at ridiculous or even dangerous speeds. That is why elevators will indicate a maximum capacity to ensure smooth operation and must be maintained regularly to ensure everything works properly to produce the amount of force needed to get people where they need to go safely. This is just one example; there are many other applications of this law in the world around us. - Conclusion - In conclusion, the hypothesis proved to be correct. As proven in the results and discussion, as the force increases, the acceleration increases: a direct proportional relation. As mass increases, acceleration decreases: an inverse relation. The relationship between the three can be summarized as F = ma, which is also known as Newton s second law of dynamics.

15 - References - 1. Heimbecker, Brian & Nowikow, Igor. (2001) Physics Concepts and Connections. Toronto: Irwin Publishing. 2. Henderson, Tom. (n.d) Lesson 3: Newton s Second Law of Motion. Retrieved on April 8, 2007, from

Newton s Second Law. Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m.

Newton s Second Law. Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m. Newton s Second Law Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m. F net = ma (1) It should come as no surprise that this force produces an

More information

Section 4.9: Investigating Newton's Second Law of Motion

Section 4.9: Investigating Newton's Second Law of Motion Section 4.9: Investigating Newton's Second Law of Motion Recall: The first law of motion states that as long as the forces are balanced an object at rest stays at rest an object in motion stays in motion

More information

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector Name Date Period Newton s Second Law: Net Force and Acceleration Procedures: Newton s second law describes a relationship between the net force acting on an object and the objects acceleration. In determining

More information

Lab: Newton s Second Law

Lab: Newton s Second Law Ph4_ConstMass2ndLawLab Page 1 of 9 Lab: Newton s Second Law Constant Mass Equipment Needed Qty Equipment Needed Qty 1 Mass and Hanger Set (ME-8967) 1 Motion Sensor (CI-6742) 1 String (SE-8050) 1 m Balance

More information

Second Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law.

Second Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Second Law Objective In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Apparatus Table clamp, Vertical rod, Right-angle clamp, Horizontal

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Book page 44-47 NETON S LAS OF MOTION INERTIA Moving objects have inertia a property of all objects to resist a change in motion Mass: a measure of a body s inertia Two types of mass: - inertial mass m

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

K/U /39 T/I /50 C /102 A

K/U /39 T/I /50 C /102 A Name: Partner: K/U /39 T/I /50 C /102 A Purpose: What is the relationship between the magnitude of the force causing the acceleration and the frequency of revolution of an object in uniform circular motion?

More information

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why?

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why? AP Physics 1 Lesson 4.a Nature of Forces Outcomes Define force. State and explain Newton s first Law of Motion. Describe inertia and describe its relationship to mass. Draw free-body diagrams to represent

More information

Lecture 6 Force and Motion. Identifying Forces Free-body Diagram Newton s Second Law

Lecture 6 Force and Motion. Identifying Forces Free-body Diagram Newton s Second Law Lecture 6 Force and Motion Identifying Forces Free-body Diagram Newton s Second Law We are now moving on from the study of motion to studying what causes motion. Forces are what cause motion. Forces are

More information

Experiment P09: Acceleration of a Dynamics Cart I (Smart Pulley)

Experiment P09: Acceleration of a Dynamics Cart I (Smart Pulley) PASCO scientific Physics Lab Manual: P09-1 Experiment P09: (Smart Pulley) Concept Time SW Interface Macintosh file Windows file Newton s Laws 30 m 500 or 700 P09 Cart Acceleration 1 P09_CAR1.SWS EQUIPMENT

More information

The Questions. 1. What does Net Force mean? 2. What is Newton s 1 st Law?

The Questions. 1. What does Net Force mean? 2. What is Newton s 1 st Law? The Questions 1. What does Net Force mean? 2. What is Newton s 1 st Law? Force changes motion A force is a push or pull BUT IT IS THE NET FORCE THAT WE CARE ABOUT!! Net Force Net Force is the sum of the

More information

Lab #2: Newton s Second Law

Lab #2: Newton s Second Law Physics 144 Chowdary How Things Work Spring 2006 Name: Partners Name(s): Lab #2: Newton s Second Law Introduction In today s exploration, we will investigate the consequences of what is one of the single

More information

Forces and Newton s First Law

Forces and Newton s First Law Lyzinski Physics CRHS-South Forces and Newton s First Law Thus far, we have studied the motion of objects. The study of motion is known as. However, we were not interested, yet, about what caused the motion.

More information

Figure 5.1: Force is the only action that has the ability to change motion. Without force, the motion of an object cannot be started or changed.

Figure 5.1: Force is the only action that has the ability to change motion. Without force, the motion of an object cannot be started or changed. 5.1 Newton s First Law Sir Isaac Newton, an English physicist and mathematician, was one of the most brilliant scientists in history. Before the age of thirty he had made many important discoveries in

More information

Chapter 4 Newton s Laws

Chapter 4 Newton s Laws Chapter 4 Newton s Laws Isaac Newton 1642-1727 Some inventions and discoveries: 3 laws of motion Universal law of gravity Calculus Ideas on: Sound Light Thermodynamics Reflecting telescope In this chapter,

More information

Chapter 4: Newton s First Law

Chapter 4: Newton s First Law Text: Chapter 4 Think and Explain: 1-12 Think and Solve: 2 Chapter 4: Newton s First Law NAME: Vocabulary: force, Newton s 1st law, equilibrium, friction, inertia, kilogram, newton, law of inertia, mass,

More information

Properties of Motion. Force. Examples of Forces. Basics terms and concepts. Isaac Newton

Properties of Motion. Force. Examples of Forces. Basics terms and concepts. Isaac Newton Properties of Motion It took about 2500 years to different generations of philosophers, mathematicians and astronomers to understand Aristotle's theory of Natural Motion and Violent Motion: Falling bodies

More information

Name. VCE Physics Unit 3 Preparation Work

Name. VCE Physics Unit 3 Preparation Work Name. VCE Physics Unit 3 Preparation Work Transition into 2019 VCE Physics Unit 3+4 Units 3 and 4 include four core areas of study plus one detailed study. Unit 3: How do fields explain motion and electricity?

More information

SMJK YU HUA KAJANG MARKING SCHEME PEPERIKSAAN PERTENGAHAN TAHUN 2014 PHYSICS PAPER 3 FORM 4

SMJK YU HUA KAJANG MARKING SCHEME PEPERIKSAAN PERTENGAHAN TAHUN 2014 PHYSICS PAPER 3 FORM 4 SMJK YU HUA KAJANG MARKING SCHEME PEPERIKSAAN PERTENGAHAN TAHUN 04 PHYSICS PAPER 3 FORM 4 NO MARKING CRITERIA MARKS (a) (i) Able to state the manipulated variable - mass/m SUB (ii) Able to state the responding

More information

UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES. Objectives. To understand and be able to apply Newton s Third Law

UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES. Objectives. To understand and be able to apply Newton s Third Law UNIT 4 NEWTON S THIRD LAW, FORCE DIAGRAMS AND FORCES Objectives To understand and be able to apply Newton s Third Law To be able to determine the object that is exerting a particular force To understand

More information

Experiment 4. Newton s Second Law. Measure the frictional force on a body on a low-friction air track.

Experiment 4. Newton s Second Law. Measure the frictional force on a body on a low-friction air track. Experiment 4 Newton s Second Law 4.1 Objectives Test the validity of Newton s Second Law. Measure the frictional force on a body on a low-friction air track. 4.2 Introduction Sir Isaac Newton s three laws

More information

14300 Dynamics Carts w/o Hoops Teachers Instructions

14300 Dynamics Carts w/o Hoops Teachers Instructions 14300 Dynamics Carts w/o Hoops Teachers Instructions Required Accessories o (2) Table stops (wooden bars) o (4) C-Clamps o (2) Recording Timers (#15210 or #15215) o (5) Bricks or Books (or other identical

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

Force on a Free Body Lab 5.1

Force on a Free Body Lab 5.1 Purpose To investigate the relationship among mass, force, and acceleration Required Equipment Meter stick or meter tape Masking tape Timer Discussion In this experiment, you will investigate how increasing

More information

LAB 4: FORCE AND MOTION

LAB 4: FORCE AND MOTION Lab 4 - Force & Motion 37 Name Date Partners LAB 4: FORCE AND MOTION A vulgar Mechanik can practice what he has been taught or seen done, but if he is in an error he knows not how to find it out and correct

More information

Lesson 8: Work and Energy

Lesson 8: Work and Energy Name Period Lesson 8: Work and Energy 8.1 Experiment: What is Kinetic Energy? (a) Set up the cart, meter stick, pulley, hanging mass, and tape as you did in Lesson 5.1. You will examine the distance and

More information

SUPERCHARGED SCIENCE. Unit 2: Motion.

SUPERCHARGED SCIENCE. Unit 2: Motion. SUPERCHARGED SCIENCE Unit 2: Motion www.sciencelearningspace.com Appropriate for Grades: Lesson 1 (K-12), Lesson 2 (K-12) Duration: 6-12 hours, depending on how many activities you do! We re going to study

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Physics 2.1 & 2.2 & 2.3 & 2.4 - Matters and Forces Mass and Weight You need to know what mass and weight are. Mass is the measure of amount of matter in

More information

Final Exam Review Answers

Final Exam Review Answers Weight (Pounds) Final Exam Review Answers Questions 1-8 are based on the following information: A student sets out to lose some weight. He made a graph of his weight loss over a ten week period. 180 Weight

More information

Newton s Laws Review

Newton s Laws Review Newton s Laws Review THE SCIENCES OF MOTION Prior to this unit, we had been studying, which is the science of describing motion with words, numbers, pictures, and symbols, and no attention was given to

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

ConcepTest 3.7a Punts I

ConcepTest 3.7a Punts I ConcepTest 3.7a Punts I Which of the 3 punts has the longest hang time? 1 2 3 4) all have the same hang time h ConcepTest 3.7a Punts I Which of the 3 punts has the longest hang time? 1 2 3 4) all have

More information

Physics 12 Unit 2: Vector Dynamics

Physics 12 Unit 2: Vector Dynamics 1 Physics 12 Unit 2: Vector Dynamics In this unit you will extend your study of forces. In particular, we will examine force as a vector quantity; this will involve solving problems where forces must be

More information

SPH3U Practice Test. True/False Indicate whether the statement is true or false.

SPH3U Practice Test. True/False Indicate whether the statement is true or false. True/False Indicate whether the statement is true or false. 1. The reason your head feels like it jerks backward when pulling away from a stop sign is best explained by Newton's First Law. 2. An airplane

More information

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Module Topic 8.4 Moving About 8.4.C Forces Name Date Set 1 Calculating net force 1 A trolley was moved to the right by a force applied to a cord attached

More information

Testing Newton s 2nd Law

Testing Newton s 2nd Law Testing Newton s 2nd Law Goal: To test Newton s 2nd law (ΣF = ma) and investigate the relationship between force, mass, and acceleration for objects. Lab Preparation To prepare for this lab you will want

More information

CHAPTER 2. FORCE and Motion. CHAPTER s Objectives

CHAPTER 2. FORCE and Motion. CHAPTER s Objectives 19 CHAPTER 2 FORCE and Motion CHAPTER s Objectives To define a force To understand the relation between force and motion In chapter 1, we understood that the Greek philosopher Aristotle was the first who

More information

CHAPTER 2: FORCES AND MOTION

CHAPTER 2: FORCES AND MOTION CHAPTER 2: FORCES AND MOTION 2.1 Linear Motion Linear Motion is motion in a straight line with constant acceleration. Classification Scalar Vector Physical quantity with Magnitude only Magnitude and direction

More information

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds? PHYSICS FINAL EXAM REVIEW FIRST SEMESTER (01/2017) UNIT 1 Motion P2.1 A Calculate the average speed of an object using the change of position and elapsed time. P2.1B Represent the velocities for linear

More information

Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion

Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion Universiti Teknologi MARA Fakulti Sains Gunaan Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion PHY406: A Physical Science Activity Name: HP: Lab # 5: The goal of today s activity

More information

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion Motion and Forces Sir Isaac Newton (1643 1727) One of the world s greatest scientists Developed the 3 Laws of Motion Newton s Laws of Motion 1 st Law Law of Inertia 2 nd Law Force = Mass x Acceleration

More information

9/5/17. Aristotle on Motion. Galileo's Concept of Inertia. Galileo's Concept of Inertia

9/5/17. Aristotle on Motion. Galileo's Concept of Inertia. Galileo's Concept of Inertia Aristotle on Motion Aristotle classified motion into two kinds: Natural motion motion that is straight up or straight down Violent motion imposed motion resulting from an external push or pull Galileo's

More information

Atwood s Machine: Applying Newton s Second Law (approximately 2 hr.) (10/27/15)

Atwood s Machine: Applying Newton s Second Law (approximately 2 hr.) (10/27/15) Atwood s Machine: Applying Newton s Second Law (approximately hr.) (0/7/5) Introduction A physical law is a statement of one of the fundamental theoretical principles that underlie our understanding of

More information

The purpose of this laboratory exercise is to verify Newton s second law.

The purpose of this laboratory exercise is to verify Newton s second law. Newton s Second Law 3-1 Newton s Second Law INTRODUCTION Sir Isaac Newton 1 put forth many important ideas in his famous book The Principia. His three laws of motion are the best known of these. The first

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

Chapter 4 Force and Motion

Chapter 4 Force and Motion Chapter 4 Force and Motion Units of Chapter 4 The Concepts of Force and Net Force Inertia and Newton s First Law of Motion Newton s Second Law of Motion Newton s Third Law of Motion More on Newton s Laws:

More information

AP PHYSICS 1 UNIT 3 PRACTICE TEST

AP PHYSICS 1 UNIT 3 PRACTICE TEST AP PHYSICS 1 UNIT 3 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Show your work for partial credit. Circle or box your answers. Include the correct units and the correct number of significant figures in your

More information

Phys 1401: General Physics I

Phys 1401: General Physics I 1. (0 Points) What course is this? a. PHYS 1401 b. PHYS 1402 c. PHYS 2425 d. PHYS 2426 2. (0 Points) Which exam is this? a. Exam 1 b. Exam 2 c. Final Exam 3. (0 Points) What version of the exam is this?

More information

AP PHYSICS 1. Energy 2016 EDITION

AP PHYSICS 1. Energy 2016 EDITION AP PHYSICS 1 Energy 2016 EDITION Copyright 2016 National Math + Initiative, Dallas, Texas. All rights reserved. Visit us online at www.nms.org. 1 Pre-Assessment Questions Consider a system which could

More information

Page 1. Name:

Page 1. Name: Name: 3834-1 - Page 1 1) If a woman runs 100 meters north and then 70 meters south, her total displacement is A) 170 m south B) 170 m north C) 30 m south D) 30 m north 2) The graph below represents the

More information

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/

https://njctl.org/courses/science/ap-physics-c-mechanics/attachments/summerassignment-3/ AP Physics C Summer Assignment 2017 1. Complete the problem set that is online, entitled, AP C Physics C Summer Assignment 2017. I also gave you a copy of the problem set. You may work in groups as a matter

More information

Chapter 4. Forces in One Dimension

Chapter 4. Forces in One Dimension Chapter 4 Forces in One Dimension Chapter 4 Forces in One Dimension In this chapter you will: *VD Note Use Newton s laws to solve problems. Determine the magnitude and direction of the net force that causes

More information

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that moving objects eventually stop only because of a force

More information

Jamie White Partner: Victor Yu Section 5 November 19, 2014 Modeling the Relationship between Bungee Cord Length and Displacement

Jamie White Partner: Victor Yu Section 5 November 19, 2014 Modeling the Relationship between Bungee Cord Length and Displacement Jamie White Partner: Victor Yu Section 5 November 19, 2014 Modeling the Relationship between Bungee Cord Length and Displacement 1. Introduction This experiment is the second in a pair of experiments leading

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

PHY 123 Lab 4 The Atwood Machine

PHY 123 Lab 4 The Atwood Machine PHY 123 Lab 4 The Atwood Machine The purpose of this lab is to study Newton s second law using an Atwood s machine, and to apply the law to determine the acceleration due to gravity experimentally. This

More information

MOTION IN THE SOLAR SYSTEM ENGAGE, EXPLORE, EXPLAIN

MOTION IN THE SOLAR SYSTEM ENGAGE, EXPLORE, EXPLAIN MOTION IN THE SOLAR SYSTEM ENGAGE, EXPLORE, EXPLAIN ENGAGE THE ATTRACTION TANGO THE ATTRACTION TANGO In your science journal, on the next clean page, title the page with The Attraction Tango. In your group,

More information

Conceptual Physical Science

Conceptual Physical Science Hewitt/Suchocki/Hewitt Conceptual Physical Science Fourth Edition Chapter 1: PATTERNS OF MOTION AND EQUILIBRIUM This lecture will help you understand: Aristotle on Motion Galileo s Concept of Inertia Mass

More information

Newton s Second Law Thou rulest the power of the sea: and appeasest the motion of the waves thereof. Psalms 88:10

Newton s Second Law Thou rulest the power of the sea: and appeasest the motion of the waves thereof. Psalms 88:10 Newton s Second Law Thou rulest the power of the sea: and appeasest the motion of the waves thereof. Psalms 88:10 Introduction Newton developed a second law that further clarified the force, mass and acceleration

More information

Topic: Force PHYSICS 231

Topic: Force PHYSICS 231 Topic: Force PHYSICS 231 Current Assignments Homework Set 2 due this Thursday, Jan 27, 11 pm Reading for next week: Chapters 10.1-6,10.10,8.3 2/1/11 Physics 231 Spring 2011 2 Key Concepts: Force Free body

More information

Review: Newton s Laws

Review: Newton s Laws More force was needed to stop the rock Review: Newton s Laws F r 1 F r F r 3 F r 4 2 Newton s First Law The velocity of an object does not change unless a force acts on the object Newton s Second Law:

More information

5 In a factory, regular stacks, each containing 150 pieces of paper, are measured using a pair of vernier calipers. The reading of one stack is shown.

5 In a factory, regular stacks, each containing 150 pieces of paper, are measured using a pair of vernier calipers. The reading of one stack is shown. PURE PHYSICS MECHANICS (PART I) 1 State the symbol of the SI unit for the following physical quantities. (a) Temperature (b) Density (c) Weight (d) Acceleration 2 For each of the following formula, derive

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

Semester 1 Final Exam Review Answers

Semester 1 Final Exam Review Answers Position (m) Mass (g) Semester 1 Final Exam Review Answers A physics student was interested in finding the mass of a penny. To do so she grabbed a bunch of pennies and placed them on a scale. She gathered

More information

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws.

2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. Catalyst 1.What is the unit for force? Newton (N) 2. What is the force weight of a 45 kg desk? 3. Give a scenario example for each of Newton s Laws. HANDS UP!! 441 N 4. What is net force? Give an example.

More information

Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor)

Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor) Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P08 Constant Force.DS P11 Constant Force P11_CONF.SWS

More information

SDI LAB #7: NEWTON S LAWS REVISITED

SDI LAB #7: NEWTON S LAWS REVISITED SDI LAB #7: NEWTON S LAWS REVISITED NAME Last (Print Clearly) First (Print Clearly) ID Number LAB SECTION LAB TABLE POSITION I. Introduction... 1 II. Stationary Cart... 1 III. Cart in Motion... 6 I. INTRODUCTION

More information

EXPERIMENT 11 The Spring Hooke s Law and Oscillations

EXPERIMENT 11 The Spring Hooke s Law and Oscillations Objectives EXPERIMENT 11 The Spring Hooke s Law and Oscillations To investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately

More information

(What is the lesson for you, as students? Ask questions! The sooner, the better!)

(What is the lesson for you, as students? Ask questions! The sooner, the better!) The fatal pedagogical error is to throw answers, like stones, at the heads of those who have not yet asked the questions. Paul Tillich, American philosopher/theologian (What is the lesson for you, as students?

More information

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I

PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I PHYSICS 289 Experiment 1 Fall 2006 SIMPLE HARMONIC MOTION I (A short report is required for this lab. Just fill in the worksheet, make the graphs, and provide answers to the questions. Be sure to include

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

Chapter 4. Answer Key. Physics Lab Sample Data. Mini Lab Worksheet. Tug-of-War Challenge. b. Since the rocket takes off from the ground, d i

Chapter 4. Answer Key. Physics Lab Sample Data. Mini Lab Worksheet. Tug-of-War Challenge. b. Since the rocket takes off from the ground, d i Chapter 3 continued b. Since the rocket takes off from the ground, d i 0.0 m, and at its highest point, v f 0.0 m/s. v f v i a t f (d f d i ) 0 v i a t f d f v i d f a t f (450 m/s) ( 9.80 m/s )(4.6 s)

More information

PHYSICS LAB Experiment 6 Fall 2004 WORK AND ENERGY GRAVITY

PHYSICS LAB Experiment 6 Fall 2004 WORK AND ENERGY GRAVITY PHYSICS 183 - LAB Experiment 6 Fall 004 WORK AND ENERGY GRAVITY In this experiment we will study the effects of the work-energy theorem, which states that the change in the kinetic energy (1/Mv ) of an

More information

they do on Earth so the scientists can predict gravity forces in between the two planets. C. There is no gravity force in the space between

they do on Earth so the scientists can predict gravity forces in between the two planets. C. There is no gravity force in the space between Miscellaneous 1. Scientists use Newton s law of universal gravitation to send probes from Earth to Mars. Which statement best explains why this works? A. Earth and Mars have about the same mass so the

More information

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 1 Yanbu University College General Studies Department Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions 2 Chapter 2 Worksheet Part 1 Matching: Match the definitions with the given concepts. 1.

More information

Activity P10: Atwood's Machine (Photogate/Pulley System)

Activity P10: Atwood's Machine (Photogate/Pulley System) Name Class Date Activity P10: Atwood's Machine (Photogate/Pulley System) Equipment Needed Qty Equipment Needed Qty Photogate/Pulley System (ME-6838) 1 String (SE-8050) 1 Mass and Hanger Set (ME-8967) 1

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES 83 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES OVERVIEW And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly

More information

1. What does the catapult exert on or apply to the plane?

1. What does the catapult exert on or apply to the plane? Unit 1: Forces and Motion Lesson 2.b Newton s Second Law of Motion Newton s laws predict the motion of most objects. As a basis for understanding this concept: Students know how to apply the law F = ma

More information

for any object. Note that we use letter, m g, meaning gravitational

for any object. Note that we use letter, m g, meaning gravitational Lecture 4. orces, Newton's Second Law Last time we have started our discussion of Newtonian Mechanics and formulated Newton s laws. Today we shall closely look at the statement of the second law and consider

More information

Forces and Newton s Second Law

Forces and Newton s Second Law Forces and Newton s Second Law Goals and Introduction Newton s laws of motion describe several possible effects of forces acting upon objects. In particular, Newton s second law of motion says that when

More information

Materials Needed: Procedure:

Materials Needed: Procedure: How a force causes movement? What is Newton s first law of motion? Newton s first law of motion The ingenious English mathematician and physicist Sir Isaac Newton (164-177) was the first to fully understand

More information

Physics 11 Course Plan

Physics 11 Course Plan Physics 11 Course Plan UNITS Chapters in your Textbook Approximate Number of Classes A Significant figures, scientific notation, 2 5 and unit conversions B Kinematics (motion) 3,4 17 C Dynamics (forces)

More information

Force, Motion, and Sound

Force, Motion, and Sound Force, Motion, and Sound Physics 160, Spring 2006 Galileo (1564-1642) 1642) Isaac Newton (1643-1727) 1727) Uniform Motion x = 1cm 2cm 3cm 4cm 5cm 6cm 7cm 8cm O t = 1s 2s 3s 4s 5s 6s 7s 8s This picture

More information

Factors That Affect Acceleration. Inquiry Investigation Laboratory Report

Factors That Affect Acceleration. Inquiry Investigation Laboratory Report Section 1: Introduction and Guiding Question Abstract Factors That Affect Acceleration Inquiry Investigation Laboratory Report One can observe the motion of all different types of objects throughout everyday

More information

Motion on a linear air track

Motion on a linear air track Motion on a linear air track Introduction During the early part of the 17 th century, Galileo experimentally examined the concept of acceleration. One of his goals was to learn more about freely falling

More information

Monday, September 22 nd

Monday, September 22 nd Monday, September 22 nd Entry Task Schedule: Force & Inertia Notes From your notes, what are the three types of forces described in your textbook? Objective: I will explain that inertia is a measure of

More information

EXPERIMENT 2 Acceleration of Gravity

EXPERIMENT 2 Acceleration of Gravity Name Date: Course number: Laboratory Section: Partners Names: Last Revised on Februrary 3, 08 Grade: EXPERIENT Acceleration of Gravity. Pre-Laboratory Work [0 pts]. You have just completed the first part

More information

14010 Force Table Student Guide

14010 Force Table Student Guide Recommended Accessories: Scissors Level (to adjust the legs of the apparatus) Blank paper or graph paper Pencil Ruler Protractor Calculator Optional Accessories: Paper clips 14010 Force Table Student Guide

More information

Inclined Plane Dynamics Set

Inclined Plane Dynamics Set Instruction Manual 012-10874A *012-10874* Inclined Plane Dynamics Set ME-6966 Table of Contents Included Equipment..................................................... 3 Related Equipment.....................................................

More information

Forces I. Newtons Laws

Forces I. Newtons Laws Forces I Newtons Laws Kinematics The study of how objects move Dynamics The study of why objects move Newton s Laws and Forces What is force? What are they? Force A push or a pull Symbol is F Unit is N

More information

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis The Laws of Motion The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis Models using Newton s Second Law Forces

More information

Acceleration and Force: I

Acceleration and Force: I Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Acceleration and Force: I Name Partners Pre-Lab You are required to finish this section before coming to the lab, which will be checked

More information

Kinematics and Dynamics

Kinematics and Dynamics AP PHYS 1 Test Review Kinematics and Dynamics Name: Other Useful Site: http://www.aplusphysics.com/ap1/ap1- supp.html 2015-16 AP Physics: Kinematics Study Guide The study guide will help you review all

More information

Chapter 5. The Laws of Motion

Chapter 5. The Laws of Motion Chapter 5 The Laws of Motion The Laws of Motion The description of an object in motion included its position, velocity, and acceleration. There was no consideration of what might influence that motion.

More information

Aristotle, Galileo, and Newton It took about 2000 years to develop the modern understanding of the relationships between force and motion.

Aristotle, Galileo, and Newton It took about 2000 years to develop the modern understanding of the relationships between force and motion. Aristotle, Galileo, and Newton It took about 2000 years to develop the modern understanding of the relationships between force and motion. Aristotle, Galileo, and Newton Aristotle Aristotle made scientific

More information

Supplemental Activity: Vectors and Forces

Supplemental Activity: Vectors and Forces Supplemental Activity: Vectors and Forces Objective: To use a force table to test equilibrium conditions. Required Equipment: Force Table, Pasco Mass and Hanger Set, String, Ruler, Polar Graph Paper, Protractor,

More information

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( )

WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton ( ) AP PHYSICS 1 WS-CH-4 Motion and Force Show all your work and equations used. Isaac Newton (1643-1727) Isaac Newton was the greatest English mathematician of his generation. He laid the foundation for differential

More information

1. The property of matter that causes an object to resist changes in its state of motion is called:

1. The property of matter that causes an object to resist changes in its state of motion is called: SPH3U Exa Review 1. The property of atter that causes an object to resist changes in its state of otion is called: A. friction B. inertia C. the noral force D. tension 1. The property of atter that causes

More information

Chapter 3 Laws of Motion

Chapter 3 Laws of Motion Conceptual Physics/ PEP Name: Date: Chapter 3 Laws of Motion Section Review 3.1 1. State Newton s first law in your own words. An object at rest will stay at rest until an outside force acts on it to move.

More information