Cellular Automata Evolution for Pattern Recognition

Size: px
Start display at page:

Download "Cellular Automata Evolution for Pattern Recognition"

Transcription

1 Cellular Automata Evolution for Pattern Recognition Pradipta Maji Center for Soft Computing Research Indian Statistical Institute, Kolkata, , INDIA Under the supervision of Prof. P Pal Chaudhuri Prof. Debesh K Das Professor Emeritus Professor Dept. of Comp. Sci. & Tech. Dept. of Comp. Sci. & Engg. Bengal Engineering College (DU), Shibpur, INDIA Jadavpur University, INDIA

2 Introduction Cellular Automata (CA) promising research area Artificial Intelligence (AI) Artificial Life (ALife) Considerable research in modeling tool image processing language recognition pattern recognition VLSI testing Cellular Automata (CA) learns association from a set of examples apply this knowledge-base to handle unseen cases such associations effective for classifying patterns

3 Contribution of the Thesis Analysis and synthesis of linear boolean CA (MACA) CA with only XOR logic application of MACA in pattern recognition data mining image compression fault diagnosis of electronic circuit Analysis and synthesis of non-linear boolean CA (GMACA) CA with all possible logic application of non-linear CA in pattern recognition Analysis and synthesis of fuzzy CA (FMACA) CA with fuzzy logic application of fuzzy CA in pattern recognition

4 Cellular Automata (CA) A special type of computing model 50 s - J Von Neumann 80 s - S. Wolfram A CA displays three basic characteristics Simplicity: Basic unit of CA cell is simple Vast parallelism: CA achieves parallelism on a scale larger than massively parallel computers Locality: CA characterized by local connectivity of its cell all interactions take place on a purely local basis a cell can only communicate with its neighboring cells interconnection links usually carry only a small amount of information no cell has a global view of the entire system

5 Cellular Automata (CA) A computational model with discrete cells updated synchronously Uniform CA, hybrid / non-uniform CA, null boundary CA, periodic boundary CA Each cell can have 256 different rules state 3-neighborhood CA cell Clock Input output 0/1 From left neighbor Combinati onal Logic From right neighbor

6 For 2nd Cell Rule 230 PS NS CA State Transition

7 Different Types of CA Linear CA Based on XOR logic Total 7 rules (60, 90, 102, 150, 170, 204, 240) Can be expressed through matrix (T), characteristic polynomial Next state of the CA cell P(t+1) = T. P(t) Additive CA Based on XOR and XNOR logic Total 14 rules (linear rules + 195,165,153,105,85,51,15) Can be expressed through matrix, inversion vector, characteristic polynomial The next state of the CA cell P(t+1) = T. P(t) + F T = F =

8 Additive Cellular Automata XOR Logic XNOR Logic Rule 60 : q I (t+1) = q I-1 (t) q I (t) Rule 90 : q I (t+1) = q I-1 (t) q I+1 (t) Rule 195 : q I (t+1) = q I-1 (t) q I (t) Rule 165 : q I (t+1) = q I-1 (t) q I+1 (t) Rule 102 : q I (t+1) = q I (t) q I+1 (t) Rule 153 : q I (t+1) = q I (t) q I+1 (t) Rule 150 : q I (t+1) = q I-1 (t) q I (t) q I-1 (t) Rule 105 : q I (t+1) = q I-1 (t) q I (t) q I-1 (t) Rule 170 : q I (t+1) = q I-1 (t) Rule 204 : q I (t+1) = q I (t) Rule 85 : q I (t+1) = q I-1 (t) Rule 51 : q I (t+1) = q I (t) Rule 240 : q I (t+1) = q I+1 (t) Rule 15 : q I (t+1) = q I+1 (t)

9 CA - State Transition Diagram Group CA Non-group Cellular Automata Linear Non-linear Fuzzy 0 1 Non-group CA Associative Memory MACA GMACA FMACA Perform pattern recognition task

10 Pattern Recognition Pattern Recognition/Classification most important foundation stone of knowledge extraction methodology demands automatic identification of patterns of interest (objects, images) from its background (shapes, forms, outlines, etc) conventional approach machine compares given input pattern with each of stored patterns identifies the closest match time to recognize the closest match O(k) recognition slow Associative Memory Entire state space - divided Transient into some pivotal points Transient Transient 1. MACA (linear) 2. GMACA (non-linear) 3. FMACA (fuzzy) States close to pivot - associated with that pivot Time to recognize a pattern - Independent of number of stored patterns

11 Multiple Attractor CA (MACA) Employs linear CA rules State with self loop attractor Transient states and attractor form attractor basin Behaves as an associative memory Forms natural clusters

12 Multiple Attractor CA (MACA) Next state: P(t+1) = T. P(t) Characteristic Polynomial: X (n-m) (1+X) m where m=log 2 (k) n denotes number of CA cell k denotes number of attractor basins Depth d of MACA number of edges between a non-reachable state and an attractor state Attractor of a basin: P(t+d) = T d P(t) m-bit positions pseudo-exhaustive: extract PEF (pseudo-exhaustive field) from attractor state Problem: Complexity of identification of attractor basin is O(n 3 ) Exponential search space Redundant solutions

13 Chromosome of Genetic Algorithm T = Rule vector Matrix Characteristic polynomial x 3 (1+x) 2 Elementary divisors x 3 (1+x) 2 x 2 (1+x) (1+x) x x 2 (1+x) ( 1+x) x

14 Dependency Vector/Dependency String T = T1 = Characteristic polynomial x 2 (1+x) Characteristic polynomial x 3 (1+x) 2 T2 = Characteristic polynomial x(1+x) Matrix T is obtained from T1 and T2 by Block Diagonal Method

15 Dependency Vector/Dependency String T d = Dependency Vector DV1 = < > Dependency String DS = < > < 1 0 > Dependency String DS = < > T1 d = T2 d = Dependency Vector DV1 = < 1 0 >

16 Dependency Vector/Dependency String Zero basin of T1 + Zero basin of T Zero basin of T1 + Non-zero basin of T2 --- Non-zero basin of T1 + Zero basin of T Non-zero basin of T1 + Non-zero basin of T2 --- PEF Bits DV1 contributes 1 st PEF Bits DV2 contributes 2 nd PEF Bits PEF = [PEF1] [PEF2] = [DS.P] = [DV1.P1] [DV2.P2] P = [ ] DS = [ ] PEF = [PEF1][PEF2] = [<0 0 1><1 1 1>][<1 0><1 1>] = 1 1

17 Matrix/Rule from Dependency String 0 in DV T1 = [ 0 ] 1 in DV T2 = [ 1 ] 11 in DV T3 = [T1] in DV T4 = DS = < > [T1] DV = < > DV = < > T1 = T2 = T = CA Rule Vector <102, 102, 150, 0, 102, 170, 0>

18 Dependency Vector/Dependency String Characteristic polynomial x 4 (1+x) T1 = T2 = T3 = <170, 0, 150, 0, 240> <170, 0, 150, 0, 240> <170, 0, 150, 0, 240> Dependency Vector < > Identification of attractor basins in O(n) Reduction of search space

19 Image Compression Block diagram of codebook generation scheme Training Images Spatial Domain High Compression ratio Acceptable image quality 16 X 16 Set 8 X 8 Set 4 X 4 Set Applications - Human Portraits TSVQ 16 X 16 Codebook 8 X 8 Codebook 4 X 4 Codebook

20 Tree-Structured Vector Quantization N X N Set S1, S2, S3, S4 Cluster 1 Cluster 2 S1, S2 S3, S4 Centroid 1 Centroid 2 S1 S2 S3 S4 Clusters and centroids generation using Tree-Structured Vector Quantization (TSVQ) Logical structure of multi-class classifier equivalent to PTSVQ

21 MACA Based Two Stage Classifier Input Layer Classifier 1 Hidden Layer Classifier 2 Output Layer Classifier 1: n-bit DS consists of m DVs Classifier 2: m-bit DV No of Bits (n) Value of PEF (m) Memory Size Ratio Software Hardware MSR (software) = (n+m) / (n+2 m ) MSR (hardware) = (3n+3m-4) / (3n-2+2 m )

22 Image Compression Original Decompressed Execution Time (in milli seconds) Block Size Full Search TSVQ CA 4 X compression 96.43%, PSNR X X compression 95.66%, PSNR High compression Acceptable image quality Higher speed

23 MACA based Tree-Structured Classifier Selection of MACA: Diversity of i th attractor basin (node): M i = max{n ij } / j N ij where N ij - number of tuples of class j covered by i th attractor basin M i 1, i th attractor indicates class j for which N ij is maximum Figure of Merit: FM = 1/k i M i where k denotes number of attractor basins MACA 1 MACA 2 II IV MACA 3 MACA 4 I III IV I II III I II IV

24 Fault Diagnosis of Digital Circuit Fault Injection Diagnosis of an example CUT EC Set of Test Vect ors Module 1 Module 2 CUT EC S A Signature Set Pattern Classifier MACA Fault Injection CUT (n,p) C1908(25,1801) # Partition 6 MACA Dictionary Memory C6288(32,7648) C7552(108,7053) S4863(16,4123) S3271(14,2585) S6669(55,6358)

25 Fault Diagnosis of Analog Circuit OTA1 OTA2 Component OTA1 # Samples 8970 Detected 8962 Not detected 8 SR V in C1 V out C2 OTA2 C C Component # Samples Detected Not detected SR OTA3 OTA1 OTA2 OTA V in OTA1 X1 OTA2 X2 C1 C X1: Output of BPF X2: Output of LPF

26 Performance on STATLOG Dataset Classification Accuracy (%) Memory Overhead (Kbyte) Dataset Bayesian C4.5 MLP MACA Bayesian C4.5 MLP MACA Australian Diabetes DNA German Heart Satimage Shuttle Letter Vehicle Segment

27 MACATree VS C4.5 on Statlog Dataset STATLOG Dataset Classifn. Accuracy C4.5 MACA Memory Overhead C4.5 MACA No of Nodes C4.5 MACA Retrieval Time(ms) C4.5 MACA Australian Diabetes DNA German Heart Satimage Shuttle Letter Vehicle Segment Comparable classification accuracy Low memory overhead Lesser number of intermediate nodes Lesser retrieval time

28 Conclusion Advantages: Explore computational capability of MACA Introduction of Dependency Vector (DV)/String (DS) to characterize MACA Reduction of complexity to identify attractor basins from O(n 3 ) to O(n) Elegant evolutionary algorithm combination of DV/DS and GA MACA based tree-structured pattern classifier Application of MACA in Classification image compression fault diagnosis of electronic circuits Codon to amino acid mapping, S-box of AES Problems: Linear MACA employs only XOR logic, functionally incomplete Distribution of each attractor basin is even Can handle only binary patterns Solutions: Nonlinear MACA (GMACA) Fuzzy MACA (FMACA)

29 Generalized MACA (GMACA) Employs non-linear hybrid rules with all possible logic Cycle or attractor length greater than 1 Can perform pattern recognition task Behaves as an associative memory Rule vector: <202,168,218,42> P1 attractor-1 P2 attractor

30 Basins of Attraction (Theoretical) n = 50 Error correcting capability at single bit noise k = 10 Error correcting capability at multiple bit noise

31 Distribution of CA Rule (Theoretical) Degree of Homogeneity DH = 1- r/4 where r = number of 1 s of a rule More homogeneous less probability of occurrence

32 Synthesis of GMACA Phase I: Random Generation of a directed sub-graph Phase II: State transition table from sub-graph Phase III: GMACA rule vector from State transition table For 2nd Cell: Rule 232 Basin Basin g1 Present State Basin Next State Present State Basin Next State g2

33 Resolution of Collision: Genetic Algorithm if n 0 = n 1 ; next state is either `0 or `1 if n 0 > n 1 ; next state is `0 if n 0 < n 1 ; next state is `1 where n 0 = Occurrence of state `0 for a configuration n 1 = Occurrence of state `1 g1 g2.. gk Example chromosome format each g x a basin of a pattern P x k numbers of genes in a chromosome Each gene - a single cycle directed sub-graph with p number of nodes, where p = 1 + n

34 Maximum Permissible Noise/Height Minimum value of maximum permissible height h max = 2 Minimum value of maximum permissible noise r max = 1

35 Performance Analysis of GMACA Higher memorizing capacity than Hopfield network Cost of computation is constant depends on transient length of CA

36 Basins of Attraction (Experimental) n = 50 k = 10

37 Distribution of CA Rule (Experimental)

38 Conclusion Advantages: Explore computational capability of non-linear MACA Characterization of basins of attraction of GMACA Fundamental results to characterize GMACA rules Reverse engineering method to synthesize GMACA Combination of reverse engineering method and GA Higher memorizing capacity than Hopfield network Problems: Can handle only binary patterns Solutions: Fuzzy MACA (FMACA)

39 Fuzzy Cellular Automata (FCA) A linear array of cells Each cell assumes a state - a rational value in [0, 1] Combines both fuzzy logic and Cellular Automata Out of 256 rules, 16 rules are OR and NOR rules (including 0 and 255) Boolean Function Opeartion FCA Operation OR (a + b) min{1, (a + b)} AND (a.b) (a.b) NOT (~a) (1 a)

40 Fuzzy Cellular Automata (FCA) OR Logic NOR Logic Rule 170 : q I (t+1) = q I-1 (t) Rule 204 : q I (t+1) = q I (t) Rule 85 : q I (t+1) = q I-1 (t) Rule 51 : q I (t+1) = q I (t) Rule 238 : q I (t+1) = q I (t) + q I+1 (t) Rule 17 : q I (t+1) = q I (t) + q I+1 (t) Rule 240 : q I (t+1) = q I+1 (t) Rule 15 : q I (t+1) = q I+1 (t) Rule 250 : q I (t+1) = q I-1 (t) + q I+1 (t) Rule 252 : q I (t+1) = q I-1 (t) + q I (t) Rule 5 : q I (t+1) = q I-1 (t) + q I+1 (t) Rule 3 : q I (t+1) = q I-1 (t) + q I (t) Rule 254 : q I (t+1) = q I-1 (t) + q I (t) + q I+1 (t) Rule 1 : q I (t+1) = q I-1 (t) + q I (t) + q I+1 (t)

41 Fuzzy Cellular Automata (FCA) 16 OR and NOR rules can be represented by n x n matrix T and an n dimensional binary vector F S i (t) represents the state of i th cell at t th time instant S i (t+1) = F i -min{1, Σ j T ij.s j (t)} where T 1 if next state of ij = ith cell dependents on j th cell 0 otherwise F = Inversion vector, contains 1 where NOR rule is applied cell null boundary hybrid FCA <238,1,238,3> T = F =

42 Fuzzy Multiple Attractor CA (FMACA)

43 Fuzzy Multiple Attractor CA (FMACA) Dependency Vector (DV) corresponding to matrix Derived Complement Vector (DCV) corresponding to inversion vector Pivot cell (PC) represents an attractor basin uniquely State of Pivot Cell (PC) of attractor of the basin where a state belongs q m = min {1, Σ j DCV j -DV j.s j (t) } Size of attractor basins equal as well as unequal Matrix, inversion vector from DV/DCV

44 Fuzzy Multiple Attractor CA (FMACA) T = F = 0 DV = 1 DCV =

45 Fuzzy Multiple Attractor CA (FMACA) T = F = 1 DV = 1 DCV =

46 FMACA based Tree-Structured Classifier FMACA based tree-structured pattern classifier Can handle binary as well as real valued datasets Provides equal and unequal size of attractor basins Combination of GA and DV/DCV FMACA 1 FMACA 2 II IV FMACA 3 FMACA 4 I III IV I II III I II IV

47 Experimental Setup Randomly generate K number of centroids Around each centroid, generate t number of tuples 50 % patterns are taken for training 50 % patterns are taken for testing A 1 D min A 2 d max A K

48 Performance Analysis of FMACA Generalization of FMACA tree Dataset Depth Training Accuracy Testing Accuracy Breadth Depth: Number of layers from root to leaf Breadth: Number of intermediate nodes Can generalize dataset irrespective of classes, tuples, attributes (n=5,k=2,t=4000) Attributes (n) Size (t) No of Classes FMACA C Higher classification accuracy compared to C

49 Performance Analysis of FMACA Generation Time (ms) Retrieval Time (ms) Dataset FMACA C4.5 FMACA C4.5 (n=5,k=2,t=2000) High generation time - but, one time cost Lower retrieval time compared to C4.5 (n=5,k=2,t=20000) (n=6,k=2,t=2000) (n=6,k=2,t=20000) Attributes (n) Size (t) No of Classes FMACA C Lower memory overhead compared to C

50 Performance on STATLOG Dataset Classification Accuracy (%) Dataset FMACA MACA DNA Satimage Shuttle Letter Number of CA cells FMACA MACA No of Nodes of Tree FMACA MACA Memory Overhead Retrieval Time (ms) Comparable accuracy Lesser CA cells Lesser memory overhead Lesser retrieval time Dataset DNA Satimage Shuttle Letter FMACA MACA FMACA MACA

51 Conclusion Introduction of fuzzy CA in pattern recognition New mathematical tools Dependency matrix, Dependency vector Complement vector, Derived complement vector Reduction of complexity to identify attractors from O(n 3 ) to O(n) Both equal and unequal size of attractor basins Movement of patterns from one to another basin Reduction of search space Elegant evolutionary algorithm combination of DV/DCV and GA FMACA based tree-structured pattern classifier

52 Future Extensions Applications in pattern clustering, mix-mode learning Theoretical analysis of memorizing capacity of non-linear CA Combination of fuzzy set and fuzzy CA 1-D CA to 2-D CA Development of hybrid systems using CA CA + neural network + fuzzy set CA + fuzzy set + rough set Boolean CA to multi-valued / hierarchical CA Application of CA in Bioinformatics Medical Image Analysis Image Compression Data Mining

53 Thank You

Error Correcting Capability of Cellular Automata Based Associative Memory

Error Correcting Capability of Cellular Automata Based Associative Memory 466 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART A: SYSTEMS AND HUMANS, VOL. 33, NO. 4, JULY 2003 Error Correcting Capability of Cellular Automata Based Associative Memory Pradipta Maji, Niloy

More information

Integer weight training by differential evolution algorithms

Integer weight training by differential evolution algorithms Integer weight training by differential evolution algorithms V.P. Plagianakos, D.G. Sotiropoulos, and M.N. Vrahatis University of Patras, Department of Mathematics, GR-265 00, Patras, Greece. e-mail: vpp

More information

Convolutional Associative Memory: FIR Filter Model of Synapse

Convolutional Associative Memory: FIR Filter Model of Synapse Convolutional Associative Memory: FIR Filter Model of Synapse Rama Murthy Garimella 1, Sai Dileep Munugoti 2, Anil Rayala 1 1 International Institute of Information technology, Hyderabad, India. rammurthy@iiit.ac.in,

More information

Data Mining. Preamble: Control Application. Industrial Researcher s Approach. Practitioner s Approach. Example. Example. Goal: Maintain T ~Td

Data Mining. Preamble: Control Application. Industrial Researcher s Approach. Practitioner s Approach. Example. Example. Goal: Maintain T ~Td Data Mining Andrew Kusiak 2139 Seamans Center Iowa City, Iowa 52242-1527 Preamble: Control Application Goal: Maintain T ~Td Tel: 319-335 5934 Fax: 319-335 5669 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak

More information

Logic BIST. Sungho Kang Yonsei University

Logic BIST. Sungho Kang Yonsei University Logic BIST Sungho Kang Yonsei University Outline Introduction Basics Issues Weighted Random Pattern Generation BIST Architectures Deterministic BIST Conclusion 2 Built In Self Test Test/ Normal Input Pattern

More information

Switching Neural Networks: A New Connectionist Model for Classification

Switching Neural Networks: A New Connectionist Model for Classification Switching Neural Networks: A New Connectionist Model for Classification Marco Muselli Istituto di Elettronica e di Ingegneria dell Informazione e delle Telecomunicazioni, Consiglio Nazionale delle Ricerche,

More information

Machine Learning. Neural Networks

Machine Learning. Neural Networks Machine Learning Neural Networks Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 Biological Analogy Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 THE

More information

Optimization of 1D and 2D Cellular Automata for Pseudo Random Number Generator.

Optimization of 1D and 2D Cellular Automata for Pseudo Random Number Generator. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 6, Ver. I (Nov - Dec. 2014), PP 28-33 e-issn: 2319 4200, p-issn No. : 2319 4197 Optimization of 1D and 2D Cellular Automata for Pseudo

More information

Discrete Tranformation of Output in Cellular Automata

Discrete Tranformation of Output in Cellular Automata Discrete Tranformation of Output in Cellular Automata Aleksander Lunøe Waage Master of Science in Computer Science Submission date: July 2012 Supervisor: Gunnar Tufte, IDI Norwegian University of Science

More information

Theory of Additive Cellular Automata

Theory of Additive Cellular Automata Fundamenta Informaticae XXI (200) 00 02 00 IOS Press Theory of Additive Cellular Automata Niloy Ganguly Department of Computer Science and Engineering, Indian Institute of Technology, Waragpur, India Biplab

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 59 Intro to Computational Complexity Overview of the Course John E. Savage Brown University January 2, 29 John E. Savage (Brown University) CSCI 59 Intro to Computational Complexity January 2, 29

More information

Keywords- Source coding, Huffman encoding, Artificial neural network, Multilayer perceptron, Backpropagation algorithm

Keywords- Source coding, Huffman encoding, Artificial neural network, Multilayer perceptron, Backpropagation algorithm Volume 4, Issue 5, May 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Huffman Encoding

More information

Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification

Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification Computational Intelligence Lecture 3: Simple Neural Networks for Pattern Classification Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 arzaneh Abdollahi

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Neural Networks Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

Using a Hopfield Network: A Nuts and Bolts Approach

Using a Hopfield Network: A Nuts and Bolts Approach Using a Hopfield Network: A Nuts and Bolts Approach November 4, 2013 Gershon Wolfe, Ph.D. Hopfield Model as Applied to Classification Hopfield network Training the network Updating nodes Sequencing of

More information

The Power of Extra Analog Neuron. Institute of Computer Science Academy of Sciences of the Czech Republic

The Power of Extra Analog Neuron. Institute of Computer Science Academy of Sciences of the Czech Republic The Power of Extra Analog Neuron Jiří Šíma Institute of Computer Science Academy of Sciences of the Czech Republic (Artificial) Neural Networks (NNs) 1. mathematical models of biological neural networks

More information

Intelligent Modular Neural Network for Dynamic System Parameter Estimation

Intelligent Modular Neural Network for Dynamic System Parameter Estimation Intelligent Modular Neural Network for Dynamic System Parameter Estimation Andrzej Materka Technical University of Lodz, Institute of Electronics Stefanowskiego 18, 9-537 Lodz, Poland Abstract: A technique

More information

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata

Principles of Pattern Recognition. C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata Principles of Pattern Recognition C. A. Murthy Machine Intelligence Unit Indian Statistical Institute Kolkata e-mail: murthy@isical.ac.in Pattern Recognition Measurement Space > Feature Space >Decision

More information

Probabilistic Analysis of Cellular Automata Rules and its Application in Pseudo Random Pattern Generation

Probabilistic Analysis of Cellular Automata Rules and its Application in Pseudo Random Pattern Generation Probabilistic Analysis of Cellular Automata Rules and its Application in Pseudo Random Pattern Generation Abhishek Seth, S. Bandyopadhyay, U. Maulik. Abstract The present work is an extension of the work

More information

Bayesian Networks Inference with Probabilistic Graphical Models

Bayesian Networks Inference with Probabilistic Graphical Models 4190.408 2016-Spring Bayesian Networks Inference with Probabilistic Graphical Models Byoung-Tak Zhang intelligence Lab Seoul National University 4190.408 Artificial (2016-Spring) 1 Machine Learning? Learning

More information

Research Article Characterization of the Evolution of Nonlinear Uniform Cellular Automata in the Light of Deviant States

Research Article Characterization of the Evolution of Nonlinear Uniform Cellular Automata in the Light of Deviant States Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2011, Article ID 605098, 16 pages doi:101155/2011/605098 Research Article Characterization of the Evolution

More information

Outline. EECS Components and Design Techniques for Digital Systems. Lec 18 Error Coding. In the real world. Our beautiful digital world.

Outline. EECS Components and Design Techniques for Digital Systems. Lec 18 Error Coding. In the real world. Our beautiful digital world. Outline EECS 150 - Components and esign Techniques for igital Systems Lec 18 Error Coding Errors and error models Parity and Hamming Codes (SECE) Errors in Communications LFSRs Cyclic Redundancy Check

More information

International Journal of Combined Research & Development (IJCRD) eissn: x;pissn: Volume: 7; Issue: 7; July -2018

International Journal of Combined Research & Development (IJCRD) eissn: x;pissn: Volume: 7; Issue: 7; July -2018 XOR Gate Design Using Reversible Logic in QCA and Verilog Code Yeshwanth GR BE Final Year Department of ECE, The Oxford College of Engineering Bommanahalli, Hosur Road, Bangalore -560068 yeshwath.g13@gmail.com

More information

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau Last update: October 26, 207 Neural networks CMSC 42: Section 8.7 Dana Nau Outline Applications of neural networks Brains Neural network units Perceptrons Multilayer perceptrons 2 Example Applications

More information

Radial View: Observing Fuzzy Cellular Automata with a New Visualization Method

Radial View: Observing Fuzzy Cellular Automata with a New Visualization Method Radial View: Observing Fuzzy Cellular Automata with a New Visualization Method Paola Flocchini and Vladimir Cezar School of Information Technology and Engineering University of Ottawa, 800 King Eduard,

More information

Hopfield Network Recurrent Netorks

Hopfield Network Recurrent Netorks Hopfield Network Recurrent Netorks w 2 w n E.P. P.E. y (k) Auto-Associative Memory: Given an initial n bit pattern returns the closest stored (associated) pattern. No P.E. self-feedback! w 2 w n2 E.P.2

More information

Implementation of Lossless Huffman Coding: Image compression using K-Means algorithm and comparison vs. Random numbers and Message source

Implementation of Lossless Huffman Coding: Image compression using K-Means algorithm and comparison vs. Random numbers and Message source Implementation of Lossless Huffman Coding: Image compression using K-Means algorithm and comparison vs. Random numbers and Message source Ali Tariq Bhatti 1, Dr. Jung Kim 2 1,2 Department of Electrical

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Determine the size of an instance of the minimum spanning tree problem.

Determine the size of an instance of the minimum spanning tree problem. 3.1 Algorithm complexity Consider two alternative algorithms A and B for solving a given problem. Suppose A is O(n 2 ) and B is O(2 n ), where n is the size of the instance. Let n A 0 be the size of the

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Artificial Intelligence Hopfield Networks

Artificial Intelligence Hopfield Networks Artificial Intelligence Hopfield Networks Andrea Torsello Network Topologies Single Layer Recurrent Network Bidirectional Symmetric Connection Binary / Continuous Units Associative Memory Optimization

More information

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28

Neural Networks. Mark van Rossum. January 15, School of Informatics, University of Edinburgh 1 / 28 1 / 28 Neural Networks Mark van Rossum School of Informatics, University of Edinburgh January 15, 2018 2 / 28 Goals: Understand how (recurrent) networks behave Find a way to teach networks to do a certain

More information

Part 8: Neural Networks

Part 8: Neural Networks METU Informatics Institute Min720 Pattern Classification ith Bio-Medical Applications Part 8: Neural Netors - INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL Biological Neural Netors A Neuron: - A nerve cell as

More information

Reification of Boolean Logic

Reification of Boolean Logic 526 U1180 neural networks 1 Chapter 1 Reification of Boolean Logic The modern era of neural networks began with the pioneer work of McCulloch and Pitts (1943). McCulloch was a psychiatrist and neuroanatomist;

More information

CMSC 421: Neural Computation. Applications of Neural Networks

CMSC 421: Neural Computation. Applications of Neural Networks CMSC 42: Neural Computation definition synonyms neural networks artificial neural networks neural modeling connectionist models parallel distributed processing AI perspective Applications of Neural Networks

More information

DRAFT. Algebraic computation models. Chapter 14

DRAFT. Algebraic computation models. Chapter 14 Chapter 14 Algebraic computation models Somewhat rough We think of numerical algorithms root-finding, gaussian elimination etc. as operating over R or C, even though the underlying representation of the

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University

Text Mining. Dr. Yanjun Li. Associate Professor. Department of Computer and Information Sciences Fordham University Text Mining Dr. Yanjun Li Associate Professor Department of Computer and Information Sciences Fordham University Outline Introduction: Data Mining Part One: Text Mining Part Two: Preprocessing Text Data

More information

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

INTRODUCTION TO ARTIFICIAL INTELLIGENCE v=1 v= 1 v= 1 v= 1 v= 1 v=1 optima 2) 3) 5) 6) 7) 8) 9) 12) 11) 13) INTRDUCTIN T ARTIFICIAL INTELLIGENCE DATA15001 EPISDE 8: NEURAL NETWRKS TDAY S MENU 1. NEURAL CMPUTATIN 2. FEEDFRWARD NETWRKS (PERCEPTRN)

More information

Image Encryption and Decryption Algorithm Using Two Dimensional Cellular Automata Rules In Cryptography

Image Encryption and Decryption Algorithm Using Two Dimensional Cellular Automata Rules In Cryptography Image Encryption and Decryption Algorithm Using Two Dimensional Cellular Automata Rules In Cryptography P. Sanoop Kumar Department of CSE, Gayatri Vidya Parishad College of Engineering(A), Madhurawada-530048,Visakhapatnam,

More information

Artificial Intelligence (AI) Common AI Methods. Training. Signals to Perceptrons. Artificial Neural Networks (ANN) Artificial Intelligence

Artificial Intelligence (AI) Common AI Methods. Training. Signals to Perceptrons. Artificial Neural Networks (ANN) Artificial Intelligence Artificial Intelligence (AI) Artificial Intelligence AI is an attempt to reproduce intelligent reasoning using machines * * H. M. Cartwright, Applications of Artificial Intelligence in Chemistry, 1993,

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

Computational Intelligence Lecture 6: Associative Memory

Computational Intelligence Lecture 6: Associative Memory Computational Intelligence Lecture 6: Associative Memory Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Computational Intelligence

More information

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009 AN INTRODUCTION TO NEURAL NETWORKS Scott Kuindersma November 12, 2009 SUPERVISED LEARNING We are given some training data: We must learn a function If y is discrete, we call it classification If it is

More information

A Novel Activity Detection Method

A Novel Activity Detection Method A Novel Activity Detection Method Gismy George P.G. Student, Department of ECE, Ilahia College of,muvattupuzha, Kerala, India ABSTRACT: This paper presents an approach for activity state recognition of

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Prof. Bart Selman selman@cs.cornell.edu Machine Learning: Neural Networks R&N 18.7 Intro & perceptron learning 1 2 Neuron: How the brain works # neurons

More information

Sorting Network Development Using Cellular Automata

Sorting Network Development Using Cellular Automata Sorting Network Development Using Cellular Automata Michal Bidlo, Zdenek Vasicek, and Karel Slany Brno University of Technology, Faculty of Information Technology Božetěchova 2, 61266 Brno, Czech republic

More information

Mechanisms of Emergent Computation in Cellular Automata

Mechanisms of Emergent Computation in Cellular Automata Mechanisms of Emergent Computation in Cellular Automata Wim Hordijk, James P. Crutchfield, Melanie Mitchell Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, 87501 NM, USA email: {wim,chaos,mm}@santafe.edu

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE 4: Linear Systems Summary # 3: Introduction to artificial neural networks DISTRIBUTED REPRESENTATION An ANN consists of simple processing units communicating with each other. The basic elements of

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5 Artificial Neural Networks Q550: Models in Cognitive Science Lecture 5 "Intelligence is 10 million rules." --Doug Lenat The human brain has about 100 billion neurons. With an estimated average of one thousand

More information

Cellular Automata. ,C ) (t ) ,..., C i +[ K / 2] Cellular Automata. x > N : C x ! N. = C x. x < 1: C x. = C N+ x.

Cellular Automata. ,C ) (t ) ,..., C i +[ K / 2] Cellular Automata. x > N : C x ! N. = C x. x < 1: C x. = C N+ x. and beyond Lindenmayer Systems The World of Simple Programs Christian Jacob Department of Computer Science Department of Biochemistry & Molecular Biology University of Calgary CPSC 673 Winter 2004 Random

More information

Artificial Neural Networks Examination, June 2004

Artificial Neural Networks Examination, June 2004 Artificial Neural Networks Examination, June 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Online Dictionary Learning with Group Structure Inducing Norms

Online Dictionary Learning with Group Structure Inducing Norms Online Dictionary Learning with Group Structure Inducing Norms Zoltán Szabó 1, Barnabás Póczos 2, András Lőrincz 1 1 Eötvös Loránd University, Budapest, Hungary 2 Carnegie Mellon University, Pittsburgh,

More information

Non-linear Measure Based Process Monitoring and Fault Diagnosis

Non-linear Measure Based Process Monitoring and Fault Diagnosis Non-linear Measure Based Process Monitoring and Fault Diagnosis 12 th Annual AIChE Meeting, Reno, NV [275] Data Driven Approaches to Process Control 4:40 PM, Nov. 6, 2001 Sandeep Rajput Duane D. Bruns

More information

Weight Quantization for Multi-layer Perceptrons Using Soft Weight Sharing

Weight Quantization for Multi-layer Perceptrons Using Soft Weight Sharing Weight Quantization for Multi-layer Perceptrons Using Soft Weight Sharing Fatih Köksal, Ethem Alpaydın, and Günhan Dündar 2 Department of Computer Engineering 2 Department of Electrical and Electronics

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Symbolical artificial intelligence is a field of computer science that is highly related to quantum computation. At first glance, this statement appears to be a contradiction. However,

More information

Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks

Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks Yoshua Bengio Dept. IRO Université de Montréal Montreal, Qc, Canada, H3C 3J7 bengioy@iro.umontreal.ca Samy Bengio IDIAP CP 592,

More information

Designing Cellular Automata Structures using Quantum-dot Cellular Automata

Designing Cellular Automata Structures using Quantum-dot Cellular Automata Designing Cellular Automata Structures using Quantum-dot Cellular Automata Mayur Bubna, Subhra Mazumdar, Sudip Roy and Rajib Mall Department of Computer Sc. & Engineering Indian Institute of Technology,

More information

Sections 18.6 and 18.7 Analysis of Artificial Neural Networks

Sections 18.6 and 18.7 Analysis of Artificial Neural Networks Sections 18.6 and 18.7 Analysis of Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline Univariate regression

More information

Artificial Neural Network Method of Rock Mass Blastability Classification

Artificial Neural Network Method of Rock Mass Blastability Classification Artificial Neural Network Method of Rock Mass Blastability Classification Jiang Han, Xu Weiya, Xie Shouyi Research Institute of Geotechnical Engineering, Hohai University, Nanjing, Jiangshu, P.R.China

More information

Coexistence of Dynamics for Two- Dimensional Cellular Automata

Coexistence of Dynamics for Two- Dimensional Cellular Automata Coexistence of Dynamics for Two- Dimensional Cellular Automata Ricardo Severino Department of Mathematics and Applications University of Minho Campus de Gualtar - 4710-057 Braga, Portugal Maria Joana Soares

More information

Design and Implementation of Carry Adders Using Adiabatic and Reversible Logic Gates

Design and Implementation of Carry Adders Using Adiabatic and Reversible Logic Gates Design and Implementation of Carry Adders Using Adiabatic and Reversible Logic Gates B.BharathKumar 1, ShaikAsra Tabassum 2 1 Research Scholar, Dept of ECE, Lords Institute of Engineering & Technology,

More information

One-Dimensional Linear Hybrid Cellular Automata: Their Synthesis, Properties and Applications to Digital Circuits Testing

One-Dimensional Linear Hybrid Cellular Automata: Their Synthesis, Properties and Applications to Digital Circuits Testing One-Dimensional Linear Hybrid Cellular Automata: Their Synthesis, Properties and Applications to Digital Circuits Testing M. Serra, K. Cattell, S. Zhang, J.C. Muzio, D.M. Miller Dept. of Computer Science

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

BOOLEAN ALGEBRA INTRODUCTION SUBSETS

BOOLEAN ALGEBRA INTRODUCTION SUBSETS BOOLEAN ALGEBRA M. Ragheb 1/294/2018 INTRODUCTION Modern algebra is centered around the concept of an algebraic system: A, consisting of a set of elements: ai, i=1, 2,, which are combined by a set of operations

More information

Bioinformatics Chapter 1. Introduction

Bioinformatics Chapter 1. Introduction Bioinformatics Chapter 1. Introduction Outline! Biological Data in Digital Symbol Sequences! Genomes Diversity, Size, and Structure! Proteins and Proteomes! On the Information Content of Biological Sequences!

More information

Classification of Random Boolean Networks

Classification of Random Boolean Networks Classification of Random Boolean Networks Carlos Gershenson, School of Cognitive and Computer Sciences University of Sussex Brighton, BN1 9QN, U. K. C.Gershenson@sussex.ac.uk http://www.cogs.sussex.ac.uk/users/carlos

More information

A Genetic Algorithm with Expansion and Exploration Operators for the Maximum Satisfiability Problem

A Genetic Algorithm with Expansion and Exploration Operators for the Maximum Satisfiability Problem Applied Mathematical Sciences, Vol. 7, 2013, no. 24, 1183-1190 HIKARI Ltd, www.m-hikari.com A Genetic Algorithm with Expansion and Exploration Operators for the Maximum Satisfiability Problem Anna Gorbenko

More information

Application of hopfield network in improvement of fingerprint recognition process Mahmoud Alborzi 1, Abbas Toloie- Eshlaghy 1 and Dena Bazazian 2

Application of hopfield network in improvement of fingerprint recognition process Mahmoud Alborzi 1, Abbas Toloie- Eshlaghy 1 and Dena Bazazian 2 5797 Available online at www.elixirjournal.org Computer Science and Engineering Elixir Comp. Sci. & Engg. 41 (211) 5797-582 Application hopfield network in improvement recognition process Mahmoud Alborzi

More information

ECE 407 Computer Aided Design for Electronic Systems. Simulation. Instructor: Maria K. Michael. Overview

ECE 407 Computer Aided Design for Electronic Systems. Simulation. Instructor: Maria K. Michael. Overview 407 Computer Aided Design for Electronic Systems Simulation Instructor: Maria K. Michael Overview What is simulation? Design verification Modeling Levels Modeling circuits for simulation True-value simulation

More information

A Posteriori Corrections to Classification Methods.

A Posteriori Corrections to Classification Methods. A Posteriori Corrections to Classification Methods. Włodzisław Duch and Łukasz Itert Department of Informatics, Nicholas Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland; http://www.phys.uni.torun.pl/kmk

More information

Evolutionary Functional Link Interval Type-2 Fuzzy Neural System for Exchange Rate Prediction

Evolutionary Functional Link Interval Type-2 Fuzzy Neural System for Exchange Rate Prediction Evolutionary Functional Link Interval Type-2 Fuzzy Neural System for Exchange Rate Prediction 3. Introduction Currency exchange rate is an important element in international finance. It is one of the chaotic,

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. Machine Learning, Chapter 3 2. Data Mining: Concepts, Models,

More information

Neural Networks Lecture 2:Single Layer Classifiers

Neural Networks Lecture 2:Single Layer Classifiers Neural Networks Lecture 2:Single Layer Classifiers H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi Neural

More information

Sample questions for Fundamentals of Machine Learning 2018

Sample questions for Fundamentals of Machine Learning 2018 Sample questions for Fundamentals of Machine Learning 2018 Teacher: Mohammad Emtiyaz Khan A few important informations: In the final exam, no electronic devices are allowed except a calculator. Make sure

More information

Modern Information Retrieval

Modern Information Retrieval Modern Information Retrieval Chapter 8 Text Classification Introduction A Characterization of Text Classification Unsupervised Algorithms Supervised Algorithms Feature Selection or Dimensionality Reduction

More information

CS6901: review of Theory of Computation and Algorithms

CS6901: review of Theory of Computation and Algorithms CS6901: review of Theory of Computation and Algorithms Any mechanically (automatically) discretely computation of problem solving contains at least three components: - problem description - computational

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Stream Ciphers. Çetin Kaya Koç Winter / 20

Stream Ciphers. Çetin Kaya Koç   Winter / 20 Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 1 / 20 Linear Congruential Generators A linear congruential generator produces a sequence of integers x i for i = 1,2,... starting with the given initial

More information

NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1

NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1 NCU EE -- DSP VLSI Design. Tsung-Han Tsai 1 Multi-processor vs. Multi-computer architecture µp vs. DSP RISC vs. DSP RISC Reduced-instruction-set Register-to-register operation Higher throughput by using

More information

Neural Networks and Fuzzy Logic Rajendra Dept.of CSE ASCET

Neural Networks and Fuzzy Logic Rajendra Dept.of CSE ASCET Unit-. Definition Neural network is a massively parallel distributed processing system, made of highly inter-connected neural computing elements that have the ability to learn and thereby acquire knowledge

More information

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

Chapter 0 Introduction. Fourth Academic Year/ Elective Course Electrical Engineering Department College of Engineering University of Salahaddin

Chapter 0 Introduction. Fourth Academic Year/ Elective Course Electrical Engineering Department College of Engineering University of Salahaddin Chapter 0 Introduction Fourth Academic Year/ Elective Course Electrical Engineering Department College of Engineering University of Salahaddin October 2014 Automata Theory 2 of 22 Automata theory deals

More information

biologically-inspired computing lecture 18

biologically-inspired computing lecture 18 Informatics -inspired lecture 18 Sections I485/H400 course outlook Assignments: 35% Students will complete 4/5 assignments based on algorithms presented in class Lab meets in I1 (West) 109 on Lab Wednesdays

More information

Inadmissible Class of Boolean Functions under Stuck-at Faults

Inadmissible Class of Boolean Functions under Stuck-at Faults Inadmissible Class of Boolean Functions under Stuck-at Faults Debesh K. Das 1, Debabani Chowdhury 1, Bhargab B. Bhattacharya 2, Tsutomu Sasao 3 1 Computer Sc. & Engg. Dept., Jadavpur University, Kolkata

More information

SP-CNN: A Scalable and Programmable CNN-based Accelerator. Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay

SP-CNN: A Scalable and Programmable CNN-based Accelerator. Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay SP-CNN: A Scalable and Programmable CNN-based Accelerator Dilan Manatunga Dr. Hyesoon Kim Dr. Saibal Mukhopadhyay Motivation Power is a first-order design constraint, especially for embedded devices. Certain

More information

Iterative Laplacian Score for Feature Selection

Iterative Laplacian Score for Feature Selection Iterative Laplacian Score for Feature Selection Linling Zhu, Linsong Miao, and Daoqiang Zhang College of Computer Science and echnology, Nanjing University of Aeronautics and Astronautics, Nanjing 2006,

More information

Bounded Approximation Algorithms

Bounded Approximation Algorithms Bounded Approximation Algorithms Sometimes we can handle NP problems with polynomial time algorithms which are guaranteed to return a solution within some specific bound of the optimal solution within

More information

Fundamentals of Digital Design

Fundamentals of Digital Design Fundamentals of Digital Design Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Binary Number System The binary numeral system, or base-2 number system, is a numeral system that represents numeric

More information

CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors. Furong Huang /

CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors. Furong Huang / CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors Furong Huang / furongh@cs.umd.edu What we know so far Decision Trees What is a decision tree, and how to induce it from

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

From statistics to data science. BAE 815 (Fall 2017) Dr. Zifei Liu

From statistics to data science. BAE 815 (Fall 2017) Dr. Zifei Liu From statistics to data science BAE 815 (Fall 2017) Dr. Zifei Liu Zifeiliu@ksu.edu Why? How? What? How much? How many? Individual facts (quantities, characters, or symbols) The Data-Information-Knowledge-Wisdom

More information

Fault Collapsing in Digital Circuits Using Fast Fault Dominance and Equivalence Analysis with SSBDDs

Fault Collapsing in Digital Circuits Using Fast Fault Dominance and Equivalence Analysis with SSBDDs Fault Collapsing in Digital Circuits Using Fast Fault Dominance and Equivalence Analysis with SSBDDs Raimund Ubar, Lembit Jürimägi (&), Elmet Orasson, and Jaan Raik Department of Computer Engineering,

More information

Genetic Algorithms: Basic Principles and Applications

Genetic Algorithms: Basic Principles and Applications Genetic Algorithms: Basic Principles and Applications C. A. MURTHY MACHINE INTELLIGENCE UNIT INDIAN STATISTICAL INSTITUTE 203, B.T.ROAD KOLKATA-700108 e-mail: murthy@isical.ac.in Genetic algorithms (GAs)

More information

DIAGNOSIS OF FAULT IN TESTABLE REVERSIBLE SEQUENTIAL CIRCUITS USING MULTIPLEXER CONSERVATIVE QUANTUM DOT CELLULAR AUTOMATA

DIAGNOSIS OF FAULT IN TESTABLE REVERSIBLE SEQUENTIAL CIRCUITS USING MULTIPLEXER CONSERVATIVE QUANTUM DOT CELLULAR AUTOMATA DIAGNOSIS OF FAULT IN TESTABLE REVERSIBLE SEQUENTIAL CIRCUITS USING MULTIPLEXER CONSERVATIVE QUANTUM DOT CELLULAR AUTOMATA Nikitha.S.Paulin 1, S.Abirami 2, Prabu Venkateswaran.S 3 1, 2 PG students / VLSI

More information

On Detecting Multiple Faults in Baseline Interconnection Networks

On Detecting Multiple Faults in Baseline Interconnection Networks On Detecting Multiple Faults in Baseline Interconnection Networks SHUN-SHII LIN 1 AND SHAN-TAI CHEN 2 1 National Taiwan Normal University, Taipei, Taiwan, ROC 2 Chung Cheng Institute of Technology, Tao-Yuan,

More information