Reac%ve power pricing strategy

Size: px
Start display at page:

Download "Reac%ve power pricing strategy"

Transcription

1 Department of Informa-on Engineering University of Padova, ITALY Reac%ve power pricing strategy Giulia Maso, Mar-no Minella, Anna Polidoro

2 Smart Grids Outline Model Reac-ve power compensa-on Pricing Tools Lagrange mul-pliers (centralized) Gradient es-ma-on (distributed) Pricing Strategy Shadow prices Storage strategy

3 Smart grids

4 Smart grids

5 Smart grids Model 0 0 generator s loads PCC directed graph G = ( V, E,σ,τ ) matrix of incidence A voltages and currents y( t) = y 2 sin( ω0t + y)

6 Ini$al model equa$ons (KLC) and (KVL) laws Α T Αu ξ + i = 0 + Ζξ = PCC u 0 = U 0 0 generic node u v i v = s v u U v Smart grids Model 0 η constant voltage generator v, v V exponen-al model \{0}

7 Approximate model(1) Laplacian matrix, L = Α T Ζ 1 Α Green matrix, X sa-sfying: XL = I 11 X10 = 0 T 0 Solu-on for the currents: i = Lu

8 Approximate model(2) The system can be rewrioen in the following form: u u 1 v T = i i v Xi = = 0 + U s v u U 0 v 1 0 η v, v V \{0}

9 Smart grids Compensa;on Reac$ve power flows contribute to: power losses on the lines voltage drop grid instability Problem of op-mal reac-ve power compensa-on Bolognani, S., and Zampieri, S. (2011) Distributed control strategy for op-mal reac-ve power compensa-on in smart microgrids.

10 J ' = i T Smart grids Compensa;on 1 T 1 T 1 ~ Re( x) i = p Re( x) p + q Re( x) q + J U U U 0 where it has been used the Taylor approxima-on of 0 ( ) U 0 0 ( U, s) U i for large 0 Being ~ J, ( U s) 0 infinitesimal, we have an uncoupling phenomenon QUADRATIC LINEARLY CONSTRAINED PROBLEM

11 Smart grids Compensa;on C V v s q q to subject q x q q J where q J v v T T q \ ) Im( 0 1, ) Re( 2 1 ) (, ) ( min = = = QUADRATIC LINEARLY CONSTRAINED PROBLEM

12 Reac;ve power Service compensa;on Pricing Shadow prices Lagrange Mul;pliers

13 Lagrange Mul;pliers Theory(1) Duality theory Impossibile visualizzare l'immagine. La memoria del computer potrebbe essere insufficiente per aprire l'immagine oppure l'immagine potrebbe essere danneggiata. Riavviare il computer e aprire di nuovo il file. Se viene visualizzata di nuovo la x rossa, potrebbe essere necessario eliminare l'immagine e inserirla di nuovo. Primal min f 0 ( x) s.t f ( x) 0, h ( x) = i i 0 Lagrangian g ( λ, ν ) = inf L( x, λ, ν ) Dual max g( λ, ν ) s. t λ 0 Primal+dual *,ν * λ

14 Lagrange Mul;pliers Theory(2) λ p (0,0) i = u i p ui Primal solu-on Constraint perturba-on Op;mal Lagrange mul;pliers LOCAL SENSITIVITIES

15 Lagrange Mul;pliers Applica;on(1) Objec-ve func-on J (q) Constraints on loads and compensators q = Ql, q Q c Lagrangian T L( q, λ) = J( q) + λ ( q Q) Solu-on λ * 2 1 l = D Q 2 l u0

16 Lagrange Mul;pliers Applica;on(2) Solu-on requires global knowledge of network topology Centralized algorithm Centralized unit High computa-onal cost with large number of nodes Broadband communica-on system Change in network topology

17 Lagrange mul;pliers Graphic Exploi-ng the perturba-on theory of duality we iden-fy the losses parabola Working point

18 Working point Graphic λ

19 Working point Graphic λ

20 Gradient es;ma;on Beginning from the Lagrangian with constraints on both loads and compensators: Solving for λ: Es;ma;on

21 Gradient es;ma;on (1) Using PCC voltage Each node receives informa-on from the PCC PCC λ( u) = e 2cosθ Im[ jθ ( u u u 0 0 1) ] Θ phase shi_ constant between node and PCC overes-mate results

22

23 Distributed Gradient es;ma;on (2) Two nodes exchange informa-on between each other PCC p λ c = λ p + 2 cosθ 2 u 0 Im[ e jθ ( u p + u c )( u p u c ) c Θ phase shi_ Between the two nodes results underes-mate

24

25 Valida;on test for λ es;ma;on Real λ analysis Es-mate λ analysis

26 Test Grid Aligned nodes PCC Symmetric bifurca;on PCC Load Load Load Com Load Load Load Load Load Com Com

27 1 observa;on Branch with no power flowing (λ 0) Why? The only ac;ve node

28 2 observa;on Linear increasing of λ in a branch with constant power flowing Linear increasing The only ac;ve node

29 3 observa;on Superposi-on of the various effects Power flow of nodes 5 and 10 Power flow of node 10 Ac;ve node No power flow

30 Performance of the λ es;ma;on Simple grid Different absorp;ons Many compensators Not homogeneus grid Depth tree

31 Hypothesis of no homogeneity If we have different impedance phase angles: X e jθ X then the assump-on done on Re(X) isn t true and we can t extract the phase angles from X Anyway,the homogeneus hypothesis is a realis-c assump-on in the smart microgrid

32 Depth tree The error increases with the increase of depth tree. This is due to two errors: λ 2 cosθ.. λp u c. = 2 0 Im[ e jθ ( u p + u c )( u p u c ) from parent λ from upgrade Nevertheless : we can consider compensator informa-on generally, we have levels of depth

33 Parent child communica;on strategies Ordered Randomized Centralized Right upgrades Time: # levels 1 Wrong upgrades Time: # nodes 1 Only voltage needed Time: 1 step

34 Shadow prices interpreta;on λi tells us approximately how much more profit the process could make for a small increase in availability of resource qi Lagrange Mul;plier Shadow Price However, the cost func-on f0(x) doesn t consider all the benefits related to reac-ve power Lagrange Mul;plier Shadow Price

35 Storage strategy f0(x) doesn t consider: voltage constraints conges-on constraints We define a storage strategy in order to evaluate what is truly convenient for a compensator: Sell or Store ac-ve power?

36 Compensator limita;ons A compensator provides an apparent power A that is func-on of the ac-ve power P and of the reac-ve power Q. These quan--es are linked by Boucherot theorem: Where bars indicate the available ac-ve power or the reac-ve power required.

37 The inverter installed on the compensator is characterized by an apparent power limita-on M. Thus, we have two cases: No limita-on Limita-on is ac-ve We must decide whether to sell or to store ac;ve power

38 What to do in case of limita;on? Time t=0 At the ini-al -me we suppose to provide the whole ac-ve power and produce a quan-ty Q(t=0) of reac-ve power The corresponding inverter limita-on is: Where the reac-ve power tends to zero.

39 Time t=1 Suppose to increase the reac-ve power to: Due to ac-ve limita-on, we must decrease the ac-ve power sold and store a certain quan-ty: For any produc-on increment of reac-ve power we can consider an equal storage quan-ty:

40 Cost func;on storage isn t free considering the storage inefficiency η Where is the unit price of ac-ve power

41 Gain func;on using λ For an infinitesimal varia-on of reac-ve power we assume a linear increasing of ac-ve power From which we obtain the gain func-on: Where is the unit price of ac-ve power

42 Profits inequality To have profits we need to comply with: Solving the inequality we obtain: Never true λ < 0.05 η = We have a confirma-on that λ hasn t all the necessary informa-on for pricing

43 Gain func;on with Q price Assuming to know the correct reac-ve power price, we can define the gain: Solving the profit inequality, we obtain: It is plausible that in some cases reac-ve power importance is very high even higher than the ac-ve power one

44 λ shadow price for Voltage limits Risk of conges-on Conclusions Pricing Storage strategy Future developments Define a new cost func-on Build different Lagrangians Abandon Lagrange theory

Programs of Regione Campania for reduction of seismic risk (and others)

Programs of Regione Campania for reduction of seismic risk (and others) Programs of Regione Campania for reduction of seismic risk (and others) 2011-10151015 Prof ing Edoardo Cosenza Assessore (Regional Ministry) Public Works and Civil Protection Regione Campania Napoli, 1900.

More information

1 st results of the MICROSCOPE test of the equivalence principle in space. Manuel RODRIGUES

1 st results of the MICROSCOPE test of the equivalence principle in space. Manuel RODRIGUES 1 st results of the MICROSCOPE test of the equivalence principle in space. Manuel RODRIGUES On behalf of the MICROSCOPE team STEP : THE MICROSCOPE ORIGINS Pr. Francis Everitt : PI of GPB & STEP had been

More information

5-7 Solving Quadratic Inequalities. Holt Algebra 2

5-7 Solving Quadratic Inequalities. Holt Algebra 2 Example 1: Graphing Quadratic Inequalities in Two Variables Graph f(x) x 2 7x + 10. Step 1 Graph the parabola f(x) = x 2 7x + 10 with a solid curve. x f(x) 0 10 1 3 2 0 3-2 3.5-2.25 4-2 5 0 6 4 7 10 Example

More information

Nucleosintesi oltre il picco del Fe. Misure di ca3ura neutronica di interesse Astrofisico

Nucleosintesi oltre il picco del Fe. Misure di ca3ura neutronica di interesse Astrofisico Nucleosintesi oltre il picco del Fe. Misure di ca3ura neutronica di interesse Astrofisico Introduc,on: Nuclear Astrophysics the majority of the chemical elements in the universe is produced through nuclear

More information

A gossip-like distributed optimization algorithm for reactive power flow control

A gossip-like distributed optimization algorithm for reactive power flow control A gossip-like distributed optimization algorithm for reactive power flow control Saverio Bolognani Sandro Zampieri Department of Information Engineering, University of Padova, Padova, Italy (e-mail: {saveriobolognani,

More information

Convex Optimization & Lagrange Duality

Convex Optimization & Lagrange Duality Convex Optimization & Lagrange Duality Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Convex optimization Optimality condition Lagrange duality KKT

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Detection of Antimatter in our Galaxy

Detection of Antimatter in our Galaxy Impossibile visualizzare l'immagine. La memoria del computer potrebbe essere insu!ciente per aprire l'immagine oppure l'immagine potrebbe essere danneggiata. Riavviare il computer e aprire di nuovo il

More information

arxiv: v2 [math.oc] 17 Nov 2014

arxiv: v2 [math.oc] 17 Nov 2014 1 Distributed reactive power feedback control for voltage regulation and loss minimization Saverio Bolognani, Ruggero Carli, Guido Cavraro, and Sandro Zampieri arxiv:1303.7173v math.oc 17 Nov 014 Abstract

More information

Network Topology-2 & Dual and Duality Choice of independent branch currents and voltages: The solution of a network involves solving of all branch currents and voltages. We know that the branch current

More information

Interpretation of the X(3872) as a charmonium state plus an extra component due to the coupling to the meson- meson continuum

Interpretation of the X(3872) as a charmonium state plus an extra component due to the coupling to the meson- meson continuum Interpretation of the X(387) as a charmonium state plus an extra component due to the coupling to the meson- meson continuum E. Santopinto (INFN), J. Ferretti (INFN), G. Galatà (UNAM) PWA7 013 Ferretti,

More information

Worked Examples for Chapter 5

Worked Examples for Chapter 5 Worked Examples for Chapter 5 Example for Section 5.2 Construct the primal-dual table and the dual problem for the following linear programming model fitting our standard form. Maximize Z = 5 x 1 + 4 x

More information

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7 Mathematical Foundations -- Constrained Optimization Constrained Optimization An intuitive approach First Order Conditions (FOC) 7 Constraint qualifications 9 Formal statement of the FOC for a maximum

More information

CSE546: SVMs, Dual Formula5on, and Kernels Winter 2012

CSE546: SVMs, Dual Formula5on, and Kernels Winter 2012 CSE546: SVMs, Dual Formula5on, and Kernels Winter 2012 Luke ZeClemoyer Slides adapted from Carlos Guestrin Linear classifiers Which line is becer? w. = j w (j) x (j) Data Example i Pick the one with the

More information

Lagrange duality. The Lagrangian. We consider an optimization program of the form

Lagrange duality. The Lagrangian. We consider an optimization program of the form Lagrange duality Another way to arrive at the KKT conditions, and one which gives us some insight on solving constrained optimization problems, is through the Lagrange dual. The dual is a maximization

More information

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Classifica(on III. Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Classifica(on III Taylor Berg- Kirkpatrick CMU Slides: Dan Klein UC Berkeley The Perceptron, Again Start with zero weights Visit training instances one by one Try to classify If correct,

More information

Intermediate Algebra. 7.6 Quadratic Inequalities. Name. Problem Set 7.6 Solutions to Every Odd-Numbered Problem. Date

Intermediate Algebra. 7.6 Quadratic Inequalities. Name. Problem Set 7.6 Solutions to Every Odd-Numbered Problem. Date 7.6 Quadratic Inequalities 1. Factoring the inequality: x 2 + x! 6 > 0 ( x + 3) ( x! 2) > 0 The solution set is x 2. Graphing the solution set: 3. Factoring the inequality: x 2! x! 12 " 0 (

More information

Architectures and Algorithms for Distributed Generation Control of Inertia-Less AC Microgrids

Architectures and Algorithms for Distributed Generation Control of Inertia-Less AC Microgrids Architectures and Algorithms for Distributed Generation Control of Inertia-Less AC Microgrids Alejandro D. Domínguez-García Coordinated Science Laboratory Department of Electrical and Computer Engineering

More information

Optimality Conditions

Optimality Conditions Chapter 2 Optimality Conditions 2.1 Global and Local Minima for Unconstrained Problems When a minimization problem does not have any constraints, the problem is to find the minimum of the objective function.

More information

Elaborazione delle Immagini Informazione multimediale - Immagini. Raffaella Lanzarotti

Elaborazione delle Immagini Informazione multimediale - Immagini. Raffaella Lanzarotti Elaborazione delle Immagini Informazione multimediale - Immagini Raffaella Lanzarotti OPTICAL FLOW Thanks to prof. Mubarak Shah,UCF 2 Video Video: sequence of frames (images) catch in the time Data: function

More information

Nonlinear Programming and the Kuhn-Tucker Conditions

Nonlinear Programming and the Kuhn-Tucker Conditions Nonlinear Programming and the Kuhn-Tucker Conditions The Kuhn-Tucker (KT) conditions are first-order conditions for constrained optimization problems, a generalization of the first-order conditions we

More information

Chapter 3. Loop and Cut-set Analysis

Chapter 3. Loop and Cut-set Analysis Chapter 3. Loop and Cut-set Analysis By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical Engineering, K.N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/electriccircuits2.htm References:

More information

3.10 Lagrangian relaxation

3.10 Lagrangian relaxation 3.10 Lagrangian relaxation Consider a generic ILP problem min {c t x : Ax b, Dx d, x Z n } with integer coefficients. Suppose Dx d are the complicating constraints. Often the linear relaxation and the

More information

1. Introduction. 2. Outlines

1. Introduction. 2. Outlines 1. Introduction Graphs are beneficial because they summarize and display information in a manner that is easy for most people to comprehend. Graphs are used in many academic disciplines, including math,

More information

SECTION 5.1: Polynomials

SECTION 5.1: Polynomials 1 SECTION 5.1: Polynomials Functions Definitions: Function, Independent Variable, Dependent Variable, Domain, and Range A function is a rule that assigns to each input value x exactly output value y =

More information

Distributed quasi-newton method and its application to the optimal reactive power flow problem

Distributed quasi-newton method and its application to the optimal reactive power flow problem 1 Distributed quasi-newton method and its application to the optimal reactive power flow problem Saverio Bolognani Power distribution networks 2 Transmission Grid Distribution Grid up to ~150 MW Rural

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control 19/4/2012 Lecture content Problem formulation and sample examples (ch 13.1) Theoretical background Graphical

More information

Introduc on to Choosing a Kriging Plan

Introduc on to Choosing a Kriging Plan Introduc on to Choosing a Kriging Plan Clayton Deutsch 1 and Jared Deutsch 2 1 University of Alberta 2 University of Alberta Learning Objec ves Classify es mates according to their purpose: interim es

More information

Scalable Compu-ng Challenges in Ensemble Data Assimila-on. FRCRC Symposium Nancy Collins NCAR - IMAGe/DAReS 14 Aug 2013

Scalable Compu-ng Challenges in Ensemble Data Assimila-on. FRCRC Symposium Nancy Collins NCAR - IMAGe/DAReS 14 Aug 2013 Scalable Compu-ng Challenges in Ensemble Data Assimila-on FRCRC Symposium Nancy Collins NCAR - IMAGe/DAReS 14 Aug 2013 Overview What is Data Assimila-on? What is DART? Current Work on Highly Scalable Systems

More information

Energy System Modelling Summer Semester 2018, Lecture 7

Energy System Modelling Summer Semester 2018, Lecture 7 Energy System Modelling Summer Semester 2018, Lecture 7 Dr. Tom Brown, tom.brown@kit.edu, https://nworbmot.org/ Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics

More information

Fall 2017 Qualifier Exam: OPTIMIZATION. September 18, 2017

Fall 2017 Qualifier Exam: OPTIMIZATION. September 18, 2017 Fall 2017 Qualifier Exam: OPTIMIZATION September 18, 2017 GENERAL INSTRUCTIONS: 1 Answer each question in a separate book 2 Indicate on the cover of each book the area of the exam, your code number, and

More information

Support Vector Machines for Regression

Support Vector Machines for Regression COMP-566 Rohan Shah (1) Support Vector Machines for Regression Provided with n training data points {(x 1, y 1 ), (x 2, y 2 ),, (x n, y n )} R s R we seek a function f for a fixed ɛ > 0 such that: f(x

More information

Constrained optimization

Constrained optimization Constrained optimization DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Compressed sensing Convex constrained

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 18 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 31, 2012 Andre Tkacenko

More information

Part IB Optimisation

Part IB Optimisation Part IB Optimisation Theorems Based on lectures by F. A. Fischer Notes taken by Dexter Chua Easter 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

Math-2A Lesson 13-3 (Analyzing Functions, Systems of Equations and Inequalities) Which functions are symmetric about the y-axis?

Math-2A Lesson 13-3 (Analyzing Functions, Systems of Equations and Inequalities) Which functions are symmetric about the y-axis? Math-A Lesson 13-3 (Analyzing Functions, Systems of Equations and Inequalities) Which functions are symmetric about the y-axis? f ( x) x x x x x x 3 3 ( x) x We call functions that are symmetric about

More information

The Fundamental Welfare Theorems

The Fundamental Welfare Theorems The Fundamental Welfare Theorems The so-called Fundamental Welfare Theorems of Economics tell us about the relation between market equilibrium and Pareto efficiency. The First Welfare Theorem: Every Walrasian

More information

Bioelectrical Circuits: Lecture 9

Bioelectrical Circuits: Lecture 9 City University of New York (CUNY) CUNY Academic Works Open Educational Resources City College of New York 2019 Bioelectrical Circuits: Lecture 9 Jacek P. Dmochowski CUNY City College Luis Cardoso CUNY

More information

Routing. Topics: 6.976/ESD.937 1

Routing. Topics: 6.976/ESD.937 1 Routing Topics: Definition Architecture for routing data plane algorithm Current routing algorithm control plane algorithm Optimal routing algorithm known algorithms and implementation issues new solution

More information

Optimization Theory. Lectures 4-6

Optimization Theory. Lectures 4-6 Optimization Theory Lectures 4-6 Unconstrained Maximization Problem: Maximize a function f:ú n 6 ú within a set A f ú n. Typically, A is ú n, or the non-negative orthant {x0ú n x$0} Existence of a maximum:

More information

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE E-BOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF

More information

Topics we covered. Machine Learning. Statistics. Optimization. Systems! Basics of probability Tail bounds Density Estimation Exponential Families

Topics we covered. Machine Learning. Statistics. Optimization. Systems! Basics of probability Tail bounds Density Estimation Exponential Families Midterm Review Topics we covered Machine Learning Optimization Basics of optimization Convexity Unconstrained: GD, SGD Constrained: Lagrange, KKT Duality Linear Methods Perceptrons Support Vector Machines

More information

arxiv: v3 [math.oc] 2 Oct 2012

arxiv: v3 [math.oc] 2 Oct 2012 1 A distributed control strategy for reactive power compensation in smart microgrids Saverio Bolognani and Sandro Zampieri arxiv:1106.5626v3 [math.o 2 Oct 2012 Abstract We consider the problem of optimal

More information

Congestion Management in a Smart Grid via Shadow Prices

Congestion Management in a Smart Grid via Shadow Prices Congestion Management in a Smart Grid via Shadow Prices Benjamin Biegel, Palle Andersen, Jakob Stoustrup, Jan Bendtsen Systems of Systems October 23, 2012 1 This presentation use of distributed Receding

More information

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ. Mohr s Circle By drawing Mohr s circle, the stress transformation in -D can be done graphically. σ = σ x + σ y τ = σ x σ y + σ x σ y cos θ + τ xy sin θ, 1 sin θ + τ xy cos θ. Note that the angle of rotation,

More information

Max Margin-Classifier

Max Margin-Classifier Max Margin-Classifier Oliver Schulte - CMPT 726 Bishop PRML Ch. 7 Outline Maximum Margin Criterion Math Maximizing the Margin Non-Separable Data Kernels and Non-linear Mappings Where does the maximization

More information

Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium

Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium Exercises 8 Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium Objectives - know and understand the relation between a quadratic function and a quadratic

More information

Experiment 1: Linear Regression

Experiment 1: Linear Regression Experiment 1: Linear Regression August 27, 2018 1 Description This first exercise will give you practice with linear regression. These exercises have been extensively tested with Matlab, but they should

More information

SIGNIFICANT increase in amount of private distributed

SIGNIFICANT increase in amount of private distributed 1 Distributed DC Optimal Power Flow for Radial Networks Through Partial Primal Dual Algorithm Vahid Rasouli Disfani, Student Member, IEEE, Lingling Fan, Senior Member, IEEE, Zhixin Miao, Senior Member,

More information

Convex Optimization and Support Vector Machine

Convex Optimization and Support Vector Machine Convex Optimization and Support Vector Machine Problem 0. Consider a two-class classification problem. The training data is L n = {(x 1, t 1 ),..., (x n, t n )}, where each t i { 1, 1} and x i R p. We

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Ryan M. Rifkin Google, Inc. 2008 Plan Regularization derivation of SVMs Geometric derivation of SVMs Optimality, Duality and Large Scale SVMs The Regularization Setting (Again)

More information

A Market Mechanism for Electric Distribution Networks

A Market Mechanism for Electric Distribution Networks 2015 IEEE 54th Annual Conference on Decision and Control (CDC) December 15-18, 2015. Osaa, Japan A Maret Mechanism for Electric Distribution Networs Na Li Abstract To encourage end-users to participate

More information

Fall 2011 ME 2305 Network Analysis. Sinusoidal Steady State Analysis of RLC Circuits

Fall 2011 ME 2305 Network Analysis. Sinusoidal Steady State Analysis of RLC Circuits Fall 2011 ME 2305 Network Analysis Chapter 4 Sinusoidal Steady State Analysis of RLC Circuits Engr. Humera Rafique Assistant Professor humera.rafique@szabist.edu.pk Faculty of Engineering (Mechatronics)

More information

SVMs, Duality and the Kernel Trick

SVMs, Duality and the Kernel Trick SVMs, Duality and the Kernel Trick Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 26 th, 2007 2005-2007 Carlos Guestrin 1 SVMs reminder 2005-2007 Carlos Guestrin 2 Today

More information

Workshop I The R n Vector Space. Linear Combinations

Workshop I The R n Vector Space. Linear Combinations Workshop I Workshop I The R n Vector Space. Linear Combinations Exercise 1. Given the vectors u = (1, 0, 3), v = ( 2, 1, 2), and w = (1, 2, 4) compute a) u + ( v + w) b) 2 u 3 v c) 2 v u + w Exercise 2.

More information

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization Convex Optimization Ofer Meshi Lecture 6: Lower Bounds Constrained Optimization Lower Bounds Some upper bounds: #iter μ 2 M #iter 2 M #iter L L μ 2 Oracle/ops GD κ log 1/ε M x # ε L # x # L # ε # με f

More information

4.1 Solving Systems of Equations Graphically. Draw pictures to represent the possible number of solutions that a linear-quadratic system can have:

4.1 Solving Systems of Equations Graphically. Draw pictures to represent the possible number of solutions that a linear-quadratic system can have: 4.1 Solving Systems of Equations Graphically Linear- Quadratic A Linear-Quadratic System of Equations is a linear equation and a quadratic equation involving the same two variables. The solution(s) to

More information

Quadratic function - Test Yourself

Quadratic function - Test Yourself Quadratic function - Test Yourself All Multiple choice Instructions: 1. Read the questions carefully. 2. Solve each problem and decide which of the offered answer choices is correct. 3. ENJOY 1. Which

More information

Lesson 9 Exploring Graphs of Quadratic Functions

Lesson 9 Exploring Graphs of Quadratic Functions Exploring Graphs of Quadratic Functions Graph the following system of linear inequalities: { y > 1 2 x 5 3x + 2y 14 a What are three points that are solutions to the system of inequalities? b Is the point

More information

Dual Decomposition.

Dual Decomposition. 1/34 Dual Decomposition http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes Outline 2/34 1 Conjugate function 2 introduction:

More information

DLM: Decentralized Linearized Alternating Direction Method of Multipliers

DLM: Decentralized Linearized Alternating Direction Method of Multipliers 1 DLM: Decentralized Linearized Alternating Direction Method of Multipliers Qing Ling, Wei Shi, Gang Wu, and Alejandro Ribeiro Abstract This paper develops the Decentralized Linearized Alternating Direction

More information

Chapter 7. Optimization and Minimum Principles. 7.1 Two Fundamental Examples. Least Squares

Chapter 7. Optimization and Minimum Principles. 7.1 Two Fundamental Examples. Least Squares Chapter 7 Optimization and Minimum Principles 7 Two Fundamental Examples Within the universe of applied mathematics, optimization is often a world of its own There are occasional expeditions to other worlds

More information

Linear Programming Duality

Linear Programming Duality Summer 2011 Optimization I Lecture 8 1 Duality recap Linear Programming Duality We motivated the dual of a linear program by thinking about the best possible lower bound on the optimal value we can achieve

More information

Machine Learning And Applications: Supervised Learning-SVM

Machine Learning And Applications: Supervised Learning-SVM Machine Learning And Applications: Supervised Learning-SVM Raphaël Bournhonesque École Normale Supérieure de Lyon, Lyon, France raphael.bournhonesque@ens-lyon.fr 1 Supervised vs unsupervised learning Machine

More information

The Fundamental Welfare Theorems

The Fundamental Welfare Theorems The Fundamental Welfare Theorems The so-called Fundamental Welfare Theorems of Economics tell us about the relation between market equilibrium and Pareto efficiency. The First Welfare Theorem: Every Walrasian

More information

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem:

The Lagrangian L : R d R m R r R is an (easier to optimize) lower bound on the original problem: HT05: SC4 Statistical Data Mining and Machine Learning Dino Sejdinovic Department of Statistics Oxford Convex Optimization and slides based on Arthur Gretton s Advanced Topics in Machine Learning course

More information

2.098/6.255/ Optimization Methods Practice True/False Questions

2.098/6.255/ Optimization Methods Practice True/False Questions 2.098/6.255/15.093 Optimization Methods Practice True/False Questions December 11, 2009 Part I For each one of the statements below, state whether it is true or false. Include a 1-3 line supporting sentence

More information

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem:

Motivation. Lecture 2 Topics from Optimization and Duality. network utility maximization (NUM) problem: CDS270 Maryam Fazel Lecture 2 Topics from Optimization and Duality Motivation network utility maximization (NUM) problem: consider a network with S sources (users), each sending one flow at rate x s, through

More information

Support Vector Machines, Kernel SVM

Support Vector Machines, Kernel SVM Support Vector Machines, Kernel SVM Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 27, 2017 1 / 40 Outline 1 Administration 2 Review of last lecture 3 SVM

More information

The System's Limitations Costs Determination Using the Duality Concept of Linear Programming

The System's Limitations Costs Determination Using the Duality Concept of Linear Programming Volume 3, Number 1, 1 he System's Limitations Costs etermination Using the uality Concept of Linear rogramming MAHNIKO Anatolijs, UMBRASHKO Inga, VARFOLOMEJEVA Renata Riga echnical University, Institute

More information

The Envelope Theorem

The Envelope Theorem The Envelope Theorem In an optimization problem we often want to know how the value of the objective function will change if one or more of the parameter values changes. Let s consider a simple example:

More information

Lesson 25 Solving Linear Trigonometric Equations

Lesson 25 Solving Linear Trigonometric Equations Lesson 25 Solving Linear Trigonometric Equations IB Math HL - Santowski EXPLAIN the difference between the following 2 equations: (a) Solve sin(x) = 0.75 (b) Solve sin -1 (0.75) = x Now, use you calculator

More information

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10)

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10) Subject: Optimal Control Assignment- (Related to Lecture notes -). Design a oil mug, shown in fig., to hold as much oil possible. The height and radius of the mug should not be more than 6cm. The mug must

More information

ENGR 2405 Chapter 8. Second Order Circuits

ENGR 2405 Chapter 8. Second Order Circuits ENGR 2405 Chapter 8 Second Order Circuits Overview The previous chapter introduced the concept of first order circuits. This chapter will expand on that with second order circuits: those that need a second

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Support vector machines (SVMs) are one of the central concepts in all of machine learning. They are simply a combination of two ideas: linear classification via maximum (or optimal

More information

Contents Economic dispatch of thermal units

Contents Economic dispatch of thermal units Contents 2 Economic dispatch of thermal units 2 2.1 Introduction................................... 2 2.2 Economic dispatch problem (neglecting transmission losses)......... 3 2.2.1 Fuel cost characteristics........................

More information

LESSON 13.1 NONLINEAR EQUATIONS

LESSON 13.1 NONLINEAR EQUATIONS LESSON. NONLINEAR EQUATIONS LESSON. NONLINEAR EQUATIONS 58 OVERVIEW Here's what you'll learn in this lesson: Solving Equations a. Solving polynomial equations by factoring b. Solving quadratic type equations

More information

Seismologia ja maan rakenne A Seismology and structure of the Earth

Seismologia ja maan rakenne A Seismology and structure of the Earth Seismologia ja maan rakenne 762321A Seismology and structure of the Earth 18.03.2016 Prac-cals 1: Seismic data analysis: poles and zeros, convolu-on and deconvolu-on Main materials: 1) New Manual of Seismological

More information

CHAPTER 1 QUADRATIC FUNCTIONS AND FACTORING

CHAPTER 1 QUADRATIC FUNCTIONS AND FACTORING CHAPTER 1 QUADRATIC FUNCTIONS AND FACTORING Big IDEAS: 1) Graphing and writing quadratic functions in several forms ) Solving quadratic equations using a variety of methods 3) Performing operations with

More information

Bellman s Curse of Dimensionality

Bellman s Curse of Dimensionality Bellman s Curse of Dimensionality n- dimensional state space Number of states grows exponen

More information

4. Duality Duality 4.1 Duality of LPs and the duality theorem. min c T x x R n, c R n. s.t. ai Tx = b i i M a i R n

4. Duality Duality 4.1 Duality of LPs and the duality theorem. min c T x x R n, c R n. s.t. ai Tx = b i i M a i R n 2 4. Duality of LPs and the duality theorem... 22 4.2 Complementary slackness... 23 4.3 The shortest path problem and its dual... 24 4.4 Farkas' Lemma... 25 4.5 Dual information in the tableau... 26 4.6

More information

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Lecture Notes on Support Vector Machine

Lecture Notes on Support Vector Machine Lecture Notes on Support Vector Machine Feng Li fli@sdu.edu.cn Shandong University, China 1 Hyperplane and Margin In a n-dimensional space, a hyper plane is defined by ω T x + b = 0 (1) where ω R n is

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

Algebra 1 Practice Test

Algebra 1 Practice Test Part 1: Directions: For questions 1-20, circle the correct answer on your answer sheet. 1. Solve for x: 2(x+ 7) 3(2x-4) = -18 A. x = 5 B. x = 11 C. x = -11 D. x = -5 2. Which system of equations is represented

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Support Vector Machines: Maximum Margin Classifiers

Support Vector Machines: Maximum Margin Classifiers Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 16, 2008 Piotr Mirowski Based on slides by Sumit Chopra and Fu-Jie Huang 1 Outline What is behind

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2015 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

COMP 562: Introduction to Machine Learning

COMP 562: Introduction to Machine Learning COMP 562: Introduction to Machine Learning Lecture 20 : Support Vector Machines, Kernels Mahmoud Mostapha 1 Department of Computer Science University of North Carolina at Chapel Hill mahmoudm@cs.unc.edu

More information

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning Kernel Machines Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 SVM linearly separable case n training points (x 1,, x n ) d features x j is a d-dimensional vector Primal problem:

More information

Lecture 7 Rolling Constraints

Lecture 7 Rolling Constraints Lecture 7 Rolling Constraints The most common, and most important nonholonomic constraints They cannot be wri5en in terms of the variables alone you must include some deriva9ves The resul9ng differen9al

More information

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Karush-Kuhn-Tucker Conditions Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given a minimization problem Last time: duality min x subject to f(x) h i (x) 0, i = 1,... m l j (x) = 0, j =

More information

CS-E4830 Kernel Methods in Machine Learning

CS-E4830 Kernel Methods in Machine Learning CS-E4830 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 27. September, 2017 Juho Rousu 27. September, 2017 1 / 45 Convex optimization Convex optimisation This

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course otes for EE7C (Spring 018): Conve Optimization and Approimation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Ma Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44 Convex Optimization Newton s method ENSAE: Optimisation 1/44 Unconstrained minimization minimize f(x) f convex, twice continuously differentiable (hence dom f open) we assume optimal value p = inf x f(x)

More information

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004

Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 Linear Programming Duality P&S Chapter 3 Last Revised Nov 1, 2004 1 In this section we lean about duality, which is another way to approach linear programming. In particular, we will see: How to define

More information

Unit 9: Quadratics Intercept Form

Unit 9: Quadratics Intercept Form For Teacher Use Packet Score: Name: Period: Algebra 1 Unit 9: Quadratics Intercept Form Note & Homework Packet Date Topic/Assignment HW Page 9-A Graphing Parabolas in Intercept Form 9-B Solve Quadratic

More information