Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at"

Transcription

1 Queues with Time-Dependent Arrival Rates: II. The Maximum Queue and the Return to Equilibrium Author(s): G. F. Newell Source: Journal of Applied Probability, Vol. 5, No. 3 (Dec., 1968), pp Published by: Applied Probability Trust Stable URL: Accessed: :31 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact Applied Probability Trust is collaborating with JSTOR to digitize, preserve and extend access to Journal of Applied Probability

2 J. Appl. Prob. 5, (1968) Printed in Israel QUEUES WITH TIME-DEPENDENT ARRIVAL RATES II - THE MAXIMUM QUEUE AND THE RETURN TO EQUILIBRIUM G. F. NEWELL, Institute of Transportation and Traffic Engineering, University of California, Berkeley Abstract During a rushjhour, the arrival rate A(t) of customers to a service facility is assumed to increase to a maximum value exceeding the service rate j, and then decrease again. In Part I it was shown that, after A(t) has passed p, the expected queue E{X(t)} exceeds that given by the deterministic theory by a fixed amount, (0.95)L, which is proportional to the (-1/3) power of a(t) = da(t)/dt evaluated at time t = 0 when A(t) = p. The maximum of E(X(t)}, therefore, occurs when A(t) again is equal to p at time tl as predicted by deterministic queueing theory, but is larger than given by the deterministic theory by this same constant (0.95)L (provided tl is sufficiently large). It is shown here that the maximum queue, suptx(t) is, approximately normally distributed with a mean (0.95) (L + L1) larger than predicted by deterministic theory where L1 is proportional to the (-1/3) power of a(ti). We also investigate the distribution of X(t) at the end of the rush hour when the queue distribution returns to equilibrium. During the transition, the queue distribution is approximately a mixture of a truncated normal and the equilibrium distributions. These results are applied to a case where A(t) is quadratic in t. 1. Introduction In real life queueing situations it is quite common that customers arrive at a service facility at a time dependent rate 2(t). During a rush hour, A(t) increases to a maximum that exceeds the service capacity p and then subsides again. In Part I [1] we investigated the approximate distribution of queue length X(t) as a function of t, particularly over the transition region where 2(t) is increasing and passing through the saturation point 2(t) = p. We also determined the limit distributions for X(t) that will exist after the average queue has become so large as to have a negligible probability of being zero. It was assumed in I that A(t) increased approximately linearly with t during the transition period. The following is a continuation of Part I. We consider here some further properties of the same type of queueing situation but at some later period of time. Received 20 November

3 580 G. F. NEWELL In particular, we shall investigate (1) the distribution function of the maximum queue to occur during the rush hour, supx(t), which we expect will occur near the time when A(t) has passed through its maximum and is again approximately equal to yu; and (2) the evolution of the queue distribution after 2(t) has been less than yi long enough so that the queue has come back to zero again. As in I*, we will continue to identify t = 0 as the time when (t) = u for the first time. We also assume that dl(t)/dt remains nearly constant for It T, I(16a). Subsequently, however, d2(t)/dt starts to decrease. Eventually 2(t) reaches a maximum and then decreases. It passes through y again and continues to decrease until it becomes arbitrarily small. The maximum queue length will not occur until such time that the queue distribution is approximately normal with mean and variance given by 1(20), 1(30), and 1(32). The expected queue length (1) E{X(t)} ^,, A- a(u)du has its maximum at time t, when the time derivative of (1) vanishes, i.e. (2) - a(tl) = 2(tl) - y = 0. This is the same as would by given by the deterministic queueing theory, which differs only in that A = 0. In the deterministic queueing theory, one makes no distinction between the actual queue and the expected queue, so the maximum queue and the maximum expected queue are the same. In a stochastic model, however, the maximum queue is a random variable and the expectation of the maximum queue is, in general, larger than the maximum of the expectation of the queue. We would anticipate, though, that the maximum queue would occur at some time in the vicinity of the time tj. In the deterministic theory, the rush hour ends when the queue vanishes, i.e., at such time t2 when t2 (3) foa(u)du = 0. In the stochastic theory we must add a correction for the term A in (1), but, more important than this, we must also consider that the queue does not vanish at a deterministic time. It vanishes for the first time at some random time, and eventually the queue distribution approaches an equilibrium distribution (with a time dependent mean). * Equations from Part I will be designated by I(. ).

4 Queues with time-dependent arrival rates. II: The maximum queue The maximum queue In order to determine the distribution for the maximum queue, we first consider some properties of the function (4) G(x, t, Xo, to, z) = P{X(t)? x and X(rq) z for all r, for xo and x <z, to < t. to < q? t X(to) = x0o For z -+ oo, this function becomes the conditional distribution function for X(t) given that X(to) = xo; identified in 1(17) by the notation F(x, t xo, to). For x -+ z, G(z, t, Xo, to, z) considered as a function of z, is the distribution function for the maximum queue between times to and t, given that the queue is xo at time to, i.e., (5) G(z,t,xo, to, z) = P{ sup X(q)? zix(to) = xo}. to :5 t We assume here that for t sufficiently far away from t,, A(t) is small, and there is a negligible probability that the maximum queue over the whole real time axis - oo to + oo will occur outside some finite time interval around t1. Equivalently, we assume that (5) has a limit for t -+ + oo (6) G(z,oo, xo, to, z) = P{ sup X(q) < z X(to) = x o t?_,<oo which is also a proper distribution function (it has a limit 1 for z ) interpreted as the distribution function for the maximum queue after time to, given that it is xo at time to. Also if we take xo = 0 and let to -+ - oo we obtain a limit (7) G(z) = G(z, oo, O, - oo, z) = P{ sup X(q) < zix(- oo) = 0} - 00oo_!? oo which is a proper distribution function, interpreted as the distribution function of the maximum queue over the infinite time range. We are primarily concerned only with the evaluation of (7), but we must study some of the properties of (4), (5), and (6) as a means to this end. If we consider (4) as a function of the "final state" variables x and t, G is approximately a solution of the forward diffusion equation ag (ag b(t) 82G (8) - a -(-t) + the same equation as for F(x, t) in 1(2) except that G must satisfy the boundary conditions (9a) G(x, t, xo, to, z) -+ 0 for x - 0,

5 582 G. F. NEWELL ag (9b) (x, t, X, to, z) - 0 for x - z, 1 x>xo (9c) G(x, t, xo, to, z) 1~ < for ti to. 0 X < Xo Condition (9a) is the reflecting condition at x = 0, (9b) the absorbing condition at z, and (9c) the initial conditions. Considered as a function of the initial state variables xo and to, G is also approximately a solution of the backward diffusion equation [2], (10) G a G b(to) 02G (10) to a2(to) X2 the adjoint equation to (8), subject to the boundary conditions b(to) ag 2 ax0 (Ila) -a(to)g + 2 ( o -+0 for xo0-+0, (1lb) G(x,t,Xo, to, z) -0 for xo -+z, (I1c) G(x, t, Xo, to, z) -+for toit. Ox <xo Finally, one other important feature of (4) is that it has the semi-group property. For any to < t < tf (12) G(xf, tf, xo, to, z) = dxg(x, t, xo, to, z) G(xf, tf, x, t, z), i.e., the probability of X(r) going from x0 at time to to some state below xf at time tf,, is the probability of going from xo at time to to x at time t, and then from x to below xf at time tf, summed over all "intermediate states" x; all subject to X(ir) staying below z. We will not be able to solve the above equations exactly; the two boundary conditions at both x = 0 and x = z cause complications. To see what sort of approximations may be appropriate, however, consider a typical realization of X(r) such as illustrated in Figure 1. The mean queue represented by the broken line starts from some small value at negative times, rises to a maximum at time t1, and then comes back down. A typical realization may fluctuate about this mean, but on the scale of Figure 1, the fluctuations should be of relatively small amplitude. We are interested in evaluating G for values of z in the vicinity of this maximum. Now pick some time t, T < t < t1 but not too close to t1 and another time t, t, < tf < t, but not too close to either t1 or t2. The process X(q) is not likely to exceed z at any time r < t or r > tf, and is not likely to touch zero at any

6 Queues with time-dependent arrival rates. II: The maximum queue 583 Rea I ization Sx Menueue x to O t tf Time Figure 1 time ir with t < r < tf. Thus the time axis can be divided into regions where only one or the other boundary conditions at x = 0 or x = z are effective. Our procedure for estimating G(z) will be to approximate it by (13) G,(z) f dxg*(x, t)g*(x,t,z) analogous to (12) in which G*(x, t) - G(x, t, O, - oo, + oo) is the solution of (8) and (9) for initial conditions xo = 0 at to = - co and the absorbing barrier removed to + oo. Equivalently, it is the solution of (8) and (9) with condition (9b) replaced by G -+ 1 for x -+ + co. Thus (14) G*(x, t) = F(x, t), with F(x, t) the distribution function for X(t) as evaluated in I. The G*(x, t, z) is a solution of the backward equations (10) and (11) with initial coordinates x and t (instead of xo and to), and final coordinates xf and tf (instead of x and t). The final coordinates are in turn chosen to be xf = z and tf = + 00, but the condition (11a) is replaced by G*(x, t, z) -+ 1 for x -+ - oo, i.e., the reflecting condition at x = 0 is removed. If we were to imagine a hypothetical process Y(tr) which is the same as X(tr) for r < t but for r > t differs from X(r) in that the "queue" Y(r) may become negative without interruption of the service, then G,(z) is the distribution function for the maximum of Y(r) over tr> t. Obviously the maximum X(r) over - oo00 < < + oo00 is at least as large as the maximum of Y(r) over t < q < + 00 on two accounts; first because Y(tr)? X(tr) for all r and secondly because the maximum of X(tr) could occur for r < t. From this we conclude that Gt(z) is not only an approximation to G(z) over some range of t within (0, t1), it is also an upper bound G(z)? Gt(z) for all z and t.

7 584 G. F. NEWELL Also (15) G(z)? min G,(z). Finally, to evaluate G,(z) we must solve the backward diffusion equation for G*(x, t, z). Having removed the reflecting barrier at x = 0, we no longer have a preferred origin from which to measure the queue length. G*(x, t, z) is the conditional probability that the queue will never exceed z after time t, given that it was x at time t. Since the arrivals and departure processes, thus the changes in the queue length, do not depend upon the queue length, with the restriction against negative queues removed, G*(x, t, z) must be a function of t and z - x only, i.e., (16) G*(x, t, z) = G**(z - x, t). The G** is a solution of the equation (17)OG**(., t) = a(t)og**(, t) b(t) 02G(, t) at a 2 02 and the boundary conditions (18a) G**(O,t) = 0 (18b) G**(oo, t) = 1 (18c) G**(o, oo) = 1 for > 0. Condition (18a) implies that the maximum queue must be at least as large as the initial queue; (18b) implies that the maximum queue is a proper random variable; and (18c) implies that in the distant future the arrival rate will be so low that any initial queue is almost certain to decrease after time t. Equations (17) and (18) look very similar to Equations 1(2) and 1(6) of I. If we measure time backwards from tj, by making t' = t1 - t, (17) becomes (19) G**(, + t - t') = a(t a(t t') G**( -, t, )- t') + b(t, 2 - t') 2d2G(, t, - t') which differs from 1(2) only in that F(x, t) is replaced by G**(?, t - t'), the coefficients are evaluated at t1 - t' instead of t, and x, t are replaced by?, t'. Under the same correspondence, the boundary conditions (18) are also identical to 1(6). The time t1 was defined in (2) as a time when a(t) vanished, i.e., a(t - t') vanishes at t' = 0, just as in I, t = 0 was defined as the time when a(t) vanished for the first time. As in I, it is reasonable to assume that in some neighborhood of time t1 a, (t1 - t') varies linearly with t':

8 Queues with time-dependent arrival rates. II: The maximum queue 585 (20) a(tl - t') = p - 2(tl - t') ~ - aclt for some constant a, > 0 (the analogue of 1(14)). At time t1, A(t) is decreasing in t, therefore increasing in t'. Since the equations for G**(?, t) are identical in form to those for F(x, t) in I, we need only translate the properties of F(x, t) from I into corresponding properties for G**(?, t). As in I, there will be a characteristic time and length (21) T,= i P '04) and LL = (I+I )2/3, -. If (20) holds over a time t' of order TI, then G**(?, t) is approximately exponential in? for t' < 0, I1t' T,, i.e., for t-t1 >> T1, (22) G**(?, t) ~ 1 - exp [- 2a(t)?/b(t)]. There is a transition range I t' I = O(T,) where the maximum queue exceeds the value at time t by an amount of order L1. Finally for t' > T, the distribution G**(, t) is approximately normal with a mean (23) A1 - a(u)du and variance (24) B + ftb(u)du, with (25) A, ow(0.95)li and B - (0.3)L2E corresponding to 1(20), 1(30), and 1(32). Some of the qualitative properties of the above are intuitively reasonable. For large t, after the mean queue is decreasing, the peak queue after time t must occur either at time t or within a short time after t before the coefficients a(t) or b(t) have had time to change very much. The exponential distribution agrees with known solutions for constant a(t) and b(t). For t near tx we have again this peculiar dependence of queue length on the (-1/3) power of a, = da(t)/dt. It is clear that if a, is very large, the arrival rate will start to drop before the queue has had time to rise much above its given value at time t. Thus for a, -+ oo, the maximum queue will be arbitrarily close to its value at time t. But if a, is very small, the arrivals and departures stay nearly balanced for a long time. Eventually some fluctuation is likely to cause the queue to rise well above (or below) its value at time t.

9 586 G. F. NEWELL For t < t1, the queue will (on the average) still be increasing after time t and will be approximately normally distributed at time t1. The second terms of (23) and (24) are the mean and variance of the change in queue length from time t to t,. The corrections A1 and B, can be interpreted as a measure of the difference between the distribution of the peak queue and the distribution of the queue at time 1, when the mean queue is largest. If t, > T+ T1, and we choose t so that t > T and t -t > T1, then G**((, t), G*(x, t, z) from (16), and G*(x, t) from (14) are all normal distributions. Gt(z) is a convolution of two normal distributions which is also normal with a mean equal to the sum of the means of G*(x, t, z) and G*(x, t), (26) A + A - a(u)du = (0.95)(L + L1) + f[(u) - p ]du, and a variance equal to the sum of the variances, (27) B + B + b(u)du -(0.3)(L2 + L2) + [IhA(u) + It]duu. This Gt(z) is our estimate of the distribution function G(z) for the maximum queue. Note that for t in the range specified above, G,(z) does not depend upon t. In (26), the integral represents the peak queue as given by the deterministic queueing model. The term (0.95) (L + L,) is the excess due to stochastic effects. In (27) the integral represents the variance of the uninterrupted arrival and departure processes during the time 0 to t,. The first terms of (26) and (27) are valid estimates only if these terms are small compared with the second terms. Thus (26), in particular, is justified only if the deterministic theory already is a reasonable first approximation. The deterministic queueing models, however, do not define even approximately the conditions for their own validity. From (26) and some of the qualitative properties of the errors made in its derivation, one can also infer a converse. If the first term of (26) is not small compared with the second, then neither the deterministic model nor (26) is valid. 3. Return to equilibrium In the section of I dealing with undersaturated conditions, we saw that for any time to, there are a characteristic length Lo and characteristic time To (28) Lo = b(to)/a(to), To = b(to)la2(to) which represent respectively the scale of the equilibrium queue length and the relaxation time (the time it would take a queue of order Lo to become distributed approximately as the equilibrium distribution). In the vicinity of the second transition time t1, the characteristic length and time L, and T1, (21), are of the same order as Lo and To evaluated at time

10 Queues with time-dependent arrival rates. II: The maximum queue 587 to ~ t1 + T1. This time to represents about the end of the transition region and is characterized by this condition that the equilibrium scales of length and time are comparable with those for the transition. As t continues to increase past t, + T1, a(t) also increases, causing Lo and To both to decrease. For t - tj > T,, we would expect that Lo '< L, and To < <T,. In particular, we would expect this to apply by the time t ~ t2, (3), when the large queue built up during the time 0 to t, has been cut down to a small value again. Until there is a significant probability that the queue has vanished, the queue distribution will be normally distributed as in 1(20). The mean queue length is decreasing toward zero but the variance of the queue (under previously assumed properties) will be large compared with Li, which in turn is large compared with Lo2 for t - t2. Thus as t increases toward t2, the distribution of queue length is spread over a range which is very large compared with the local characteristic scale of length Lo. Suppose that for some time t near t2, we wish to evaluate 1 - F(x,t) = P(X(t) > x) for some x large compared with Lo. If there were no reflecting barrier at x = 0, this probability would be given by the normal distribution 1(20). But there is a negligible probability that any realization of X(ir) could pass through the state X(r) = 0 for tj < t and subsequently reach a value larger than x at time t, with or without reflection from the barrier. If there were no reflection, then according to (22), the maximum queue length that would be realized after the queue has vanished is of order Lo. If there is reflection, then a queue of length comparable with Lo at time ri would become distributed like the equilibrium distribution within a time of order To, and would have a very small probability of reaching a value large compared with Lo at any time t > ij. Thus for x > Lo, the distribution 1 - F(x, t) must be the tail of the normal distribution 1(20) in the absence of a barrier, and arise from queue realizations which have not yet hit the barrier. The probability mass that has not yet hit the barrier x = 0 by time t, is moving toward the barrier at an average "velocity" of Lo/To. The amount that will hit the barrier for the first time during a time interval of duration To must be of the order of the amount of probability mass in some queue range of width Lo. Since the probability mass that has not yet hit the barrier is approximately normally distributed on a scale of queue length large compared with Lo, only a small amount of this probability lies in any queue interval of width Lo and can hit the barrier during a time interval of duration To. Any non-negligible probability not contained in the normally distributed tail at time t, must therefore have hit the barrier for the first time at a time earlier than t by an amount appreciably larger than To, and will have become distributed approximately as the prevailing equilibrium distribution by time t.

11 588 G. F. NEWELL The queue distribution at time t must therefore be given approximately by (29) Fo(x, t) + F(O, t)exp[-2a(t)x/b(t)] for x > 0, 1 for x <0, where Fo(x, t) is the normal distribution function of 1(20) Fo(x, t) = (x -- m(t) (29a) m(t) A - f a(u)du a2(t)~ B + fb(u)du. The first part of (29) is the probability mass that has not yet reached x = 0; the second part is that which has hit the barrier and gone into the equilibrium distribution. The first part has a relatively long tail compared with the second. The queue distribution will approach the equilibrium distribution as Fo(O, t) approaches 1, i.e., at such time t3 that the mean of the normal distribution is negative by about one standard deviation u(t) (30) fo a(u)du {,fb(u)du}/ (since the right hand side of (30) is assumed to be large compared with L, we can neglect the A and B in (29a)). The mean queue length during this last transition will be Sm ( t) a 2(t) E{X(t)}.^ m(t) (u(t) ( + (27r) ( exp2-- /2 12U(t) 2 (31) ( m1 + m(t) b(t) for t -tx > T1. 4. Example (a(t) 2a(t) Here and in I we have considered the properties of a queue when the arrival rate 2(t) increased to a maximum and then decreased again. We assumed that 2(t) was approximately linear in t over the transition regions near t = 0 and t = t but otherwise )(t) could have a more or less arbitrary analytic form. To illustrate the application of the theory, we consider in more detail an example in which 2(t) is a quadratic function of t, the simplest analytic form consistent with the assumed shape for 2(t). We also assume that b(t)= b is constant over the time range of interest.

12 Queues with time-dependent arrival rates. II: The maximum queue 589 If as in I we choose t = 0 as the time when a(t) = 0 and we rescale the time and length coordinates with units T and L, we can assume that a(t) and b(t) have the form (32) a(t) = - t + t2/y, b(t) = 1 for some constant y. In order that a(t) be nearly linear over the first transition (over a range I t = 0(1)), we must have y > 1. The deterministic queueing theory predicts a queue rtp t2 t 3y ( 2 - /y)dt =,for 0 <t < (33) E{X(t)} f , for t < 0 or t > 3y/2. This is shown by the dotted curve of Figure 2. The maximum queue occurs at t = y and has a value of y2/6. Figure 2 is drawn for y = 5 which is already easily large enough to qualify as "large compared with 1". 7 l x, \ 6tY=5 4 I 1 6/ \ 6/ 0.95 Pt- % 6 / \I CM= \ 3 /\ l ". o~' - 'j\(t) 3 \ - ~ Equilibrium\ Mean7` -i i 3 4 Figure 2 Time \2(3, ) Also shown in Figure 2 is the mean queue as given by the diffusion approximation (solid line). Near t = 0, E(X(t)} is of order 1. It is copied directly from Figure 2 of I. From t ~ 1 until t ~ 3y/2, the mean queue exceeds (33) by A ~ Near t = 3y/2, the mean queue is evaluated from (29). The broken line curves of Figure 2 show the mean + the standard deviation of X(t). The variance of X(t) is determined directly from Figure 3 of I for t = 0(1). For t < 1 until t ~ 3y/2, it is

13 590 G. F. NEWELL r2(t)= b(u)du = t. Near t = 3y/2, it must be found from (19). At the maximum point t = y, the standard deviation of X(t) is ( y)1/2 ~ y1/2; as t approaches 3y/2, the standard deviation is about (3y/2)1/2 The queue distribution goes into its equilibrium distribution at time about t3 given by (30), i.e., when t t2 1/2 3y 3y 2 t or t3-12 3y 2t 2 t3/2 (3y/2)1/2 The final equilibrium distribution has a mean b(t) 1 2 2(at) 2a(t2) 3y Figure 2 shows that the first transition region near t = 0 ends when the mean - a(t) starts to drift away from zero. The last transition region near 3y/2 starts when the mean - oa(t) gets close to zero again signalling the start of reflections off the boundary. At this time the mean of the distribution (31) also starts to deviate from the mean of the normal distribution, m1(t). From a mathematical point of view, it is rather surprising that an equation of such simple form as the diffusion equation, involving only one parameter y, has a solution, important features of which involve such a variety of powers of the parameter. The units have been chosen so that queue lengths and the transition time near t = 0 are of order 1, i.e., y0. The maximum queue is of order y2 and it occurs at a time of order y'. The fluctuations in the queue as measured by the standard deviation are typically of order y'./ The transition time to the equilibrium state near time t2 is Of order y-' 1/2 and the final equilibrium distribution has a queue length of order y-. There are six different powers of y in this description. It is clear that the form of the solution is meaningful only if y > 1. If y becomes less than 1, the relative order of all these powers of y would be reversed and nothing would make much sense anymore. We shall see in Part III that for y < 1 one obtains some solutions of a different type involving still other powers of y, namely y1/5 and,2/5. References [1] NEWELL, G. F. (1968) Queues with time-dependent arrival rates. I - The transition through saturation. J. Appl. Prob. 5, [2] Cox, D. R. AND MILLER, H. D. (1965) The Theory of Stochastic Processes. Chapter 5. John Wiley & Sons, New York.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at On the Estimation of the Intensity Function of a Stationary Point Process Author(s): D. R. Cox Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 27, No. 2 (1965), pp. 332-337

More information

Biometrika Trust. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika.

Biometrika Trust. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika. Biometrika Trust Discrete Sequential Boundaries for Clinical Trials Author(s): K. K. Gordon Lan and David L. DeMets Reviewed work(s): Source: Biometrika, Vol. 70, No. 3 (Dec., 1983), pp. 659-663 Published

More information

The Periodogram and its Optical Analogy.

The Periodogram and its Optical Analogy. The Periodogram and Its Optical Analogy Author(s): Arthur Schuster Reviewed work(s): Source: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,

More information

Week 9 Generators, duality, change of measure

Week 9 Generators, duality, change of measure Week 9 Generators, duality, change of measure Jonathan Goodman November 18, 013 1 Generators This section describes a common abstract way to describe many of the differential equations related to Markov

More information

Biometrika Trust. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika.

Biometrika Trust. Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika. Biometrika Trust An Improved Bonferroni Procedure for Multiple Tests of Significance Author(s): R. J. Simes Source: Biometrika, Vol. 73, No. 3 (Dec., 1986), pp. 751-754 Published by: Biometrika Trust Stable

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. Measuring the Speed and Altitude of an Aircraft Using Similar Triangles Author(s): Hassan Sedaghat Source: SIAM Review, Vol. 33, No. 4 (Dec., 1991), pp. 650-654 Published by: Society for Industrial and

More information

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica.

The Econometric Society is collaborating with JSTOR to digitize, preserve and extend access to Econometrica. A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision Author(s): Kenneth O. May Source: Econometrica, Vol. 20, No. 4 (Oct., 1952), pp. 680-684 Published by: The Econometric

More information

GENERALIZED ANNUITIES AND ASSURANCES, AND INTER-RELATIONSHIPS. BY LEIGH ROBERTS, M.Sc., ABSTRACT

GENERALIZED ANNUITIES AND ASSURANCES, AND INTER-RELATIONSHIPS. BY LEIGH ROBERTS, M.Sc., ABSTRACT GENERALIZED ANNUITIES AND ASSURANCES, AND THEIR INTER-RELATIONSHIPS BY LEIGH ROBERTS, M.Sc., A.I.A ABSTRACT By the definition of generalized assurances and annuities, the relation is shown to be the simplest

More information

Stochastic Modelling Unit 1: Markov chain models

Stochastic Modelling Unit 1: Markov chain models Stochastic Modelling Unit 1: Markov chain models Russell Gerrard and Douglas Wright Cass Business School, City University, London June 2004 Contents of Unit 1 1 Stochastic Processes 2 Markov Chains 3 Poisson

More information

THE INTERCHANGEABILITY OF./M/1 QUEUES IN SERIES. 1. Introduction

THE INTERCHANGEABILITY OF./M/1 QUEUES IN SERIES. 1. Introduction THE INTERCHANGEABILITY OF./M/1 QUEUES IN SERIES J. Appl. Prob. 16, 690-695 (1979) Printed in Israel? Applied Probability Trust 1979 RICHARD R. WEBER,* University of Cambridge Abstract A series of queues

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at A Simple Non-Desarguesian Plane Geometry Author(s): Forest Ray Moulton Source: Transactions of the American Mathematical Society, Vol. 3, No. 2 (Apr., 1902), pp. 192-195 Published by: American Mathematical

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. 6625 Author(s): Nicholas Strauss, Jeffrey Shallit, Don Zagier Source: The American Mathematical Monthly, Vol. 99, No. 1 (Jan., 1992), pp. 66-69 Published by: Mathematical Association of America Stable

More information

Derivation of Itô SDE and Relationship to ODE and CTMC Models

Derivation of Itô SDE and Relationship to ODE and CTMC Models Derivation of Itô SDE and Relationship to ODE and CTMC Models Biomathematics II April 23, 2015 Linda J. S. Allen Texas Tech University TTU 1 Euler-Maruyama Method for Numerical Solution of an Itô SDE dx(t)

More information

Operations Research, Vol. 30, No. 2. (Mar. - Apr., 1982), pp

Operations Research, Vol. 30, No. 2. (Mar. - Apr., 1982), pp Ronald W. Wolff Operations Research, Vol. 30, No. 2. (Mar. - Apr., 1982), pp. 223-231. Stable URL: http://links.jstor.org/sici?sici=0030-364x%28198203%2f04%2930%3a2%3c223%3apasta%3e2.0.co%3b2-o Operations

More information

HITTING TIME IN AN ERLANG LOSS SYSTEM

HITTING TIME IN AN ERLANG LOSS SYSTEM Probability in the Engineering and Informational Sciences, 16, 2002, 167 184+ Printed in the U+S+A+ HITTING TIME IN AN ERLANG LOSS SYSTEM SHELDON M. ROSS Department of Industrial Engineering and Operations

More information

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.)

THEODORE VORONOV DIFFERENTIABLE MANIFOLDS. Fall Last updated: November 26, (Under construction.) 4 Vector fields Last updated: November 26, 2009. (Under construction.) 4.1 Tangent vectors as derivations After we have introduced topological notions, we can come back to analysis on manifolds. Let M

More information

Continuous-Time Markov Chain

Continuous-Time Markov Chain Continuous-Time Markov Chain Consider the process {X(t),t 0} with state space {0, 1, 2,...}. The process {X(t),t 0} is a continuous-time Markov chain if for all s, t 0 and nonnegative integers i, j, x(u),

More information

NEW FRONTIERS IN APPLIED PROBABILITY

NEW FRONTIERS IN APPLIED PROBABILITY J. Appl. Prob. Spec. Vol. 48A, 209 213 (2011) Applied Probability Trust 2011 NEW FRONTIERS IN APPLIED PROBABILITY A Festschrift for SØREN ASMUSSEN Edited by P. GLYNN, T. MIKOSCH and T. ROLSKI Part 4. Simulation

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Biometrika Trust The Use of a Concomitant Variable in Selecting an Experimental Design Author(s): D. R. Cox Source: Biometrika, Vol. 44, No. 1/2 (Jun., 1957), pp. 150-158 Published by: Oxford University

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

LECTURE #6 BIRTH-DEATH PROCESS

LECTURE #6 BIRTH-DEATH PROCESS LECTURE #6 BIRTH-DEATH PROCESS 204528 Queueing Theory and Applications in Networks Assoc. Prof., Ph.D. (รศ.ดร. อน นต ผลเพ ม) Computer Engineering Department, Kasetsart University Outline 2 Birth-Death

More information

221A Lecture Notes Convergence of Perturbation Theory

221A Lecture Notes Convergence of Perturbation Theory A Lecture Notes Convergence of Perturbation Theory Asymptotic Series An asymptotic series in a parameter ɛ of a function is given in a power series f(ɛ) = f n ɛ n () n=0 where the series actually does

More information

A Simple Solution for the M/D/c Waiting Time Distribution

A Simple Solution for the M/D/c Waiting Time Distribution A Simple Solution for the M/D/c Waiting Time Distribution G.J.Franx, Universiteit van Amsterdam November 6, 998 Abstract A surprisingly simple and explicit expression for the waiting time distribution

More information

Matrices A(t) depending on a Parameter t. Jerry L. Kazdan

Matrices A(t) depending on a Parameter t. Jerry L. Kazdan Matrices A(t depending on a Parameter t Jerry L. Kazdan If a square matrix A(t depends smoothly on a parameter t are its eigenvalues and eigenvectors also smooth functions of t? The answer is yes most

More information

Definition 5.1. A vector field v on a manifold M is map M T M such that for all x M, v(x) T x M.

Definition 5.1. A vector field v on a manifold M is map M T M such that for all x M, v(x) T x M. 5 Vector fields Last updated: March 12, 2012. 5.1 Definition and general properties We first need to define what a vector field is. Definition 5.1. A vector field v on a manifold M is map M T M such that

More information

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions Queueing Theory II Summary! M/M/1 Output process! Networks of Queue! Method of Stages " Erlang Distribution " Hyperexponential Distribution! General Distributions " Embedded Markov Chains M/M/1 Output

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Figure 1: Doing work on a block by pushing it across the floor.

Figure 1: Doing work on a block by pushing it across the floor. Work Let s imagine I have a block which I m pushing across the floor, shown in Figure 1. If I m moving the block at constant velocity, then I know that I have to apply a force to compensate the effects

More information

1 The Observability Canonical Form

1 The Observability Canonical Form NONLINEAR OBSERVERS AND SEPARATION PRINCIPLE 1 The Observability Canonical Form In this Chapter we discuss the design of observers for nonlinear systems modelled by equations of the form ẋ = f(x, u) (1)

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

Chapter 6 - Random Processes

Chapter 6 - Random Processes EE385 Class Notes //04 John Stensby Chapter 6 - Random Processes Recall that a random variable X is a mapping between the sample space S and the extended real line R +. That is, X : S R +. A random process

More information

Part I Stochastic variables and Markov chains

Part I Stochastic variables and Markov chains Part I Stochastic variables and Markov chains Random variables describe the behaviour of a phenomenon independent of any specific sample space Distribution function (cdf, cumulative distribution function)

More information

Thermodynamic Functions at Isobaric Process of van der Waals Gases

Thermodynamic Functions at Isobaric Process of van der Waals Gases Thermodynamic Functions at Isobaric Process of van der Waals Gases Akira Matsumoto Department of Material Sciences, College of Integrated Arts Sciences, Osaka Prefecture University, Sakai, Osaka, 599-853,

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

11] Index Number Which Shall Meet Certain of Fisher's Tests 397

11] Index Number Which Shall Meet Certain of Fisher's Tests 397 Necessary and Sufficient Conditions Regarding the Form of an Index Number which Shall Meet Certain of Fisher's Tests Author(s): Ragnar Frisch Reviewed work(s): Source: Journal of the American Statistical

More information

One Dimensional Dynamical Systems

One Dimensional Dynamical Systems 16 CHAPTER 2 One Dimensional Dynamical Systems We begin by analyzing some dynamical systems with one-dimensional phase spaces, and in particular their bifurcations. All equations in this Chapter are scalar

More information

1.225J J (ESD 205) Transportation Flow Systems

1.225J J (ESD 205) Transportation Flow Systems 1.225J J (ESD 25) Transportation Flow Systems Lecture 9 Simulation Models Prof. Ismail Chabini and Prof. Amedeo R. Odoni Lecture 9 Outline About this lecture: It is based on R16. Only material covered

More information

IEOR 3106: Second Midterm Exam, Chapters 5-6, November 7, 2013

IEOR 3106: Second Midterm Exam, Chapters 5-6, November 7, 2013 IEOR 316: Second Midterm Exam, Chapters 5-6, November 7, 13 SOLUTIONS Honor Code: Students are expected to behave honorably, following the accepted code of academic honesty. You may keep the exam itself.

More information

Mathematics 256 a course in differential equations for engineering students

Mathematics 256 a course in differential equations for engineering students Mathematics 256 a course in differential equations for engineering students Chapter 1. How things cool off One physical system in which many important phenomena occur is that where an initial uneven temperature

More information

The College Mathematics Journal, Vol. 21, No. 4. (Sep., 1990), pp

The College Mathematics Journal, Vol. 21, No. 4. (Sep., 1990), pp Tabular Integration by Parts David Horowitz The College Mathematics Journal, Vol. 21, No. 4. (Sep., 1990), pp. 307-311. Stable URL: http://links.jstor.org/sici?sici=0746-8342%28199009%2921%3a4%3c307%3atibp%3e2.0.co%3b2-o

More information

Queues and Queueing Networks

Queues and Queueing Networks Queues and Queueing Networks Sanjay K. Bose Dept. of EEE, IITG Copyright 2015, Sanjay K. Bose 1 Introduction to Queueing Models and Queueing Analysis Copyright 2015, Sanjay K. Bose 2 Model of a Queue Arrivals

More information

A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks

A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks by Doo Il Choi, Charles Knessl and Charles Tier University of Illinois at Chicago 85 South

More information

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010 Exercises Stochastic Performance Modelling Hamilton Institute, Summer Instruction Exercise Let X be a non-negative random variable with E[X ]

More information

Signalized Intersection Delay Models

Signalized Intersection Delay Models Signalized Intersection Delay Models Lecture Notes in Transportation Systems Engineering Prof. Tom V. Mathew Contents 1 Introduction 1 2 Types of delay 2 2.1 Stopped Time Delay................................

More information

Dynamic resource sharing

Dynamic resource sharing J. Virtamo 38.34 Teletraffic Theory / Dynamic resource sharing and balanced fairness Dynamic resource sharing In previous lectures we have studied different notions of fair resource sharing. Our focus

More information

1. Introduction Systems evolving on widely separated time-scales represent a challenge for numerical simulations. A generic example is

1. Introduction Systems evolving on widely separated time-scales represent a challenge for numerical simulations. A generic example is COMM. MATH. SCI. Vol. 1, No. 2, pp. 385 391 c 23 International Press FAST COMMUNICATIONS NUMERICAL TECHNIQUES FOR MULTI-SCALE DYNAMICAL SYSTEMS WITH STOCHASTIC EFFECTS ERIC VANDEN-EIJNDEN Abstract. Numerical

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

6. Finite State Machines

6. Finite State Machines 6. Finite State Machines 6.4x Computation Structures Part Digital Circuits Copyright 25 MIT EECS 6.4 Computation Structures L6: Finite State Machines, Slide # Our New Machine Clock State Registers k Current

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at Some Applications of Exponential Ordered Scores Author(s): D. R. Cox Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 26, No. 1 (1964), pp. 103-110 Published by: Wiley

More information

Non Markovian Queues (contd.)

Non Markovian Queues (contd.) MODULE 7: RENEWAL PROCESSES 29 Lecture 5 Non Markovian Queues (contd) For the case where the service time is constant, V ar(b) = 0, then the P-K formula for M/D/ queue reduces to L s = ρ + ρ 2 2( ρ) where

More information

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. A Consistency Result on Thin-Tall Superatomic Boolean Algebras Author(s): Juan Carlos Martínez Source: Proceedings of the American Mathematical Society, Vol. 115, No. 2 (Jun., 1992), pp. 473-477 Published

More information

STAT 331. Martingale Central Limit Theorem and Related Results

STAT 331. Martingale Central Limit Theorem and Related Results STAT 331 Martingale Central Limit Theorem and Related Results In this unit we discuss a version of the martingale central limit theorem, which states that under certain conditions, a sum of orthogonal

More information

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 This exam is closed book. YOU NEED TO SHOW YOUR WORK. Honor Code: Students are expected to behave honorably, following the accepted

More information

Lecture 20 : Markov Chains

Lecture 20 : Markov Chains CSCI 3560 Probability and Computing Instructor: Bogdan Chlebus Lecture 0 : Markov Chains We consider stochastic processes. A process represents a system that evolves through incremental changes called

More information

Stochastic Fluid Models in Inventory Control Problems

Stochastic Fluid Models in Inventory Control Problems Stochastic Fluid Models in Problems (Joint work with Keqi Yan ) Department of Statistics and Operations Research March, 2006 Outline 1 2 Stability condition Differential equations Solution to the differential

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca November 26th, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

7.1 Coupling from the Past

7.1 Coupling from the Past Georgia Tech Fall 2006 Markov Chain Monte Carlo Methods Lecture 7: September 12, 2006 Coupling from the Past Eric Vigoda 7.1 Coupling from the Past 7.1.1 Introduction We saw in the last lecture how Markov

More information

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis.

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. Service Engineering Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. G/G/1 Queue: Virtual Waiting Time (Unfinished Work). GI/GI/1: Lindley s Equations

More information

Math 311, Partial Differential Equations, Winter 2015, Midterm

Math 311, Partial Differential Equations, Winter 2015, Midterm Score: Name: Math 3, Partial Differential Equations, Winter 205, Midterm Instructions. Write all solutions in the space provided, and use the back pages if you have to. 2. The test is out of 60. There

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

M/M/1 Transient Queues and Path Counting

M/M/1 Transient Queues and Path Counting M/M/1 Transient Queues and Path Counting M.HlynaandL.M.Hurajt Department of Mathematics and Statistics University of Windsor Windsor, Ontario, Canada N9B 3P4 December 14, 006 Abstract We find combinatorially

More information

Official Solutions 2014 Sun Life Financial CMO Qualifying Rêpechage 1

Official Solutions 2014 Sun Life Financial CMO Qualifying Rêpechage 1 Official s 2014 Sun Life Financial CMO Qualifying Rêpechage 1 1. Let f : Z Z + be a function, and define h : Z Z Z + by h(x, y) = gcd(f(x), f(y)). If h(x, y) is a two-variable polynomial in x and y, prove

More information

RELATING TIME AND CUSTOMER AVERAGES FOR QUEUES USING FORWARD COUPLING FROM THE PAST

RELATING TIME AND CUSTOMER AVERAGES FOR QUEUES USING FORWARD COUPLING FROM THE PAST J. Appl. Prob. 45, 568 574 (28) Printed in England Applied Probability Trust 28 RELATING TIME AND CUSTOMER AVERAGES FOR QUEUES USING FORWARD COUPLING FROM THE PAST EROL A. PEKÖZ, Boston University SHELDON

More information

Advanced Calculus I Chapter 2 & 3 Homework Solutions October 30, Prove that f has a limit at 2 and x + 2 find it. f(x) = 2x2 + 3x 2 x + 2

Advanced Calculus I Chapter 2 & 3 Homework Solutions October 30, Prove that f has a limit at 2 and x + 2 find it. f(x) = 2x2 + 3x 2 x + 2 Advanced Calculus I Chapter 2 & 3 Homework Solutions October 30, 2009 2. Define f : ( 2, 0) R by f(x) = 2x2 + 3x 2. Prove that f has a limit at 2 and x + 2 find it. Note that when x 2 we have f(x) = 2x2

More information

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1 Queueing systems Renato Lo Cigno Simulation and Performance Evaluation 2014-15 Queueing systems - Renato Lo Cigno 1 Queues A Birth-Death process is well modeled by a queue Indeed queues can be used to

More information

System Identification (CH 5230)

System Identification (CH 5230) Classification of Models System Identification (CH 5230) Arun K. Tangirala Department of Chemical Engineering, IIT Madras January - April 2010 Lecture Set 1 Models can assume various forms depending on

More information

Examples of Dual Spaces from Measure Theory

Examples of Dual Spaces from Measure Theory Chapter 9 Examples of Dual Spaces from Measure Theory We have seen that L (, A, µ) is a Banach space for any measure space (, A, µ). We will extend that concept in the following section to identify an

More information

Multi Stage Queuing Model in Level Dependent Quasi Birth Death Process

Multi Stage Queuing Model in Level Dependent Quasi Birth Death Process International Journal of Statistics and Systems ISSN 973-2675 Volume 12, Number 2 (217, pp. 293-31 Research India Publications http://www.ripublication.com Multi Stage Queuing Model in Level Dependent

More information

IEOR 6711, HMWK 5, Professor Sigman

IEOR 6711, HMWK 5, Professor Sigman IEOR 6711, HMWK 5, Professor Sigman 1. Semi-Markov processes: Consider an irreducible positive recurrent discrete-time Markov chain {X n } with transition matrix P (P i,j ), i, j S, and finite state space.

More information

Asymptotic Delay Distribution and Burst Size Impact on a Network Node Driven by Self-similar Traffic

Asymptotic Delay Distribution and Burst Size Impact on a Network Node Driven by Self-similar Traffic Èíôîðìàöèîííûå ïðîöåññû, Òîì 5, 1, 2005, ñòð. 4046. c 2004 D'Apice, Manzo. INFORMATION THEORY AND INFORMATION PROCESSING Asymptotic Delay Distribution and Burst Size Impact on a Network Node Driven by

More information

1 Types of stochastic models

1 Types of stochastic models 1 Types of stochastic models Models so far discussed are all deterministic, meaning that, if the present state were perfectly known, it would be possible to predict exactly all future states. We have seen

More information

KRIPKE S THEORY OF TRUTH 1. INTRODUCTION

KRIPKE S THEORY OF TRUTH 1. INTRODUCTION KRIPKE S THEORY OF TRUTH RICHARD G HECK, JR 1. INTRODUCTION The purpose of this note is to give a simple, easily accessible proof of the existence of the minimal fixed point, and of various maximal fixed

More information

ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION

ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION M. KAC 1. Introduction. Consider the algebraic equation (1) Xo + X x x + X 2 x 2 + + In-i^" 1 = 0, where the X's are independent random

More information

There are two things that are particularly nice about the first basis

There are two things that are particularly nice about the first basis Orthogonality and the Gram-Schmidt Process In Chapter 4, we spent a great deal of time studying the problem of finding a basis for a vector space We know that a basis for a vector space can potentially

More information

LS.5 Theory of Linear Systems

LS.5 Theory of Linear Systems LS.5 Theory of Linear Systems 1. General linear ODE systems and independent solutions. We have studied the homogeneous system of ODE s with constant coefficients, (1) x = Ax, where A is an n n matrix of

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

MARKOV DECISION PROCESSES

MARKOV DECISION PROCESSES J. Virtamo 38.3141 Teletraffic Theory / Markov decision processes 1 MARKOV DECISION PROCESSES In studying Markov processes we have up till now assumed that the system, its states and transition probabilities

More information

Continuous-time Markov Chains

Continuous-time Markov Chains Continuous-time Markov Chains Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ October 23, 2017

More information

Convexity Properties of Loss and Overflow Functions

Convexity Properties of Loss and Overflow Functions Convexity Properties of Loss and Overflow Functions Krishnan Kumaran?, Michel Mandjes y, and Alexander Stolyar? email: kumaran@lucent.com, michel@cwi.nl, stolyar@lucent.com? Bell Labs/Lucent Technologies,

More information

PROCEEDINGS of the THIRD. BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY

PROCEEDINGS of the THIRD. BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY PROCEEDINGS of the THIRD. BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY Held at the Statistical IAboratory Universi~ of California De_mnbiJ954 '!dy and August, 1955 VOLUME I CONTRIBUTIONS

More information

DUE to its practical importance in communications, the

DUE to its practical importance in communications, the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 3, MARCH 2005 149 An Analytical Formulation of Phase Noise of Signals With Gaussian-Distributed Jitter Reza Navid, Student Member,

More information

ALGEBRA I CCR MATH STANDARDS

ALGEBRA I CCR MATH STANDARDS RELATIONSHIPS BETWEEN QUANTITIES AND REASONING WITH EQUATIONS M.A1HS.1 M.A1HS.2 M.A1HS.3 M.A1HS.4 M.A1HS.5 M.A1HS.6 M.A1HS.7 M.A1HS.8 M.A1HS.9 M.A1HS.10 Reason quantitatively and use units to solve problems.

More information

Queues with Many Servers and Impatient Customers

Queues with Many Servers and Impatient Customers MATHEMATICS OF OPERATIOS RESEARCH Vol. 37, o. 1, February 212, pp. 41 65 ISS 364-765X (print) ISS 1526-5471 (online) http://dx.doi.org/1.1287/moor.111.53 212 IFORMS Queues with Many Servers and Impatient

More information

Fast Algorithms for Large-State-Space HMMs with Applications to Web Usage Analysis

Fast Algorithms for Large-State-Space HMMs with Applications to Web Usage Analysis Fast Algorithms for Large-State-Space HMMs with Applications to Web Usage Analysis Pedro F. Felzenszwalb 1, Daniel P. Huttenlocher 2, Jon M. Kleinberg 2 1 AI Lab, MIT, Cambridge MA 02139 2 Computer Science

More information

Modelling Complex Queuing Situations with Markov Processes

Modelling Complex Queuing Situations with Markov Processes Modelling Complex Queuing Situations with Markov Processes Jason Randal Thorne, School of IT, Charles Sturt Uni, NSW 2795, Australia Abstract This article comments upon some new developments in the field

More information

The Heat Equation John K. Hunter February 15, The heat equation on a circle

The Heat Equation John K. Hunter February 15, The heat equation on a circle The Heat Equation John K. Hunter February 15, 007 The heat equation on a circle We consider the diffusion of heat in an insulated circular ring. We let t [0, ) denote time and x T a spatial coordinate

More information

Vectors and Coordinate Systems

Vectors and Coordinate Systems Vectors and Coordinate Systems In Newtonian mechanics, we want to understand how material bodies interact with each other and how this affects their motion through space. In order to be able to make quantitative

More information

J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY

J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY SECOND EDITION ACADEMIC PRESS An imprint of Elsevier Science Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo Contents

More information

Robotics. Control Theory. Marc Toussaint U Stuttgart

Robotics. Control Theory. Marc Toussaint U Stuttgart Robotics Control Theory Topics in control theory, optimal control, HJB equation, infinite horizon case, Linear-Quadratic optimal control, Riccati equations (differential, algebraic, discrete-time), controllability,

More information

MARKOV PROCESSES. Valerio Di Valerio

MARKOV PROCESSES. Valerio Di Valerio MARKOV PROCESSES Valerio Di Valerio Stochastic Process Definition: a stochastic process is a collection of random variables {X(t)} indexed by time t T Each X(t) X is a random variable that satisfy some

More information

Maps and differential equations

Maps and differential equations Maps and differential equations Marc R. Roussel November 8, 2005 Maps are algebraic rules for computing the next state of dynamical systems in discrete time. Differential equations and maps have a number

More information

Uniform random numbers generators

Uniform random numbers generators Uniform random numbers generators Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2707/ OUTLINE: The need for random numbers; Basic steps in generation; Uniformly

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 8 10/1/2008 CONTINUOUS RANDOM VARIABLES Contents 1. Continuous random variables 2. Examples 3. Expected values 4. Joint distributions

More information

Poisson Jumps in Credit Risk Modeling: a Partial Integro-differential Equation Formulation

Poisson Jumps in Credit Risk Modeling: a Partial Integro-differential Equation Formulation Poisson Jumps in Credit Risk Modeling: a Partial Integro-differential Equation Formulation Jingyi Zhu Department of Mathematics University of Utah zhu@math.utah.edu Collaborator: Marco Avellaneda (Courant

More information

Math 127: Course Summary

Math 127: Course Summary Math 27: Course Summary Rich Schwartz October 27, 2009 General Information: M27 is a course in functional analysis. Functional analysis deals with normed, infinite dimensional vector spaces. Usually, these

More information

df dz = dp dt Essentially, this is just a statement of the first law in one of the forms we derived earlier (expressed here in W m 3 ) dq p dt dp

df dz = dp dt Essentially, this is just a statement of the first law in one of the forms we derived earlier (expressed here in W m 3 ) dq p dt dp A problem with using entropy as a variable is that it is not a particularly intuitive concept. The mechanics of using entropy for evaluating system evolution is well developed, but it sometimes feels a

More information

Lecture 10: Semi-Markov Type Processes

Lecture 10: Semi-Markov Type Processes Lecture 1: Semi-Markov Type Processes 1. Semi-Markov processes (SMP) 1.1 Definition of SMP 1.2 Transition probabilities for SMP 1.3 Hitting times and semi-markov renewal equations 2. Processes with semi-markov

More information

Principles of Risk Minimization for Learning Theory

Principles of Risk Minimization for Learning Theory Principles of Risk Minimization for Learning Theory V. Vapnik AT &T Bell Laboratories Holmdel, NJ 07733, USA Abstract Learning is posed as a problem of function estimation, for which two principles of

More information