AN ABSTRACT OF THE THESIS OF

Size: px
Start display at page:

Download "AN ABSTRACT OF THE THESIS OF"

Transcription

1 AN ABSTRACT OF THE THESIS OF Nasim Adami for the degree of Master of Science in Civil Engineering presented on October 28, 213. Title: Development of an ACIP Pile-Specific Load-Displacement Model. Abstract approved: Armin W. Stuedlein Augered cast-in-place piles, also known as ACIP piles, have been used for more than seven decades in the United States and have gained in popularity due to their relatively quick installation and cost-effectiveness. Owing to the reduced impact on the neighboring environment as compared to some other deep foundation installation methods, ACIP piles are appropriate for use in urban areas. Although there has been an increase in application of ACIP piles, relatively little research on this type of pile has been performed as compared to similar deep foundations, such as drilled shafts. The insufficient experimental work on ACIP pile behavior and lack of ACIP pile specific loaddisplacement models have led practicing engineers to use the results and methodologies from drilled shafts. An example of this is the use of t-z and q-z based load transfer models

2 from drilled shaft-specific relationships to estimate the load-displacement behavior of ACIP piles. Such applications can result in an underestimation of shaft resistance and consequently disagreement between the predicted and measured load-displacement behavior of the ACIP piles. This thesis evaluates the ability of currently used load-displacement models to estimate the measured load-displacement behavior of ACIP piles. Also, a new empirically-based ACIP pile-specific t-z model is proposed that, in combination with the O Neill and Reese (1999) q-z model and ACIP pile-specific toe bearing resistance model, forms an ACIP pile specific load-displacement model. Experiments of instrumented ACIP piles installed in the granular soils of Western Washington were used to develop the ACIP pile specific t-z model. Comparison between the results from the currently used load-displacement models with the proposed model showed that the proposed model provides an improvement in the prediction of the load-displacement behavior of ACIP piles. Finally, an analysis of variability is performed using the Monte Carlo Simulation with the sample probability distributions of the uncertain variables in load-displacement model. These analyses result in provide a set of possible loads for a number of common service level displacements, which are reported as cumulative density function (CDF) curves. The CDF curves for loads corresponding to a displacement considered can be a useful tool in design procedure of ACIP piles.

3 Copyright by Nasim Adami October 28, 213 All Rights Reserved

4 Development of an ACIP Pile-Specific Load-Displacement Model by Nasim Adami A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented October 28, 213 Commencement June 214

5 Master of Science thesis of Nasim Adami presented on October 28, 213. APPROVED: Major Professor, representing Civil Engineering Head of the School of Civil and Construction Engineering Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Nasim Adami, Author

6 ACKNOWLEDGEMENTS I would like to express my very great appreciation to my major advisor Dr. Armin Stuedlein for his guidance along this research and providing an environment for me to realize my abilities. I also want to thank my graduate committee members, Dr. Sessions, Dr. Mason, and Dr. Leshchinsky for their helpful suggestions. I would like to offer my special thanks to faculty and staff of the Oregon State University School of Civil and Construction Engineering for their dedication and support. Finally, I am particularly grateful for the support given by all my friends and graduate students of Geotechnical Engineering.

7 TABLE OF CONTENTS Page 1 Introduction Problem Statement Research Outline Literature Review Introduction Drilled Shaft Foundations Augered Cast-in-Place Piles Bearing Capacity of Drilled Deep Foundations Estimation of Bearing Capacity of Drilled Shaft Foundations... in Granular Soils Estimation of Bearing Capacity of Augered Cast-in-Place Piles Prediction Models of Pile Settlement in Granular Soils Vesic (1977) Settlement Method Introduction to t-z and q-z Models Summary Research Objectives Database of Loading Test Cases Static Pile Load Test Data for 1997 Test Series General... 37

8 TABLE OF CONTENTS (Continued) Page Development of Soil Profile and Soil Parameters for the 1997 Test Series Load Transfer and Static Load Test Results for 29 Test Series General Development of Soil Profiles and Soil Parameters for the 29 Test Series Description of the instrumentation of Piles in 29 Test Series Determination of Composite Modulus Load Transfer Summary Development of a Load Transfer Model for Augered Cast-in Place Piles Introduction Development of the t-z Model Calculation of Pile Shear Stress, t Calculation the Relative Soil-Pile Movement, z Normalizing Parameters Proposed t-z Model Parameters Selected q-z Model Evaluation of the Proposed Load-Transfer Model Comparison of Results to 29 and 1997 Test Series Summary... 87

9 TABLE OF CONTENTS (Continued) Page 6 Analysis of the Proposed t-z Model by Use of Monte Carlo Simulations Introduction Monte Carlo Simulation in Geotechnical Engineering Input Variables and Probability Distribution of Uncertain Parameters Uncertain Variables of the Proposed Prediction Model Probability Distribution of Uncertain Variables Monte Carlo Simulation of Random Variables Monte Carlo Simulation Correction Discussion of the Results Summary Summary and Conclusion Summary Conclusions Suggestions for Future Study References

10 TABLE OF CONTENTS (Continued) Page APPENDICES Appendix A: MATLAB Code for Generating the Random Variables Appendix B: MATLAB Code for Calculating the Load-Displacement Response of ACIP Piles Using t-z and q-z Models Appendix C: Comparison of Deterministic Coefficients Results with Results from Random Variable Generation Appendix D: Detailed Monte Carlo Simulation Results

11 LIST OF FIGURES Figure Page Figure 2.1: Situations in which deep foundations may be needed. (a) weak soil layer with a dense stratum within a reasonable depth, (b) weak soil layer without a dense stratum, (c) uplift forces, (d) and (f) horizontal force resist by a single pile, (e) horizontal forces and moments resist by pile group,(g) erosion around the footing, (h) liquefaction susceptible layer, (i) deep foundation acting as a fender system, (j) probability of future excavation in adjacent region, (k) swelling soil layer(fhwa 26, after Vesic 1977) Figure 2.2: ACIP construction steps, (1) drilling, (2) concrete injection, (3) inserting the reinforcements (after Mainwinch 213) Figure 2.3: A conceptual sketch of resisting parameters (Das 24) Figure 2.4: Bearing capacity factor from Prakash and Sharmad (199) Figure 2.5: The relationship between SPT N values and the toe bearing resistance, after Neely Figure 2.6: The relationship between SPT N values and the toe bearing resistance, with comparison between the Stuedlein et al. (212) expression with FHWA method, after Stuedlein et al. (212) Figure 2.7: Average β-coefficient for use in Equation 2.15 (Neely 1991) Figure 2.8: The relationship between depth of embedment and β coefficient. The data points consist of experiments conducted in the Stuedlein et al. (212) and Neely (1991) experiment. after Stuedlein et al. (212) Figure 2.9: The load distribution factor for different typical loading cases: (a) uniform distribution, α =.5, (b) extreme case of linear distribution, α =.67, (c) extreme case of linear distribution, α =.33. After Vesic (1977) Figure 2.1: Schematic concept used in t-z method modeling (after FHWA 213) Figure 2.11: Concentric cylinder model for settlement analysis of axially loaded piles (modified from Randolph and Wroth 1978)

12 LIST OF FIGURES (Continued) Figure Page Figure 2.12: Linear t-z curve obtained using Randolph and Wroth (1978) (after FHWA 213) Figure 2.13: (a) Normalized load transfer curves for clay proposed by Coyle and Reese 1966 and (b) Normalized skin friction curves for sand proposed by Coyle and Solaiman Figure 2.14: Normalized skin friction curve for clay and sand proposed by Vijayverjia (1977) Figure 2.15: Normalized curves of load transfer in side friction vs. settlement for drilled shafts in sand (O'Neill and Reese 1999) Figure 2.16: Normalized q-z curve for clay and sand (Vijayverjia 1977) Figure 2.17: Normalized curves of load transfer in toe bearing vs. settlement for drilled shafts in sand (after O'Neill and Reese 1999) Figure 4.1: Comparison between actual load-displacement and predications from the stability plot method, along with the ultimate loads proposed by Gurtowski (1997) Figure 4.2: Subsurface information for test pile : (a) SPT N-value, (b) unit weight, (c) friction angle, (d) soil profile Figure 4.3: Subsurface information for test pile : (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile Figure 4.4: Subsurface information for test pile : (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile Figure 4.5: Subsurface information for test pile : (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile

13 LIST OF FIGURES (Continued) Figure Page Figure 4.6: Subsurface information for test pile : (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile Figure 4.7: Subsurface information for test pile : (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile Figure 4.8: Comparison between actual load-displacement and the ultimate loads proposed by Gurtowski (29) Figure 4.9: Subsurface information for test pile 29-1: (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile Figure 4.1: Subsurface information for test pile 29-2: (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile Figure 4.11: Subsurface information for test pile 29-3: (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile Figure 4.12: Subsurface information for test pile 29-4: (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile Figure 4.13: Subsurface information for test pile 29-5: (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile Figure 4.14: Subsurface information for test pile 29-6: (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile Figure 4.15: Calculations of tangentmodulus for all strain gages on pile 29-4 and demonstration of their approach to the lower limit presented by strin gages near pile head, after Stuedlein and Gurtowski (212) Figure 4.16: Tangent modulus slope for 29 Test Series, adopted from Stuedlein and Gurtowski (212)

14 LIST OF FIGURES (Continued) Figure Page Figure 4.17: An example of the interpolation of pile 29-6: (a) as observed, (b) after interpolation Figure 4.18: Interpolated load transfer curve for test pile Figure 4.19: Interpolated load transfer curve for test pile Figure 4.2: Interpolated load transfer curve for test pile Figure 4.21: Interpolated load transfer curve for test pile Figure 4.22: Interpolated load transfer curve for test pile Figure 4.23: Interpolated load transfer curve for test pile Figure 5.1: Schematic illustration showing definitions of depths and corresponding loads from load transfer curves in the calculation procedure Figure 5.2: A Schematic illustration of P d,i and L d,i product, as an area on a load transfer curve Figure 5.3: Comparison of experimental and fitted t-z curves for pile Figure 5.4: Comparison of experimental and fitted t-z curves for pile Figure 5.5: Comparison of experimental and fitted t-z curves for pile Figure 5.6: Comparison of experimental and fitted t-z curves for pile Figure 5.7: Comparison between the experimentally-derived coefficient a and the proposed relationship Figure 5.8: Comparison between the experimentally-derived coefficient b and the proposed relationship

15 LIST OF FIGURES (Continued) Figure Page Figure 5.9: Comparison between the measured load transfers and those approximated by the proposed t-z model for piles, (a) 29-1, (b) 29-2, (c) 29-4, (d) Figure 5.1: Comparison between field measurements and predictions of proposed model: (a)test pile 29-1, (b) Test pile 29-2, (c) Test pile 29-4, (d) Test pile Figure 5.11: Comparison between field measurements and predictions of proposed model for: (a) Test pile , (b) Test pile Figure 5.12: Comparison between field measurements and predictions of proposed model for driven grout piles: (a) Test pile 29-3, (b) Test pile Figure 5.13: Point by point comparison of bias with respect to normalized head displacement, for the 29 Test Series Figure 5.14: Point by point comparison of bias with respect to normalized head displacement, for the 1997 Test Series... 8 Figure 5.15: Comparison between the load-displacements produced by the proposed model with models proposed by Vijayvergia (1977) and O Neill and Reese (1999): (a) ACIP pile 29-1, (b) ACIP pile 29-2, (c) DG pile Figure 5.16: Comparison between the load-displacements produced by the proposed model with models proposed by Vijayvergia (1977) and O Neill and Reese (1999): (a) ACIP pile 29-4, (b) ACIP pile 29-5, (c) DG piles Figure 5.17: Comparison between the load-displacements produced by the proposed model with models proposed by Vijayvergia (1977) and O Neill and Reese (1999), ACIP piles: (a) , (b) , (c) Figure 5.18: Comparison between the load-displacements produced by the proposed model with models proposed by Vijayvergia (1977) and O Neill and Reese (1999), ACIP piles: (a) , (b)

16 LIST OF FIGURES (Continued) Figure Page Figure 6.1: Cumulative distribution function for the bias of the a coefficient Figure 6.2: Cumulative distribution function for the bias of the b coefficient Figure 6.3: Cumulative distribution function for the bias of the Figure 6.4: The load displacement predictions produced by MCS and the proposed prediction model for 29 Test Series Figure 6.5: The load displacement predictions produced by MCS and the proposed prediction model for 1997 Test Series... 1 Figure 6.6: The load displacement predictions produced by corrected MCS and the proposed model for 29 Test Series Figure 6.7: The load displacement predictions produced by corrected MCS and the proposed model for 1997 Test Series Figure 6.8: Cumulative density functions of loads for four displacements of 5, 1, 15 and 25mm of 29 Test Series Figure 6.9: Cumulative density functions of loads for four displacements of 5, 1, 15 and 25 mm of 1997 Test Series

17 LIST OF TABLES Table Page Table 2.1: Approximate φ' f φ' values for the interface between deep foundations and soil (after Kulhawy et al and Kulhawy 1991) Table 2.2: Approximate ratio of coefficient of lateral earth pressure after construction to that before construction (after Kulhawy et ai and Kulhawy 1991) Table 2.3: Values for C p coefficient (after Vesic 1977) Table 4.1: Geometric details and locations of test piles for the 1997 Test Series, after Gurtowski (1997) Table 4.2: Criteria for the estimation of unit weight, adopted from ODT Geotechnical Design Manual (29) Table 4.3: Geometric details and locations of test piles for the 29 Test Series, after Gurtowski (29) Table 5.1: Comparison between predicted ultimate loads with those by Gurtowski (1997, 29) Table 5.2: A comparison between the load mean bias obtained from the proposed model by those created by O Neill and Reese (1999) and Vijayvergia (1977) models Table 6.1: Comparison of number of realization from Equations 6.1 and 6.2, from Phoon (28) Table 6.2: Statistical characteristics of distribution fitting for the a coefficient Table 6.3: Statistical characteristics of distribution fitting for the b coefficient Table 6.4: Statistical characteristics of distribution fitting for the Table 6.5: Statistical characteristics of each actual displacement for test pile

18 LIST OF TABLES (Continued) Table Page Table 6.6: Statistical characteristics of corrected MCS results Table 7.1: The comparison of the results obtained using Vijayvergia (1977) and O Neill and Reese (1999) models Table 7.2: The average mean bias in load and COV in load bias results from the proposed load-displacement model

19 LIST OF APPENDIX TABLES Table Page Table C. 1: Comparison of Deterministic Coefficients Results with Results from Random Variable Generation, pile Table C. 2: Comparison of Deterministic Coefficients Results with Results from Random Variable Generation, pile Table C. 3: Comparison of Deterministic Coefficients Results with Results from Random Variable Generation, pile Table C. 4: Comparison of Deterministic Coefficients Results with Results from Random Variable Generation, pile Table C. 5: Comparison of Deterministic Coefficients Results with Results from Random Variable Generation, pile Table C. 6: Comparison of Deterministic Coefficients Results with Results from Random Variable Generation, pile Table C. 7: Comparison of Deterministic Coefficients Results with Results from Random Variable Generation, pile Table C. 8: Comparison of Deterministic Coefficients Results with Results from Random Variable Generation, pile Table C. 9: Comparison of Deterministic Coefficients Results with Results from Random Variable Generation, pile Table C. 1: Comparison of Deterministic Coefficients Results with Results from Random Variable Generation, pile Table C. 11: Comparison of Deterministic Coefficients Results with Results from Random Variable Generation, pile

20 LIST OF APPENDIX TABLES (Continued) Table Page Table D. 1: The detailed results of the corrected Monte Carlo Simulation for all the head displacements of test pile Table D. 2: The detailed results of the corrected Monte Carlo Simulation for all the head displacements of test pile Table D. 3: The detailed results of the corrected Monte Carlo Simulation for all the head displacements of test pile Table D. 4: The detailed results of the corrected Monte Carlo Simulation for all the head displacements of test pile Table D. 5: The detailed results of the corrected Monte Carlo Simulation for all the head displacements of test pile Table D. 6: The detailed results of the corrected Monte Carlo Simulation for all the head displacements of test pile Table D. 7: The detailed results of the corrected Monte Carlo Simulation for all the head displacements of test pile Table D. 8: The detailed results of the corrected Monte Carlo Simulation for all the head displacements of test pile Table D. 9: The detailed results of the corrected Monte Carlo Simulation for all the head displacements of test pile Table D. 1: The detailed results of the corrected Monte Carlo Simulation for all the head displacements of test pile Table D. 11: The detailed results of the corrected Monte Carlo Simulation for all the head displacements of test pile

21 LIST OF SYMBOLS Applied load, constant Load resisted by shaft Load resisted by toe Area of the pile Vertical effective stress Horizontal effective stress Bearing capacity factor Shape factor Depth factor D t K K The diameter of the pile toe Ultimate unit toe bearing capacity SPT N value corrected for 6 percent hammer efficiency Unit shaft resistance Effective soil-foundation friction angle The lateral earth pressure coefficient after installation The lateral earth pressure coefficient prior to the installation Pile length Settlement of the pile head t z q The mobilized shaft resistance, shear stress along the shaft Relative displacement between the pile and soil Mobilized toe resistance Tangent modulus Strain Area of steel

22 Circumference of pile H P COV Z i i N CDF Observed pile head displacement Load, changing value along the pile Relative soil-pile movement Bias Mean bias Standard deviation Coefficient of variation Probability of occurrence Standard normal variate Probability density function Sample ranking Number of realizations Cumulative density function Mean value Tolerance margins of the target probability Level of confidence

23 1 1 Introduction Augered cast-in-place piles, also known as ACIP piles, have been used for more than 7 years in the United States. Augered cast-in-place piles have gained in popularity because they are relatively fast to install and are economical for a wide range of projects. Additionally, the installation of ACIP piles poses less impact on the neighboring environment than some other deep foundation installation methods. 1.1 Problem Statement Although there has been an increase in application of ACIP piles, relatively little research on this type of pile has been performed as compared to drilled shafts or driven piles. The insufficient experimental work on ACIP piles behavior and lack of an ACIP pile specific load-displacement model has led practicing engineers to use the results and methodologies from similar cases, such as drilled shafts. An example of this is the use of load transfer models, known as t-z curves when shaft resistance is concerned. Implementation of drilled shaft specific t-z models results in an underestimation of the shaft resistance of ACIP piles and consequently a disagreement between the predicted and measured load-displacement behavior of the ACIP piles. 1.2 Research Outline The goal of this study is to develop an ACIP pile specific t-z model to generate loaddisplacement estimates that are more accurate than currently used models. Chapter 2

24 2 includes a detailed literature review on the previously proposed and currently used loaddisplacement models for ACIP piles. Chapter 3 provides the objectives of this research. Chapter 4 describes the experimental database that is used in this study along with the procedure necessary to generate the experimental load transfer curves. Chapter 5 presents the methodology for developing the individual t-z curves from the experimental datasets and the proposed load-displacement model. Also, the comparisons between the actual field measurements and existing load-displacement models are included with the results obtained from the proposed model. Chapter 6 provides a statistical analysis using Monte Carlo Simulation to estimate the variability associated with the proposed load-displacement model. Finally, Chapter 7 provides a summary and conclusions derived from this research. A complete list of references and four appendices follow Chapter 7. Appendix A presents the code developed in MATLAB to generate the random variables, a, b and, parameters required for calculation of the load-displacement. Appendix B presents the code developed in MATLAB to calculate the load-displacement behavior of the piles based on the proposed model. Appendix C contains the details of comparison between values of the random variables, a, b and calculated from deterministic formulation with those obtained from random variable generation and Appendix D provides a point by point comparison of the bias between the measured and simulated load-displacement curves of all piles.

25 3 2 Literature Review 2.1 Introduction Deep foundations are considered to be one of the most commonly implemented foundation types in geotechnical engineering practices (Prezzi 27). A summary of the conditions for which implementation of piles could be a solution is presented by Vesic (1977). These typical situations are illustrated in Figure 2.1. Some of the reasons that might influence an engineer s decision to use a deep foundation over a shallow foundation include the following (Coduto 21): 1. The upper soil layers do not provide sufficient strength for use of shallow foundations. 2. High loads that would require large and impractical dimensions of shallow foundations. 3. Possibility of scour or undermining that could result in failure of the shallow foundation. 4. Constraints and obstacles, such as water, for accessing the ground surface. 5. Need for uplift support. 6. Requirement to resist large lateral loads. Shallow foundations and deep foundations can be distinguished by their depth of embedment. A deep foundation is defined as a foundation that transfers the applied loads to the soil layers below the ground surface to the depths in range of 15 to 45 m or more.

26 4 Figure 2.1: Situations in which deep foundations may be needed. (a) weak soil layer with a dense stratum within a reasonable depth, (b) weak soil layer without a dense stratum, (c) uplift forces, (d) and (f) horizontal force resist by a single pile, (e) horizontal forces and moments resist by pile group,(g) erosion around the footing, (h) liquefaction susceptible layer, (i) deep foundation acting as a fender system, (j) probability of future excavation in adjacent region, (k) swelling soil layer(fhwa 26, after Vesic 1977). The decision regarding the type of deep foundation to use is based on several factors such as the type and magnitude of loading, soil properties, and construction site constraints. Among all types of deep foundations, the focus of this thesis is mainly on augered cast-in-place piles, but in some cases where no ACIP pile specific relationships are available, expressions were adopted from a comparable kind of deep foundation,

27 5 drilled shafts. Therefore, these two deep foundation types are described in the following sections Drilled Shaft Foundations Drilled shafts are a common type of deep foundation that is usually constructed using a cast-in-place procedure, installed using a drill rig. Drilled shafts may be constructed up to 6 m in diameter and up to 45 m long, or more, and are able to support a variety of loading modes. The construction procedure is considered more appropriate in urban areas due to the production of lower noise levels and vibrations than other types of installation methods like pile driving. Additionally, if soils that were not anticipated during design are observed, engineers are able to change the dimensions of the shaft during construction. As with any engineering tool there are some disadvantages to drilled shaft foundations. Human proficiency plays a critical role in the quality of the foundation; therefore construction is very dependent on the contractor s skill. Because drilled shafts are constructed using excavation, they may have less unit side and toe bearing resistance than driven foundations (Coduto 21) Augered Cast-in-Place Piles Augered cast-in-place piles (ACIP piles) also known as Continuous Flight Auger piles (CFA) have been used in the United States since 194s (Neate 1989). The typical

28 6 diameter of ACIP piles ranges from.3 to 1. m (Brown 25) and their lengths can extend more than 3 to 35 m (Brettmann and NeSmith 25, Mandolini et al. 22). ACIP piles are installed by drilling a plugged hollow-stem, continuous-flight auger into the ground to the depth of interest, during which soil is removed by auger flights. After reaching the depth of interest, concrete or grout is pumped into the hollow stem and auger slowly removed under a head of grout. The steel reinforcement cage is then inserted and tied off at the surface. The construction technique is illustrated in Figure 2.2 (Prezzi 27). Augered cast-in-place piles are more economical than other type of piles, like driven piles, although they typically do not provide as high capacities. In addition to sharing the advantages of drilled shafts, the ACIP pile construction technique is more effective for caving soils and is most often used in granular soils (Coduto 21). Figure 2.2: ACIP construction steps, (1) drilling, (2) concrete injection, (3) inserting the reinforcements (after Mainwinch 213).

29 7 Similar to drilled shaft foundations, ACIP piles are highly dependent on contractor s skill. Placement of steel caging into the grout is another difficulty associated with construction of ACIP s and it can be problematic if heavy steel cages are required in squeezing soils. Augered cast-in-place piles are inappropriate for use in soils that contains cobbles or boulders. Additionally, if the stratigraphy includes a soil layer with high compressibility, such as organic deposits, use of ACIP piles may not be appropriate. 2.2 Bearing Capacity of Drilled Deep Foundations The controlling factor for the bearing capacity of piles subjected to axial loads is the load transfer mechanism by which the load is transferred from the pile shaft and toe to the surrounding soil. The basic concept of load transfer is the same for all types of piles, although the rate of load transfer can vary significantly between different deep foundation and soil types. The applied load, Q, on a pile with length of L, is resisted by shaft friction that is mobilized along the length of the shaft (Q s ), and resistance of the soil below the toe of the pile (Q t ), as demonstrated in Figure 2.3.

30 8 Figure 2.3: A conceptual sketch of resisting parameters (Das 24). The ultimate shaft resistance is usually completely mobilized at displacements relatively lower than those for the ultimate toe resistance. The amount of displacement for full mobilization of shaft resistance is about 5 to 1 mm, whereas the value of displacement required to mobilize the ultimate toe bearing capacity is about 1% to 25% of the footing diameter (Vesic 1977). The methods to calculate these ultimate values are presented in following sections Estimation of Bearing Capacity of Drilled Shaft Foundations in Granular Soils Toe Bearing Capacity of Drilled Shafts Since most of the bearing capacity design models in geotechnical engineering have their roots in empiricism, there is usually more than one single approach for each

31 9 parameter of interest. In fact, most of these approaches have shown to provide results within the same order, with small differences due to the assumptions used. One of the first relationships for the ultimate toe bearing capacity of drilled shaft piles in granular soils, provided by Meyerhof (1963) is: [ ] where is the area of the toe and equals whereas D t is the diameter of the pile toe, is effective vertical stress at the base of the shaft, is the bearing capacity factor and equals, is a shape factor that equals, and is depth factor that could be obtained by. Chen and Kulhawy (1994) suggested the use of the critical rigidity index and reduced rigidity index factors to account for soil compressibility effects. Prakash and Sharmad (199) proposed a relationship for calculating the ultimate toe bearing capacity as: where is the ultimate unit toe bearing capacity, is the bearing capacity factor which is a function of the friction angle as shown in Figure 2.4, and equals vertical effective stress at the pile toe.

32 Nq Proposed data points Power fit φ (Degrees) Figure 2.4: Bearing capacity factor from Prakash and Sharmad (199). One of the criteria that should be considered in calculation of the ultimate toe bearing capacity is the displacement of the pile itself. O Neill and Reese (1999), recommend: for the ultimate toe bearing capacity of drilled shafts based on settlement equal to 5 percent of the toe diameter, where equals the ultimate unit toe bearing capacity, is the mean SPT N-value between the pile toe and a depth of 2D t below the toe, and D t is the toe diameter of drilled shafts. This relationship is valid for N 6 5, where N 6 is mean SPT N-value, corrected for 6% hummer efficiency, between the toe and a depth of 2D t below the toe. O Neill and Reese (1999) considered soils with N 6 5 as an intermediate geomaterial, and further soil testing may be necessary to determine the ultimate toe bearing capacity of drilled shafts in these soils or rock conditions.

33 11 Considerable displacement is required to develop significant toe resistance, and serviceability of the supported structure must be taken into account. Typically, 25 mm is considered as the maximum allowable settlement although in reality, the critical maximum displacement depends on the structure. There are two approaches for incorporating the relationship between displacement and resistance; first, one can reduce the magnitude of used in the ultimate resistance calculation, one can perform a settlement analysis as described in Section and evaluate the ultimate toe bearing capacity accordingly. As described earlier, Equation 2.4 is only valid for the cases where N 6 5. In the cases where N 6 5 and the soil is non-cohesive, O Neill and Reese (1999) recommended: [ ] 8 where is the ultimate unit toe bearing capacity, defines as corrected SPT N-value, and equals the vertical effective stress at toe of the drilled shaft. The O Neill and Reese (1999) relationship was modified by Brown et al. (27) for determination of the ultimate unit toe resistance of ACIP piles as: where represents the SPT N values corrected for 6 percent hammer efficiency.

34 Shaft Resistance of Drilled Shafts The majority of load in normal service loading cases is transferred through the shaft by mobilized frictional resistance, since the ultimate values of shaft friction could be mobilized under smaller displacements relative to toe bearing resistance. Therefore, determination of the shaft resistance has been a leading concern and many research studies have been carried out on this subject. The shaft resistance can be estimated by performing an effective stress or total stress analysis (Coduto 21), based on the generation and/or persistence of excess pore water pressure. If the time for dissipation of excessive pore water pressure that was generated during the installation procedure is comparable with some portion of service life of pile, then a total stress analysis may be considered. On the other hand, if dissipation is rather rapid, effective stress analysis is more appropriate. In case of the construction of drilled shafts in granular soils, dissipation is usually rapid, so the predominant condition during the service life is the steady-state condition and calculations will be more appropriate using an effective stress analysis. The relationship for the ultimate unit shaft resistance,, can be described as (Coduto 21): where equals the horizontal effective stress, and is the effective soil-foundation friction angle. The value of is usually developed through field investigations and laboratory tests. An example of such efforts may be found in Kulhawy et al. (1983) and Kulhawy (1991) and is presented in Table 2.1. Also, since the construction and installation of the pile introduces disturbance in the surrounding soil and the lateral earth

35 13 pressure is not certain after installation, relationships for the lateral earth pressure coefficient after installation, K, are reported as a function of their values prior to the installation, K, in a same manner as for the soil-foundation friction angle. One such relationship is presented by Kulhawy et al. (1983) and Kulhawy (1991) and shown in Table 2.2. Table 2.1: Approximate φ' f φ' values for the interface between deep foundations and soil (after Kulhawy et al and Kulhawy 1991). Foundation Type Rough concrete 1. Smooth concrete (i.e., precast pile).8-1. Rough steel (i.e., step-taper pile) Smooth steel (i.e., pipe pile or H-pile) Wood (i.e., timber pile) Drilled shaft built using dry method or with temporary casing and good construction techniques Drilled shaft built with slurry method (higher values correspond to more careful construction methods)

36 14 Table 2.2: Approximate ratio of coefficient of lateral earth pressure after construction to that before construction (after Kulhawy et ai and Kulhawy 1991). Foundation Type and Method of Construction Pile-jetted Pile-small displacement, driven Pile-large displacement, driven Drilled shaft-built using dry method with minimal sidewall.9-1. disturbance and prompt concreting Drilled shaft-slurry construction with good workmanship.9-1. Drilled shaft-slurry construction with poor workmanship Drilled shaft-casing method below water table In a similar approach, Tomlinson and Woodward (28) suggested the following approximation: where K represents the coefficient of lateral earth pressure which here obtained from, is the average vertical effective stress along the soil layer, and is the effective friction angle of the soil layer. To eliminate the individual evaluation of the parameters such as lateral earth pressure coefficient and pile-soil friction angle, Burland (1973) suggested the implementation of the -method. The -method is an alternative approach to Equation 2.7, with the values

37 15 of acquired from full-scale static load tests. The values of are then used for similar soil profiles and foundations. To benefit from this method, the original soil layer is divided into several sub-layers, and appropriate values of is used for each layer according to characteristics of soil in the layer considered, as: where all of the parameters have been previously defined. For drilled shafts installed in granular soil, especially sand, with N 6 15, O'Neill and Reese (1999) recommend: for calculation of with a maximum value of 19 kpa, where, z is the depth to midpoint of soil layer. Rollins et al. (25) suggested a modification to this equation for cases where gravel is present. 8 where z is the depth to midpoint of soil layer in meters.

38 Estimation of Bearing Capacity of Augered Cast-in-Place Piles Ultimate Toe Bearing Capacity of ACIP piles Despite the use of augered cast-in-place piles for seven decades, there are fewer relationships available for them as compared to conventional drilled shafts. Neely (1991) studied 66 ACIP piles that were installed mostly in sand. Neely (1991) assumed that the ultimate pile resistance occurs at pile head movement of 1 percent of pile diameter; therefore, the values for ultimate loads were obtained either from the field measurements or stability plot method and corresponding toe bearing capacities were calculated. Consequently, an empirical relationship was developed for toe bearing capacity of augered cast-in-place piles in granular soil, specifically in sand: where is the ultimate unit toe bearing capacity in kpa, is the SPT blow count below toe and a depth of about D t. Figure 2.5 illustrates the experimental data used by Neely (1991) to generate Equation 2.13.

39 17 Figure 2.5: The relationship between SPT N values and the toe bearing resistance, after Neely Recently, a modification to the Neely (1991) relationship was made by Stuedlein et al. (212), in which the results from 11 test cases reported by Gurtowski (1997, 29) were added to data base created by Neely (1991). Stuedlein et al. (212) suggested a lower value for the upper bound of the ultimate toe bearing capacity as: based on the new load test data, where represents the SPT N value. This relationship described by mean bias, where bias defines as ratio of measured values to those predicted using proposed model, of 1.1 and COV in bias of 23 percent. Stuedlein et al. (212) proposed relationship provides more appropriate results than the expression recommended by O Neill and Reese (1999), as presented in Figure 2.6.

40 18 Figure 2.6: The relationship between SPT N values and the toe bearing resistance, with comparison between the Stuedlein et al. (212) expression with FHWA method, after Stuedlein et al. (212) Ultimate Shaft Resistance of ACIP Piles For the calculation of the ultimate shaft resistance of ACIP piles, Neely (1991) used the same database of 66 ACIP test piles and found out that the coefficient varies with depth until 24 m, and remains constant for pile length greater than 24 meters. He also proposed a maximum value for ultimate shaft resistance based on filed observations as: where is the average unit shaft resistance, represents the average β coefficient that could be obtained from the values demonstrated in Figure 2.7, and is the average vertical effective stress along length of pile.

41 Length of Pile (m) β-coefficient Figure 2.7: Average β-coefficient for use in Equation 2.15 (Neely 1991). Stuedlein et al. (212) suggested a relationship for -coefficient values based on the results reported by Gurtowski (1997, 29) in addition to database prepared by Neely (1991). To determine this expression, the ultimate shaft resistance was assumed to be mobilized at pile head movements of 5 to 7.5 percent of pile diameter. This relationship is: ( ( ) )

42 Length of Pile (m) 2 where the coefficient is defined as function of pile length and is pile length. This expression was characterized with a mean bias and COV in bias of 1.8 and 4 percent respectively, as shown in Figure 2.8. Since the expressions for toe bearing capacity and ultimate shaft resistance suggested by Stuedlein et al. (212) provide more adequate predictions than those developed for drilled shafts, Equations 2.14 and 2.16 will be used to calculate the ultimate toe bearing capacity and ultimate shaft resistance as described in chapter 5. Figure 2.8: The relationship between depth of embedment and β coefficient. The data points consist of experiments conducted in the Stuedlein et al. (212) and Neely (1991) experiment. after Stuedlein et al. (212).

43 Prediction Models of Pile Settlement in Granular Soils Vesic (1977) Settlement Method One of the widely used tools to predict and calculate the settlement of piles was proposed by Vesic (1977) which can be included in the category of empirical relationships. This method can be used with either drilled shafts or driven piles. The Vesic (1977) method separates the total settlement of a pile into three components: settlements due to load transferred to the pile toe,, settlement due to load transferred along the pile shaft,, and the settlement due to the distortion of shaft,, as: In the Vesic (1977) method, load on the shaft is defined as the smaller of the applied load on the pile head and the ultimate shaft resistance. Load on the toe is chosen as the smaller of the difference between the applied load and the shaft resistance, which should be considered as zero if the shaft resistance were greater than applied load, and the toe resistance. The Vesic (1977) method requires that the ultimate shaft and toe bearing resistance by means of a selected capacity model, such as those described in Section 2.2. Then, the settlement due to the elastic deformation of the shaft can be calculated by:

44 22 where represents the load on the toe, is the load on the shaft, equals to the pile length, is the pile cross sectional area, equals elastic modulus of the pile material, and is the load distribution factor, which ranges from and generally assumed to be.6. Figure 2.9 illustrates the effects of load distribution factor along a pile. The settlements in pile toe; due to load transferred through pile toe and along the pile, can be calculated by: where is the toe settlement of the pile due to load transferred through the toe of the pile, equals the toe settlement of the pile due to load transferred along the shaft, is the net load on the toe, is the load on the shaft, equals the pile toe diameter, equals the ultimate unit toe resistance, and are empirical coefficients depending on the soil type and installation method. Table 2.3 presents some typical values for according to soil type and pile installation method. The values for can be calculated using: ( )

45 23 Table 2.3: Values for C p coefficient (after Vesic 1977). Soil Driven Piles Drilled Piles Sand (dense to loose) Clay (stiff to soft) Silt (dense to loose) Figure 2.9: The load distribution factor for different typical loading cases: (a) uniform distribution, α =.5, (b) extreme case of linear distribution, α =.67, (c) extreme case of linear distribution, α =.33. After Vesic (1977).

46 Introduction to t-z and q-z Models A significant assumption that is invoked when calculating the bearing capacity of piles using the relationships described in Section 2.2 is that the ultimate shaft and toe resistance was mobilized completely and simultaneously. This assumption is not valid for serviceability limit states, which is prevalent over the service life of a pile. Load transfer models help to overcome this problem by introducing a relationship between mobilized resistance and its ultimate value as function of a particular parameter such as the head movement of the pile or relative movement of each point on the pile relative to the surrounding soil. These models consist of an expression for the mobilized shaft resistance (also known as shear stress along the shaft, t, which equals f s in the ultimate case), and mobilized toe resistance (which is known by q and q t in ultimate case) as function of the relative displacement between the pile and soil, z. The load transfer models for shaft and toe resistance are termed t-z and q-z models, respectively. The main idea behind t-z and q-z method is to model the behavior of the surrounding soil as a series of springs with nonlinear stiffness. Employment of nonlinear stiffness is one of the advantages of t-z and q-z models over conventional approaches, since they can estimate the expected nonlinear behavior of the soil during loading. A schematic demonstration of one such model is presented in Figure 2.1. There are two methods to produce t-z and q-z models, theoretical and empirical. In the theoretical approach, the load transfer mechanism is usually developed based on theoretical concepts such as

47 25 elasticity, whereas in empirical approaches the load transfer is estimated using actual measurements. Figure 2.1: Schematic concept used in t-z method modeling (after FHWA 213) Theoretical t-z Curves for Linear Elastic Soils Kraft, et al. (1981) reasoned that geometric parameters of piles, such as diameter and length, and soil characteristics have a critical influence on pile stresses, empirical relationships that are established using a limited number of experiments cannot be used as a general model for all conditions. Kraft, et al. (1981) proposed that the load transfer mechanism is more significant than ultimate resistances where considering service loads. Therefore, they adapted existing approaches to obtain ultimate resistances and used

48 26 theoretical concepts to create a t-z model. For piles under service load, Kraft, et al. (1981) used a linear elastic soil model developed by Randolph and Wroth (1978). The assumptions used included that the deformation mode of the soil around the pile is considered to be the shearing of concentric cylinders, and radial deformations are neglected. A brief outline of the expressions, mostly from Randolph and Wroth (1978) are presented in the following pages. Figure 2.11: Concentric cylinder model for settlement analysis of axially loaded piles (modified from Randolph and Wroth 1978). Vertical equilibrium of the soil element of Figure 2.11 can be expressed as: where is the shear stress, and is the total vertical stress. Since after loading a pile, the rate of change in shear stress around the pile is much larger than the vertical total stress, which can be considered constant, the Equation 2.22 can be simplified to:

49 27 The shear strain can be calculated from in which is the radial displacement and is neglected, represents the vertical displacement. According to the relationship between shear strain and shear stress for linear elastic soils as, the settlement of the pile shaft can be determined from (Randolph and Wroth 1978): where equals the distance at which shear stresses in the soil become negligible, and equals the shear modulus of the soil at distance. There are several, mostly empirical, relationships for calculating, such as the relationship proposed by Randolph and Wroth (1978): where is the pile embedment depth, represents the factor of vertical homogeneity of soil stiffness which is the ratio of soil shear modulus at the middle of the pile to its amount at pile tip, and is the Poisson's ratio of the soil. This model results in an equivalent linear t-z curve, as shown in Figure 2.12.

50 28 Figure 2.12: Linear t-z curve obtained using Randolph and Wroth (1978) (after FHWA 213) Empirical t-z Curves Equation 2.1 implies that the maximum shaft resistance and toe bearing are mobilized simultaneously, and is independent of pile movement. However, results from load tests on instrumented piles do not support this assumption. It has been observed that for small loading, pile movement occurs mostly near the top of the pile and is resisted largely by shaft resistance. Further increases in the applied load results in larger movements of the pile head due to the elastic deformation of the pile and downward movement of the pile toe, such that the total pile head movement is described by (Vijayvergiya 1977): where is the movement of the pile head, represents the movement of the pile toe, and is the elastic compression of the pile.

51 29 The downward movement of any desired depth of the pile can be calculated by knowing the load distribution as a function of the pile depth. where is the downward movement of pile at any desire depth, represents the movement of the pile head, is the area of the pile, defined as pile modulus, and is the load at the considered depth. Coyle and Reese (1966) proposed a criterion for the determination of load transfer in clay, presented in Figure 2.13(a). Later, a similar criterion by Coyle and Sulaiman (1967) was proposed for sand as demonstrated in Figure 2.13(b). Figure 2.13: (a) Normalized load transfer curves for clay proposed by Coyle and Reese 1966 and (b) Normalized skin friction curves for sand proposed by Coyle and Solaiman According to Vijayverjia (1977) the load transfer mobilized at any depth can be represented using: ( )

52 3 where is the unit shaft resistance mobilized along a pile segment at movement, represents the ultimate unit shaft resistance, and defines as the critical movement of the pile segment at which is mobilized. According to experiments by Vijayverjia (1977), can considered equal to about.3 inches or 8 mm for sands. Figure 2.14: Normalized skin friction curve for clay and sand proposed by Vijayverjia (1977). O Neill and Reese (1999) developed charts from full scale experiments of drilled shafts to relate mobilized shaft resistance normalized by the ultimate shaft resistance, with pile settlement normalized by the pile toe diameter in percent, shown in Figure As indicated in the graph, O Neil and Reese (1999) predicted that the ultimate shaft resistance would be reached in a settlement of about 1 percent of the pile diameter. They also included minor decreasing trend in the shaft resistance values after reaching the maximum value, for use with deflection softening soils.

53 f s A s Mobilized f s A s Ultimate Range for Deflection Softening Response Range for Deflection Hardening Response Trend δ/b (%) Figure 2.15: Normalized curves of load transfer in side friction vs. settlement for drilled shafts in sand (O'Neill and Reese 1999) q-z Curves for Toe Bearing Capacity Results from load tests show that ultimate toe resistance, if at all possible to be achieved, is mobilized at very large toe movements. Therefore,, the critical displacement, can be defined as the point at which the maximum unit bearing capacity of the pile toe is mobilized. The critical displacement also is typically defined as a function

54 32 of the pile toe diameter and ranges from.4d t to.6d t where D t is pile toe diameter. The mobilized unit toe bearing pressure at any movement can be obtained from (Vijayverjia 1977): 3 where is the ultimate toe bearing, equals the critical displacement corresponding to the, and refers to the toe bearing mobilized at movement of. Values for at the pile toe can be obtained from Equation 2.3 or other proposed relationships. Figure 2.16 shows normalized q-z curve described by (Vijayverjia 1977) for clay and sand, where the ratio of gradually increases to its maximum value and remains constant thereafter. This behavior is not typical of most piles bearing in sand. Figure 2.16: Normalized q-z curve for clay and sand (Vijayverjia 1977). Later, O Neill and Reese (1999) developed charts from the full scale experiments to define a relationship between the mobilized toe bearing resistance normalized by the ultimate toe resistance, and the pile settlement normalized by the pile toe diameter in percent. The resultant graph is provided in Figure This graph does not indicate an

55 33 ultimate resistance, as there typically is not an ultimate toe bearing resistance in granular soils. However, in practice, the pile settlement of about 1 percent of the pile diameter is considered as the point where the toe bearing capacity would be mobilized q t A t Mobilized q t A t Ultimate Range Trend δ/b (%) Figure 2.17: Normalized curves of load transfer in toe bearing vs. settlement for drilled shafts in sand (after O'Neill and Reese 1999).

56 Summary In this chapter, a brief overview of drilled foundations and their applications were presented. A detailed description of augered cast-in-place (ACIP) piles, including installation method, was provided. The existing relationships for calculation of ultimate shaft and toe resistances were discussed and relevant load transfer models were summarized. It has been noted that most of the existing relationships and load transfer models are generated from the drilled shaft specific experimental results; therefore, application of such expressions for ACIP piles can reduce the accuracy of the loaddisplacement model. In the following chapters the database and procedures to generate a ACIP pile specific load-displacement model will be presented to address the apparent gap in ACIP pile design.

57 35 3 Research Objectives The global objective of this study is to develop an ACIP pile specific t-z model to use with the granular soils of Western Washington. The proposed t-z model will be incorporated with previously established q-z models, such as those by O Neill and Reese (1999), to create a load-displacement and load transfer prediction model that can be used to estimate the behavior of augered cast-in-place piles. The following specific objectives comprise the goals of this study: 1. Develop the load transfer behavior for each of six instrumented piles based on strain gage measurements; 2. Determine empirical t-z curves derived from field measurements of each of six instrumented test piles; 3. Determination of a suitable approach for determining the uncertainty in the empirical t-z model; 4. Generate a general t-z model and quantify the associated uncertainty; and, 5. Simulate the observed load test data and evaluate the accuracy and variability of the load-displacement behavior. The research program performed to achieve the objectives outlined above includes: 1. Development of the soil profiles for each test case and the determination of appropriate geotechnical parameters; 2. Generation of the empirical t-z curves and normalizing the curves to generalize the observed behavior;

58 36 3. Selecting and calibrating existing q-z curves for use with ACIP piles; 4. Predicting the observed load-displacement curves of the instrumented and independent un-instrumented ACIP piles in West Washington granular soils; 5. Using the statistics of variability in the t-z and q-z model to simulate numerous load-displacement curves using Monte Carlo Simulation; and, 6. Comparing the actual and estimated loads at specific displacements to estimate the variability of the new procedure.

59 37 4 Database of Loading Test Cases This chapter provides the details of the full-scale experimental load tests previously conducted on ACIP piles that form the basis for this study. The experimental data are used in this study to develop a new t-z and q-z model based load-displacement prediction tool. The measurements in this database are adopted from two sets of test series, termed the 1997 and 29 Test Series. 4.1 Static Pile Load Test Data for 1997 Test Series General A series of static load tests were performed in the state of Washington and reported by Gurtowski (1997). The loading tests were performed in accordance with the Quick Load Test Method as described in ASTM D Static load tests were performed for six ACIP piles, the length and diameter of which varied from 9 to 22 m and 46 to 46 mm, respectively. Table 4.1 summarizes the geometric details and location of the test piles. Table 4.1: Geometric details and locations of test piles for the 1997 Test Series, after Gurtowski (1997). Load Test Name Diameter (mm) Length (m) Location Keyport, WA Keyport, WA Bremerton, WA Bremerton, WA Richland, WA Seattle, WA

60 38 The pile loading tests were conducted in the Western Washington region, for which the geological strata consists of dense sand to silty sand and very dense gravel to gravelly sand. Occasionally, a relatively thin weak silt or clay layer was observed in some boring logs. None of the test cases in the 1997 Test Series reached an ultimate resistance; therefore, Gurtowski (1997) applied the stability plot procedure to estimate the value of the ultimate loads. The stability plot procedure is described by Neely (1991) and does not account for soil-pile interaction effects. To improve the results from stability plot method, Gurtowski (1997) applied the t-z model proposed by Kraft (1981) and a q-z model by Vijayvergiya (1977) to estimate loads at large displacements. The simulated loads resulted in a 12 to 3 mm deflection of the pile heads, which corresponded to a deflection of 3 to 7.5 percent of pile diameter. The ultimate values proposed by Gurtowski (1997) will be utilized as references for comparison purposes. Figure 4.1 presents the loading test results along with stability plot method prediction and proposed ultimate loads reported by Gurtowski (1997). Test piles in the 1997 Test Series were subjected to loads up to 3336 kn, achieved for pile and which resulted in a maximum head deflection of 28 mm. On the other hand, the smallest maximum load corresponded to pile , equal to 884 kn and 3.6 mm of pile head movement. The ultimate loads and corresponding pile head displacements proposed by Gurtowski (1997) showed a wide range of values, with the minimum of 1446 kn and pile head displacement of 12.7 mm for pile and the maximum head deflection of 31 mm with 3114 kn load for pile

61 Head Displacement (mm) Head Displacement (mm) Head Displacement (mm) Head Displacement (mm) Head Displacement (mm) Head Displacement (mm) 39 5 Load (kn) (a) 5 Load (kn) (b) Actual measurements Stability plot results Proposed ultimate by Gurtowski (1997) Actual measurements Stability plot results Proposed ultimate by Gurtowski (1997) 5 Load (kn) (c) 1 Load (kn) (d) Actual measurements Stability plot results Proposed ultimate by Gurtowski (1997) Actual measurements Stability plot results Proposed ultimate by Gurtowski (1997) 1 Load (kn) (e) 1 Load (kn) (f) Actual measurements Stability plot results Proposed ultimate by Gurtowski (1997) 4 5 Actual measurements Stability plot results Proposed ultimate by Gurtowski (1997) Figure 4.1: Comparison between actual load-displacement and predications from the stability plot method, along with the ultimate loads proposed by Gurtowski (1997): (a) Test , (b) Test , (c) Test , (d) Test , (e) Test , (f) Test

62 Development of Soil Profile and Soil Parameters for the 1997 Test Series In order to evaluate the load-displacement response of the test piles, the soil profile for each pile must be developed from the vicinity of the pile. In the 1997 Test Series, at least one boring with the Standard Penetration Test (SPT) was performed near each test pile. Boring logs indicated the SPT N-values, soil stratigraphy, and ground water table elevations. These SPT N-values were used with empirical relationships to estimate soil parameters such as the unit weight and the friction angle. To determine the friction angle, the relationship proposed by Wolff (1989) was used. where is the friction angle in degrees and represents the SPT N-value. The unit weight of the soil layers was estimated using the range of values recommended in the ODOT Geotechnical Design Manual (29), which is modified from Meyerhof (1956), and outlined in Table 4.2. Soil profiles and parameters for all the piles were generated from boring data by means of Equation 4.1 and Table 4.2. A linear regression was assumed for computing the unit weights from Table 4.2. Figures 4.2 through 4.7 illustrate the SPT N-values, unit weight, friction angle, and a simplified soil profile for each test case. The observed ground water elevation is shown with a dashed line on the soil profiles.

63 41 Table 4.2: Criteria for the estimation of unit weight, adopted from ODOT Geotechnical Design Manual (29). SPT N-value Unit Weight (kn/m 3 ) to to to to greater than (a) (b) (c) (d) Figure 4.2: Subsurface information for test pile : (a) SPT N-value, (b) unit weight, (c) friction angle, (d) soil profile.

64 42 (a) (b) (c) (d) Figure 4.3: Subsurface information for test pile : (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile. (a) (b) (c) (d) Figure 4.4: Subsurface information for test pile : (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile.

65 43 (a) (b) (c) (d) Figure 4.5: Subsurface information for test pile : (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile. (a) (b) (c) (d) Figure 4.6: Subsurface information for test pile : (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile.

66 44 (a) (b) (c) (d) Figure 4.7: Subsurface information for test pile : (a) SPT N-value, (b) Unit weight, (c) friction angle, (d) soil profile. Generally, SPT N-values in granular soils, and hence the unit weight and friction angles, usually increase with depth. Despite some minor variations, this behavior is noted in the 1997 Test Series. Except for pile and , which contains layers of cohesive soil in their profiles, the 1997 Test Series are embedded in mostly granular strata. Furthermore, the values of unit weight and friction angle extend from 14 to 23 kn/m 3 and 28 to 5 degrees. The unit weights are used to calculate the vertical effective stress along each pile. For cases where a layer of cohesive soil was presented in the soil profile, such as piles , and , no values of the friction angle are reported for cohesive layers.

Deep Foundations 2. Load Capacity of a Single Pile

Deep Foundations 2. Load Capacity of a Single Pile Deep Foundations 2 Load Capacity of a Single Pile All calculations of pile capacity are approximate because it is almost impossible to account for the variability of soil types and the differences in the

More information

INTRODUCTION TO STATIC ANALYSIS PDPI 2013

INTRODUCTION TO STATIC ANALYSIS PDPI 2013 INTRODUCTION TO STATIC ANALYSIS PDPI 2013 What is Pile Capacity? When we load a pile until IT Fails what is IT Strength Considerations Two Failure Modes 1. Pile structural failure controlled by allowable

More information

Axially Loaded Piles

Axially Loaded Piles Axially Loaded Piles 1 t- Curve Method using Finite Element Analysis The stress-strain relationship for an axially loaded pile can be described through three loading mechanisms: axial deformation in the

More information

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai Geosynthetics and Reinforced Soil Structures Reinforced Soil Walls continued Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai e-mail: gopalkr@iitm.ac.inac in Outline of the Lecture

More information

Piles Capacity Reference Manual

Piles Capacity Reference Manual Piles Capacity Reference Manual hetge hetge geotechnics on the go Piles Capacity Reference Manual January 3, 2013 Version: PC-1.3.130103 hetge LLC Moscow Virginia Istanbul E info@hetge.com W www.hetge.com

More information

Lesson 25. Static Pile Load Testing, O-cell, and Statnamic. Reference Manual Chapter 18

Lesson 25. Static Pile Load Testing, O-cell, and Statnamic. Reference Manual Chapter 18 Lesson 25 Static Pile Load Testing, O-cell, and Statnamic Reference Manual Chapter 18 STATIC LOAD TESTING Most accurate method to determine static pile capacity Perform at design or construction stage

More information

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3.

Boreholes. Implementation. Boring. Boreholes may be excavated by one of these methods: 1. Auger Boring 2. Wash Boring 3. Implementation Boreholes 1. Auger Boring 2. Wash Boring 3. Rotary Drilling Boring Boreholes may be excavated by one of these methods: 4. Percussion Drilling The right choice of method depends on: Ground

More information

THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS

THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS Hideaki Nishida 1,Toshiaki Nanazawa 2, Masahiro Shirato 3, Tetsuya Kohno 4, and Mitsuaki Kitaura 5 Abstract One of the motivations

More information

CHAPTER 8 CALCULATION THEORY

CHAPTER 8 CALCULATION THEORY CHAPTER 8 CALCULATION THEORY. Volume 2 CHAPTER 8 CALCULATION THEORY Detailed in this chapter: the theories behind the program the equations and methods that are use to perform the analyses. CONTENTS CHAPTER

More information

Calibration of Resistance Factors for Drilled Shafts for the 2010 FHWA Design Method

Calibration of Resistance Factors for Drilled Shafts for the 2010 FHWA Design Method Calibration of Resistance Factors for Drilled Shafts for the 21 FHWA Design Method Murad Y. Abu-Farsakh, Ph.D., P.E. Qiming Chen, Ph.D., P.E. Md Nafiul Haque, MS Feb 2, 213 213 Louisiana Transportation

More information

INTI COLLEGE MALAYSIA

INTI COLLEGE MALAYSIA EGC373 (F) / Page 1 of 5 INTI COLLEGE MALAYSIA UK DEGREE TRANSFER PROGRAMME INTI ADELAIDE TRANSFER PROGRAMME EGC 373: FOUNDATION ENGINEERING FINAL EXAMINATION : AUGUST 00 SESSION This paper consists of

More information

Liquefaction Induced Negative Skin Friction from Blast-induced Liquefaction Tests with Auger-cast Piles

Liquefaction Induced Negative Skin Friction from Blast-induced Liquefaction Tests with Auger-cast Piles 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand Liquefaction Induced Negative Skin Friction from Blast-induced Liquefaction Tests with Auger-cast

More information

CHAPTER 7 ANALYSES OF THE AXIAL LOAD TESTS AT THE ROUTE 351 BRIDGE

CHAPTER 7 ANALYSES OF THE AXIAL LOAD TESTS AT THE ROUTE 351 BRIDGE CHAPTER 7 ANALYSES OF THE AXIAL LOAD TESTS AT THE ROUTE 351 BRIDGE 7.1 INTRODUCTION In this chapter, calculations using methods commonly employed in practice are presented for the pile axial load capacity,

More information

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE

CHAPTER 8 ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE CHAPTER ANALYSES OF THE LATERAL LOAD TESTS AT THE ROUTE 351 BRIDGE.1 INTRODUCTION An important objective of this research is to determine whether accurate analyses of the lateral load-deflection behavior

More information

STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS

STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS STUDY OF THE BEHAVIOR OF PILE GROUPS IN LIQUEFIED SOILS Shin-Tower Wang 1, Luis Vasquez 2, and Lymon C. Reese 3, Honorary Member,, ASCE ABSTRACT : 1&2 President & Project Manager, Ensoft, Inc. Email: ensoft@ensoftinc.com

More information

Interpretation of Pile Integrity Test (PIT) Results

Interpretation of Pile Integrity Test (PIT) Results Annual Transactions of IESL, pp. 78-84, 26 The Institution of Engineers, Sri Lanka Interpretation of Pile Integrity Test (PIT) Results H. S. Thilakasiri Abstract: A defect present in a pile will severely

More information

J. Paul Guyer, P.E., R.A.

J. Paul Guyer, P.E., R.A. J. Paul Guyer, P.E., R.A. Paul Guyer is a registered mechanical engineer, civil engineer, fire protection engineer and architect with over 35 years experience in the design of buildings and related infrastructure.

More information

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS Transactions, SMiRT-24 ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS 1 Principal Engineer, MTR & Associates, USA INTRODUCTION Mansour Tabatabaie 1 Dynamic response

More information

Neutral Plane Method for Drag Force of Deep Foundations and the AASHTO LRFD Bridge Design Specifications

Neutral Plane Method for Drag Force of Deep Foundations and the AASHTO LRFD Bridge Design Specifications Neutral Plane Method for Drag Force of Deep Foundations and the AASHTO LRFD Bridge Design Specifications Timothy C. Siegel, P.E., G.E., D.GE Dan Brown and Associates, PC, Knoxville, Tennessee USA Rich

More information

Engineeringmanuals. Part2

Engineeringmanuals. Part2 Engineeringmanuals Part2 Engineering manuals for GEO5 programs Part 2 Chapter 1-12, refer to Engineering Manual Part 1 Chapter 13. Pile Foundations Introduction... 2 Chapter 14. Analysis of vertical load-bearing

More information

AN ANALYTICAL MODEL FOR DEFLECTION OF LATERALLY LOADED PILES

AN ANALYTICAL MODEL FOR DEFLECTION OF LATERALLY LOADED PILES Journal of Marine Science and Technology, Vol. 11, No. 3, pp. 149-154 (003) 149 AN ANAYTICA MODE FOR DEFECTION OF ATERAY OADED PIES Jen-Cheng iao* and San-Shyan in** Key words: pile, lateral load, inclinometer,

More information

Landslide FE Stability Analysis

Landslide FE Stability Analysis Landslide FE Stability Analysis L. Kellezi Dept. of Geotechnical Engineering, GEO-Danish Geotechnical Institute, Denmark S. Allkja Altea & Geostudio 2000, Albania P. B. Hansen Dept. of Geotechnical Engineering,

More information

!!!!!! Piles Capacity Reference Manual

!!!!!! Piles Capacity Reference Manual Piles Capacity Reference Manual Foreword July 26, 2014 Piles Capacity is simply the pocket calculator for deep foundation designers dealing with pile bearing capacity of cast-in-place bored piles (also

More information

ULTIMATE LIMIT STATE RELIABILITY-BASED DESIGN OF AUGERED CAST-IN-PLACE PILES CONSIDERING LOWER- BOUND CAPACITIES

ULTIMATE LIMIT STATE RELIABILITY-BASED DESIGN OF AUGERED CAST-IN-PLACE PILES CONSIDERING LOWER- BOUND CAPACITIES Canadian Geotechnical Journal ULTIMATE LIMIT STATE RELIABILITY-BASED DESIGN OF AUGERED CAST-IN-PLACE PILES CONSIDERING LOWER- BOUND CAPACITIES Journal: Canadian Geotechnical Journal Manuscript ID cgj-2016-0145.r1

More information

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods ENCE 3610 Soil Mechanics Site Exploration and Characterisation Field Exploration Methods Geotechnical Involvement in Project Phases Planning Design Alternatives Preparation of Detailed Plans Final Design

More information

June 9, R. D. Cook, P.Eng. Soils Engineer Special Services Western Region PUBLIC WORKS CANADA WESTERN REGION REPORT ON

June 9, R. D. Cook, P.Eng. Soils Engineer Special Services Western Region PUBLIC WORKS CANADA WESTERN REGION REPORT ON PUBLIC WORKS CANADA WESTERN REGION REPORT ON GEOTECHNICAL INVESTIGATION PROPOSED MARTIN RIVER BRIDGE MILE 306.7 MACKENZIE HIGHWAY Submitted by : R. D. Cook, P.Eng. Soils Engineer Special Services Western

More information

CPT Guide 5 th Edition. CPT Applications - Deep Foundations. Gregg Drilling & Testing, Inc. Dr. Peter K. Robertson Webinar # /2/2013

CPT Guide 5 th Edition. CPT Applications - Deep Foundations. Gregg Drilling & Testing, Inc. Dr. Peter K. Robertson Webinar # /2/2013 Gregg Drilling & Testing, Inc. Site Investigation Experts CPT Applications - Deep Foundations Dr. Peter K. Robertson Webinar #6 2013 CPT Guide 5 th Edition Robertson & Cabal (Robertson) 5 th Edition 2012

More information

SIDE FRICTION OF DRILLED PILES IN COBBLE LAYERS

SIDE FRICTION OF DRILLED PILES IN COBBLE LAYERS This article has been peer reviewed and accepted for publication in JMST but has not yet been copyediting, typesetting, pagination and proofreading process. Please note that the publication version of

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK

TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK TABLE OF CONTENTS CHAPTER TITLE PAGE TITLE PAGE DECLARATION DEDIDATION ACKNOWLEDGEMENTS ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLE LIST OF FIGURES LIST OF SYMBOLS LIST OF APENDICES i ii iii iv v

More information

DRILLED DISPLACMENT PILE PERFORMANCE IN COASTAL PLAIN AND RESIDUAL SOILS

DRILLED DISPLACMENT PILE PERFORMANCE IN COASTAL PLAIN AND RESIDUAL SOILS DRILLED DISPLACMENT PILE PERFORMANCE IN COASTAL PLAIN AND RESIDUAL SOILS Presented by: W. Morgan NeSmith, P.E. Berkel & Company Contractors Inc. 770.941.5100 mnesmith@berkelapg.com SC Engineering Conference

More information

LRFD GEOTECHNICAL IMPLEMENTATION

LRFD GEOTECHNICAL IMPLEMENTATION LRFD GEOTECHNICAL IMPLEMENTATION Ching-Nien Tsai, P.E. LADOTD Pavement and Geotechnical Services In Conjunction with LTRC WHY LRFD FHWA deadline - October 2007 LRFD is a better method Risk is quantified

More information

Geotechnical Modeling Issues

Geotechnical Modeling Issues Nonlinear Analysis of Viaducts and Overpasses Geotechnical Modeling Issues Steve Kramer Pedro Arduino Hyung-Suk Shin University of Washington The Problem Approach Soil Soil Soil Soil Soil Soil Soil Soil

More information

OP-023. INTERPRETATION OF INSTRUMENTED TEST PILE RESULT

OP-023. INTERPRETATION OF INSTRUMENTED TEST PILE RESULT INTERPRETATION OF INSTRUMENTED TEST PILE RESULT Page 1 of 9 WORK INSTRUCTIONS FOR ENGINEERS GSJ Compiled by : Checked by KYW : LSS Approved by : OP-23. INTERPRETATION OF INSTRUMENTED TEST PILE RESULT INTERPRETATION

More information

Additional Pile Design Considerations

Additional Pile Design Considerations Additional Pile Design Considerations PDCA 2015 Professor Driven Pile Institute Patrick Hannigan GRL Engineers, Inc. What Are Additional Pile Design Considerations? Time Dependent Soil Strength Changes

More information

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests APPENDIX F 1 APPENDIX F CORRELATION EQUATIONS F 1 In-Situ Tests 1. SPT (1) Sand (Hatanaka and Uchida, 1996), = effective vertical stress = effective friction angle = atmosphere pressure (Shmertmann, 1975)

More information

Comparison of shear pile force and moment in slippage reinforced with shear pile Mona Mohamadi 1, Abolfazl Eslami, Farhad Nabizade 1 1. Department of Technology, Guilan University, Iran. Department of

More information

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM]

file:///d /suhasini/suha/office/html2pdf/ _editable/slides/module%202/lecture%206/6.1/1.html[3/9/2012 4:09:25 PM] Objectives_template Objectives In this section you will learn the following Introduction Different Theories of Earth Pressure Lateral Earth Pressure For At Rest Condition Movement of the Wall Different

More information

TRANSPORTATION RESEARCH BOARD. Static and Seismic Design of Piles for Downdrag. Thursday, October 4, :00-3:30 PM ET

TRANSPORTATION RESEARCH BOARD. Static and Seismic Design of Piles for Downdrag. Thursday, October 4, :00-3:30 PM ET TRANSPORTATION RESEARCH BOARD Static and Seismic Design of Piles for Downdrag Thursday, October 4, 2018 2:00-3:30 PM ET The Transportation Research Board has met the standards and requirements of the Registered

More information

NCHRP LRFD Design Specifications for Shallow Foundations TRB AFS30 Committee Meeting January 26, 2011

NCHRP LRFD Design Specifications for Shallow Foundations TRB AFS30 Committee Meeting January 26, 2011 Geotechnical Engineering Research Laboratory Dept. of Civil and Environmental Engineering University of Massachusetts Lowell. NCHRP 24-31 LRFD Design Specifications for Shallow Foundations TRB AFS3 Committee

More information

S Wang Beca Consultants, Wellington, NZ (formerly University of Auckland, NZ)

S Wang Beca Consultants, Wellington, NZ (formerly University of Auckland, NZ) Wang, S. & Orense, R.P. (2013) Proc. 19 th NZGS Geotechnical Symposium. Ed. CY Chin, Queenstown S Wang Beca Consultants, Wellington, NZ (formerly University of Auckland, NZ) Jackson.wang@beca.com R P Orense

More information

Bearing Capacity of Soils in Deep Foundations Course No. CE0148 PDH: 5

Bearing Capacity of Soils in Deep Foundations Course No. CE0148 PDH: 5 Bearing Capacity of Soils in Deep Foundations Course No. CE0148 PDH: 5 ** PLEASE NOTE: THIS COURSE IS A SUBSECTION OF COURSE # CE0009 ** In order to obtain credit for this course, the following steps listed

More information

Geotechnical issues in seismic assessments: When do I need a geotechnical specialist?

Geotechnical issues in seismic assessments: When do I need a geotechnical specialist? Geotechnical issues in seismic assessments: When do I need a geotechnical specialist? B.H. Rama & S.J. Palmer Tonkin & Taylor Ltd (T+T), Wellington, New Zealand. 2016 NZSEE Conference ABSTRACT: The Canterbury

More information

PILE-SUPPORTED RAFT FOUNDATION SYSTEM

PILE-SUPPORTED RAFT FOUNDATION SYSTEM PILE-SUPPORTED RAFT FOUNDATION SYSTEM Emre Biringen, Bechtel Power Corporation, Frederick, Maryland, USA Mohab Sabry, Bechtel Power Corporation, Frederick, Maryland, USA Over the past decades, there has

More information

Numerical modelling of tension piles

Numerical modelling of tension piles Numerical modelling of tension piles S. van Baars Ministry of Public Works, Utrecht, Netherlands W.J. van Niekerk Ballast Nedam Engineering, Amstelveen, Netherlands Keywords: tension piles, shaft friction,

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil

Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil Evaluation of short piles bearing capacity subjected to lateral loading in sandy soil [Jafar Bolouri Bazaz, Javad Keshavarz] Abstract Almost all types of piles are subjected to lateral loads. In many cases,

More information

Analysis of a single pile settlement

Analysis of a single pile settlement Engineering manual No. 14 Updated: 06/2018 Analysis of a single pile settlement Program: Pile File: Demo_manual_14.gpi The objective of this engineering manual is to explain the application of the GEO

More information

Chapter (11) Pile Foundations

Chapter (11) Pile Foundations Chapter (11) Introduction Piles are structural members that are made of steel, concrete, or timber. They are used to build pile foundations (classified as deep foundations) which cost more than shallow

More information

Lecture 7. Pile Analysis

Lecture 7. Pile Analysis Lecture 7 14.5 Release Pile Analysis 2012 ANSYS, Inc. February 9, 2013 1 Release 14.5 Pile definition in Mechanical - There are a number of methods that can be used to analyze piled foundations in ANSYS

More information

Foundation Engineering Prof. Dr. N. K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee

Foundation Engineering Prof. Dr. N. K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Foundation Engineering Prof. Dr. N. K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Module - 01 Lecture - 01 Shallow Foundation (Refer Slide Time: 00:19) Good morning.

More information

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities

Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Effect of embedment depth and stress anisotropy on expansion and contraction of cylindrical cavities Hany El Naggar, Ph.D., P. Eng. and M. Hesham El Naggar, Ph.D., P. Eng. Department of Civil Engineering

More information

SHEAR STRENGTH OF SOIL

SHEAR STRENGTH OF SOIL Soil Failure Criteria SHEAR STRENGTH OF SOIL Knowledge about the shear strength of soil important for the analysis of: Bearing capacity of foundations, Slope stability, Lateral pressure on retaining structures,

More information

Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods)

Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods) Conventional Field Testing & Issues (SPT, CPT, DCPT, Geophysical methods) Ajanta Sachan Assistant Professor Civil Engineering IIT Gandhinagar Conventional Field Testing 1 Field Test: In-situ shear strength

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

Sample Chapter HELICAL ANCHORS IN SAND 6.1 INTRODUCTION

Sample Chapter HELICAL ANCHORS IN SAND 6.1 INTRODUCTION 6 ELICAL ANCORS IN SAN At the present time, limited studies on helical anchors are available, the results of which can be used to estimate their ultimate uplift capacity. In many instances, the ultimate

More information

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University

SHEET PILE WALLS. Mehdi Mokhberi Islamic Azad University SHEET PILE WALLS Mehdi Mokhberi Islamic Azad University Lateral Support In geotechnical engineering, it is often necessary to prevent lateral soil movements. Tie rod Anchor Sheet pile Cantilever retaining

More information

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S

S E C T I O N 1 2 P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S 1. P R O D U C T S E L E C T I O N G U I D E - H E L I C A L S C R E W P I L E F O U N D A T I O N S Helical foundation pile includes a lead and extension(s). The lead section is made of a central steel

More information

Cubzac-les-Ponts Experimental Embankments on Soft Clay

Cubzac-les-Ponts Experimental Embankments on Soft Clay Cubzac-les-Ponts Experimental Embankments on Soft Clay 1 Introduction In the 197 s, a series of test embankments were constructed on soft clay at Cubzac-les-Ponts in France. These full-scale field tests

More information

Piles and Pile Foundations

Piles and Pile Foundations Piles and Pile Foundations Carlo Viggiani, Alessandro Mandolini and Gianpiero Russo * j \ Spon Press an imprint of Taylor & Francis LONDON AND NEWYORK Contents List of illustrations Introduction PART I

More information

The Bearing Capacity of Soils. Dr Omar Al Hattamleh

The Bearing Capacity of Soils. Dr Omar Al Hattamleh The Bearing Capacity of Soils Dr Omar Al Hattamleh Example of Bearing Capacity Failure Omar Play the move of bearing Capacity failure The Philippine one Transcona Grain Silos Failure - Canada The Bearing

More information

A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia

A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia LRFD for Settlement Analyses of Shallow Foundations and Embankments ------ Developed Resistance Factors for Consolidation Settlement Analyses A Thesis presented to the Faculty of the Graduate School at

More information

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading.

Table 3. Empirical Coefficients for BS 8002 equation. A (degrees) Rounded Sub-angular. 2 Angular. B (degrees) Uniform Moderate grading. Hatanaka and Uchida (1996); ' 20N 20 12N 20 ' 45 A lower bound for the above equation is given as; 12N 15 ' 45 Table 3. Empirical Coefficients for BS 8002 equation A Angularity 1) A (degrees) Rounded 0

More information

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc.

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc. IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc. Portland, Oregon In situ testing of soil, which essentially consists of evaluating

More information

Liquefaction and Foundations

Liquefaction and Foundations Liquefaction and Foundations Amit Prashant Indian Institute of Technology Gandhinagar Short Course on Seismic Design of Reinforced Concrete Buildings 26 30 November, 2012 What is Liquefaction? Liquefaction

More information

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS

NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS NEW DOWN-HOLE PENETROMETER (DHP-CIGMAT) FOR CONSTRUCTION APPLICATIONS 1 2 C. Vipulanandan 1, Ph.D., M. ASCE and Omer F. Usluogullari 2 Chairman, Professor, Director of Center for Innovative Grouting Materials

More information

BACKGROUND AND INTRODUCTION

BACKGROUND AND INTRODUCTION WAVE MECHANICS As applied to pile testing 1 BACKGROUND AND INTRODUCTION Wave Mechanics 2 1 HISTORIC TOOLS AND MATERIALS Timber piles Drop Hammers 10 Days for the Romans to build the bridge over the Rhine

More information

LRFD Calibration of Axially-Loaded Concrete Piles Driven into Louisiana Soils

LRFD Calibration of Axially-Loaded Concrete Piles Driven into Louisiana Soils LRFD Calibration of Axially-Loaded Concrete Piles Driven into Louisiana Soils Louisiana Transportation Conference February 10, 2009 Sungmin Sean Yoon, Ph. D., P.E. (Presenter) Murad Abu-Farsakh, Ph. D.,

More information

Shakedown analysis of pile foundation with limited plastic deformation. *Majid Movahedi Rad 1)

Shakedown analysis of pile foundation with limited plastic deformation. *Majid Movahedi Rad 1) Shakedown analysis of pile foundation with limited plastic deformation *Majid Movahedi Rad 1) 1) Department of Structural and Geotechnical Engineering, Széchenyi István University Egyetem Tér1, H-9026

More information

Pile-Soil Interaction in Unsaturated Soil Conditions

Pile-Soil Interaction in Unsaturated Soil Conditions University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2014 Pile-Soil Interaction in Unsaturated Soil Conditions Megan Hamilton

More information

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL Qassun S. Mohammed Shafiqu and Maarib M. Ahmed Al-Sammaraey Department of Civil Engineering, Nahrain University, Iraq

More information

TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON. Jérôme Racinais. September 15, 2015 PRESSUMETER TEST RESULTS

TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON. Jérôme Racinais. September 15, 2015 PRESSUMETER TEST RESULTS Jérôme Racinais September 15, 215 TC211 Workshop CALIBRATION OF RIGID INCLUSION PARAMETERS BASED ON PRESSUMETER TEST RESULTS Table of contents 1. Reminder about pressuremeter tests 2. General behaviour

More information

Rock Slope Analysis Small and Large Scale Failures Mode of Failure Marklands Test To establish the possibility of wedge failure. Plane failure is a special case of wedge failure. Sliding along

More information

Performance Based Design of Laterally Loaded Drilled Shafts

Performance Based Design of Laterally Loaded Drilled Shafts Performance Based Design of Laterally Loaded Drilled Shafts Prepared by: Robert Y. Liang Haijian Fan Prepared for: The Ohio Department of Transportation, Office of Statewide Planning & Research State Job

More information

Calibration of Resistance Factor for Design of Pile Foundations Considering Feasibility Robustness

Calibration of Resistance Factor for Design of Pile Foundations Considering Feasibility Robustness Calibration of Resistance Factor for Design of Pile Foundations Considering Feasibility Robustness Hsein Juang Glenn Professor of Civil Engineering Clemson University 1 2 Outline of Presentation Background

More information

14 Geotechnical Hazards

14 Geotechnical Hazards Volume 2: Assessment of Environmental Effects 296 14 Geotechnical Hazards Overview This Chapter provides an assessment of the underlying geotechnical conditions to identify: any potential liquefaction

More information

Chapter 7: Settlement of Shallow Foundations

Chapter 7: Settlement of Shallow Foundations Chapter 7: Settlement of Shallow Foundations Introduction The settlement of a shallow foundation can be divided into two major categories: (a) elastic, or immediate settlement and (b) consolidation settlement.

More information

Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Monopile design

Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering. Monopile design Prof. Dr.-Ing. Martin Achmus Institute of Soil Mechanics, Foundation Engineering and Waterpower Engineering Monopile design Addis Ababa, September 2010 Monopile design Presentation structure: Design proofs

More information

Finite Element Investigation of the Interaction between a Pile and a Soft Soil focussing on Negative Skin Friction

Finite Element Investigation of the Interaction between a Pile and a Soft Soil focussing on Negative Skin Friction NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May Finite Element Investigation of the Interaction between a Pile and a Soft Soil

More information

Discussion: behaviour of jacked and driven piles in sandy soil

Discussion: behaviour of jacked and driven piles in sandy soil Title Discussion: behaviour of jacked and driven piles in sandy soil Author(s) Yang, J; Tham, LG; Lee, PKK; Chan, ST; Yu, F Citation Géotechnique, 27, v. 7 n., p. 47-478 Issued Date 27 URL http://hdl.handle.net/1722/7161

More information

Effective stress analysis of pile foundations in liquefiable soil

Effective stress analysis of pile foundations in liquefiable soil Effective stress analysis of pile foundations in liquefiable soil H. J. Bowen, M. Cubrinovski University of Canterbury, Christchurch, New Zealand. M. E. Jacka Tonkin and Taylor Ltd., Christchurch, New

More information

Gapping effects on the lateral stiffness of piles in cohesive soil

Gapping effects on the lateral stiffness of piles in cohesive soil Gapping effects on the lateral stiffness of piles in cohesive soil Satyawan Pranjoto Engineering Geology, Auckland, New Zealand. M. J. Pender Department of Civil and Environmental Engineering, University

More information

A Comparative Study on Bearing Capacity of Shallow Foundations in Sand from N and /

A Comparative Study on Bearing Capacity of Shallow Foundations in Sand from N and / DOI 10.1007/s40030-017-0246-7 ORIGINAL CONTRIBUTION A Comparative Study on Bearing Capacity of Shallow Foundations in Sand from N and / V. A. Sakleshpur 1 C. N. V. Satyanarayana Reddy 1 Received: 9 January

More information

Analysis of Load Carrying Capacity of a Single Pile in Weathered Rock

Analysis of Load Carrying Capacity of a Single Pile in Weathered Rock Analysis of Load Carrying Capacity of a Single Pile in Weathered Rock Ramkripal Yadav Graduate Student, Department of Civil & Environment Engineering, VJTI College, Matunga (E), Maharashtra, India ABSTRACT:

More information

Appraisal of Soil Nailing Design

Appraisal of Soil Nailing Design Indian Geotechnical Journal, 39(1), 2009, 81-95 Appraisal of Soil Nailing Design G. L. Sivakumar Babu * and Vikas Pratap Singh ** Introduction Geotechnical engineers largely prefer soil nailing as an efficient

More information

PERFORMANCE OF BITUMINOUS COATS IN REDUCING NEGATIVE SKIN

PERFORMANCE OF BITUMINOUS COATS IN REDUCING NEGATIVE SKIN PERFORMANCE OF BITUMINOUS COATS IN REDUCING NEGATIVE SKIN FRICTION Makarand G. Khare, PhD Research Scholar, Indian Institute of Technology Madras, Chennai, India Shailesh R. Gandhi, Professor, Indian Institute

More information

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES

GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE ANALYSIS AND DESIGN OF RETAINING STRUCTURES GEOTECHNICAL ENGINEERING ECG 503 LECTURE NOTE 07 3.0 ANALYSIS AND DESIGN OF RETAINING STRUCTURES LEARNING OUTCOMES Learning outcomes: At the end of this lecture/week the students would be able to: Understand

More information

Observational Methods and

Observational Methods and Observational Methods and NATM System for Observational approach to tunnel design Eurocode 7 (EC7) includes the following remarks concerning an observational method. Four requirements shall all be made

More information

INCREASE IN PILE CAPACITY WITH TIME IN MISSOURI RIVER ALLUVIUM

INCREASE IN PILE CAPACITY WITH TIME IN MISSOURI RIVER ALLUVIUM INCREASE IN PILE CAPACITY WITH TIME IN MISSOURI RIVER ALLUVIUM Paul J. Axtell Jacob W. Owen Scott D. Vollink U.S. Army Corps of Engineers U.S. Army Corps of Engineers U.S. Army Corps of Engineers Kansas

More information

Songklanakarin Journal of Science and Technology SJST R1 Ukritchon. Undrained lateral capacity of I-shaped concrete piles

Songklanakarin Journal of Science and Technology SJST R1 Ukritchon. Undrained lateral capacity of I-shaped concrete piles Undrained lateral capacity of I-shaped concrete piles Journal: Songklanakarin Journal of Science and Technology Manuscript ID SJST-0-0.R Manuscript Type: Original Article Date Submitted by the Author:

More information

STABILITY AND DEFORMATION RESPONSE OF PAD FOUNDATIONONS ON SAND USING STANDARD PENETRATION TEST METHOD

STABILITY AND DEFORMATION RESPONSE OF PAD FOUNDATIONONS ON SAND USING STANDARD PENETRATION TEST METHOD Vol. 1, No., May 2013, PP: 79-7, ISSN: 2327-269 (Online) Research article STABILITY AND DEFORMATION RESPONSE OF PAD FOUNDATIONONS ON SAND USING STANDARD PENETRATION TEST METHOD Akpila, S.B 1 and Ode, T

More information

In-class Exercise. Problem: Select load factors for the Strength I and Service I Limit States for the. Loading Diagram for Student Exercise

In-class Exercise. Problem: Select load factors for the Strength I and Service I Limit States for the. Loading Diagram for Student Exercise In-class Exercise Problem: Select load factors for the Strength I and Service I Limit States for the problem illustrated below. Loading Diagram for Student Exercise For this exercise, complete the following

More information

Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee

Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Foundation Engineering Prof. Dr N.K. Samadhiya Department of Civil Engineering Indian Institute of Technology Roorkee Module 01 Lecture - 03 Shallow Foundation So, in the last lecture, we discussed the

More information

(THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM

(THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM C A U T I O N!! (THIS IS ONLY A SAMPLE REPORT OR APPENDIX OFFERED TO THE USERS OF THE COMPUTER PROGRAM EQLique&Settle2. THE AUTHOR IS HEREBY RELEASED OF ANY LIABILITY FOR ANY INCORRECT USE OF THIS SAMPLE

More information

NUMERICAL INVESTIGATION OF LOAD TRANSFER MECHANISM IN SLOPES REINFORCED WITH PILES

NUMERICAL INVESTIGATION OF LOAD TRANSFER MECHANISM IN SLOPES REINFORCED WITH PILES NUMERICAL INVESTIGATION OF LOAD TRANSFER MECHANISM IN SLOPES REINFORCED WITH PILES A Dissertation Presented to the Faculty of the Graduate School University of Missouri-Columbia In Partial Fulfillment

More information

Instructor : Dr. Jehad Hamad. Chapter (7)

Instructor : Dr. Jehad Hamad. Chapter (7) Instructor : Dr. Jehad Hamad Chapter (7) 2017-2016 Soil Properties Physical Properties Mechanical Properties Gradation and Structure Compressibility Soil-Water Relationships Shear Strength Bearing Capacity

More information

Use of Recharge Impulse Technology in Deep Foundations Set-up Wafi Bouassida1, a, Essaieb Hamdi1, b, Mounir Bouassida1, c and Youri Kharine2, d

Use of Recharge Impulse Technology in Deep Foundations Set-up Wafi Bouassida1, a, Essaieb Hamdi1, b, Mounir Bouassida1, c and Youri Kharine2, d Advances in Engineering Research (AER), volume 102 Second International Conference on Mechanics, Materials and Structural Engineering (ICMMSE 2017) Use of Recharge Impulse Technology in Deep Foundations

More information

www.novotechsoftware.com The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. The test procedure

More information

A presentation of UniPile software for calculation of Capacity, Drag Force, Downdrag, and Settlement for Piles and Piled Foundations

A presentation of UniPile software for calculation of Capacity, Drag Force, Downdrag, and Settlement for Piles and Piled Foundations 528 River Road, Ottawa, Ontario, Canada, K1V 1E9 E: info@unisoftgs.com A presentation of UniPile software for calculation of Capacity, Drag Force, Downdrag, and Settlement for Piles and Piled Foundations

More information

DESIGNING FOR DOWNDRAG ON UNCOATED AND BITUMEN COATED PILES

DESIGNING FOR DOWNDRAG ON UNCOATED AND BITUMEN COATED PILES DESIGNING FOR DOWNDRAG ON UNCOATED AND BITUMEN COATED PILES Jean-Louis BRIAUD, PhD, PE President of ISSMGE Professor and Holder of the Buchanan Chair Texas A&M University Piling and Deep Foundations Middle

More information

RESPONSE OF MICROPILES IN EARTH SLOPES FROM LARGE-SCALE PHYSICAL MODEL TESTS

RESPONSE OF MICROPILES IN EARTH SLOPES FROM LARGE-SCALE PHYSICAL MODEL TESTS RESPONSE OF MICROPILES IN EARTH SLOPES FROM LARGE-SCALE PHYSICAL MODEL TESTS A Thesis Presented to the Faculty of the Graduate School University of Missouri-Columbia In Partial Fulfillment Of the Requirements

More information