Reading assignment. Dielectric behavior. Dielectric strength. Topic 9

Size: px
Start display at page:

Download "Reading assignment. Dielectric behavior. Dielectric strength. Topic 9"

Transcription

1 Reading assignment Dielectric behavir Tpic 9 Askeland and Phule The Science and Engineering f Materials 4 th Ed. Sec and Shackelfrd Materials Science fr Engineering Sec Chung Cmpsite Materials Ch. 7. Insulatrs and dielectric prperties Materials used t insulate an electric field frm its surrundings are required in a large number f electrical and electrnic applicatins. Electrical insulatrs bviusly must have a very lw cnductivity r high resistivity t prevent the flw f current. Prcelain alumina crdierite mica and sme glasses and plastics are used as insulatrs. Dielectric strength Maximum electric field that an insulatr can withstand befre it lses its insulating behavir Lwer fr ceramics than plymers Dielectric breakdwn - avalanche breakdwn r carrier multiplicatin 1

2 Plarizatin in dielectrics Capacitr An electrnic device cnstructed frm alternating layers f a dielectric and a cnductr that is capable f string a charge. These can be single layer r multi-layer devices. Permittivity - The ability f a material t plarize and stre a charge within it. Linear dielectrics - Materials in which the dielectric plarizatin is linearly related t the electric field; the dielectric cnstant is nt dependent n the electric field. Dielectric strength - The maximum electric field that can be maintained between tw cnductr plates withut causing a breakdwn. Plarizatin mechanisms in materials: (a) electrnic (b) atmic r inic (c) high-frequency diplar r rientatin (present in ferrelectrics) (d) lw-frequency diplar (present in linear dielectrics and glasses) (e) interfacial-space charge at electrdes and (f ) interfacial-space charge at hetergeneities such as grain bundaries. 003 Brks/Cle a divisin f Thmsn Learning Inc. Thmsn Learning is a trademark used herein under license. A charge can be stred at the cnductr plates in a vacuum (a). Hwever when a dielectric is placed between the plates (b) the dielectric plarizes and additinal charge is stred.

3 Q D A V d D Σ 8.85 x 10-1 C/(V.m) Slpe C Q V ΣA Σd A d 3

4 4 A Q D D m κ κ D m κ Σ Σ C d A d A V Q C m κ κ κ κ Σ Σ P D m D κ Σ Σ (κ 1) Σ E

5 5 1 Q Q Q κ κ P 1 Σ κ χ (bund charge)d (κ 1) Qd P A 1)Q ( Ad 1)Qd ( Vlume mment Diple κ κ C m Q V κ κq D m A ΣA x A x A C m κ x x A A V Σ Σ

6 Table 7.6 Values f the relative dielectric cnstant κ f varius dielectric materials at 1 khz (Data frm Ceramic Surce 86 American Ceramic Sciety Clumbus Ohi 1985 and Design Handbk fr DuPnt Engineering Plastics). Al O 3 (99.5%) BeO (99.5%) Crdierite Nyln-66 reinfrced with glass fibers Plyester Material κ D m Dˆ m Σ ˆ iωt Σe Σˆ ( csωt + isinωt) e [ + i sin( ωt δ )] ( ωt δ ) Dˆ cs( ωt δ ) i Dˆ m Dˆ Σˆ m e m ( ωt δ ) i e tanδ -iδ Dˆ Σˆ Σˆ e m iωt ( csδ isinδ ) Imaginary part f Real part f κ κ 6

7 i c dq dv i c C dt dt ν V sin ωt π ω πf dv C dt T ωcv csω t V csωt 1/ ωc π sin ωt + π π sinωt cs + csωt sin csωt i c V π sin ωt + 1/ ωc i R ν V sinωt R R i c V π sin ωt + 1/ ωc i R ν V sinωt R R V/R 1 tanδ VωC ωcr 7

8 τ 0 τ Energy stred νi Cdt V ωcsinωt csωtdt 0 τ V ωc sin ωt dt 0 V ωc τ cs ωt 0 4ω 1 [ ] ( cs 1) CV ωτ 4 Maximum energy stred ½ CV This ccurs when cs ωt -1 Energy lss per cycle due t cnductin thrugh the resistr R Energy lss V R ωr π / ω 0 V π sinωt sinωt dt 1 ( 1 csωt ) d( ωt) 0 π V 1 1 ω sin ω ωr t t V 1 ( 0 0 0) R π + ω V π. ωr 0 8

9 The smaller is R the greater is the energy lss. Energy lst per cycle V π / ωr π maximum energy stred πcv / ω 1 CR tanδ 9

10 Frequency dependence f plarizatin mechanisms. On tp is the change in the dielectric cnstant with increasing frequency and the bttm curve represents the dielectric lss. Quartz plarizatin nly under stress 10

11 003 Brks/Cle a divisin f Thmsn Learning Inc. Thmsn Learning is a trademark used herein under license. (a) The xygen ins are at face centers Ba+ ins are at cube crners and Ti+4 is at cube center in cubic BaTi03. (b) In tetragnal BaTi03 the Ti+4 is ff-center and the unit cell has a net plarizatin. 11

12 Different plymrphs f BaTiO 3 and accmpanying changes in lattice cnstants and dielectric cnstants. Table 7.3 Cntributin t diple mment f a BaTiO 3 unit cell by each type f in. In Ba + (+)(1.6 x ) 0 0 Ti 4+ (+4)(1.6 x ) +0.10(10-10 ) 6.4 x O - (side f cell) O - (tp and bttm f cell) Charge (C) (-)(1.6 x ) (-)(1.6 x ) Displacement (m) -0.10(10-10 ) -0.13(10-10 ) Diple mment (C.m) 6.4 x x Ttal 17 x P C.m - C.m m 3 1

13 - E c E 13

14 c) Plycrystalline BaTiO3 shwing the influence f the electric field n plarizatin. The effect f temperature and grain size n the dielectric cnstant f barium titanate. Abve the Curie temperature the spntaneus plarizatin is lst due t a change in crystal structure and barium titanate is in the paraelectric state. The grain size dependence shws that similar t yield-strength dielectric cnstant is a micrstructure sensitive prperty. (b) single crystal. Effect f grain size Ferrelectric dmains in plycrystalline BaTiO3. 14

15 Depling Piezelectric aging rate r u u u 1 1 r lg t t 1 E u : parameter such as capacitance t: number f days after plarizatin Ferrelectric -A material that shws spntaneus and reversible dielectric plarizatin. Piezelectric A material that develps vltage upn the applicatin f a stress and develps strain when an electric field is applied. 15

16 003 Brks/Cle a divisin f Thmsn Learning Inc. Thmsn Learning is a trademark used herein under license. The (a) direct and (b) cnverse piezelectric effect. In the direct piezelectric effect applied stress causes a vltage t appear. In the cnverse effect (b) an applied vltage leads t develpment f strain. Direct piezelectric effect Reverse (cnverse) piezelectric effect 16

17 E E 17

18 Direct piezelectric effect P dσ P d σ κ d Σ σ d: Piezelectric cupling cefficient (piezelectric charge cefficient) Table 7.1 The piezelectric cnstant d (lngitudinal) fr selected materials Piezelectric cnstant d Material (C/N m/v) Quartz.3 x 10-1 BaTiO 3 PbZrTiO x x 10-1 PbNb 80 x 10-1 O 6 P D m D κ Σ Σ (κ 1) Σ V Σ Σ ld σ 1 ( κ ) P ( κ 1) d σ 1 ( κ ) V l Σ ld σ V 1 g ( κ ) d ( κ ) 1 V lg σ g: piezelectric vltage cefficient 18

19 Reverse piezelectric effect S dσ S d Σ Σ σ S P Σ S σ P Reverse piezelectric effect Σ S σ -1 Σ Σ σ ( κ ) ( κ ) S 1 Σ Σ S σ -1 Σ ( κ ) Σ σ Σ σ d κ ( ) S dσ 1 d ( κ ) 1 19

20 Σ σ d ( κ ) g 1 d ( κ ) 1 Σ gσ Σ g σ Hke s law σ ES Σ gσ Σ ges S dσ Σ S ge 1 d ge 1 E gd Electrmechanical cupling factr (electrmechanical cupling cefficient) k k k utput mechanical energy input electrical energy utput electrical energy input mechanical energy 0

21 Substitutin f A and B sites in BaTiO 3 PZT: PbZrO 3 -PbTiO 3 slid slutin r lead zircntitanate Table 7.4 Prperties f cmmercial PZT ceramics PZT-5H Prperty (sft) Permittivity (κ at 1 khz) Dielectric lss (tan δ at 1 khz) Curie temperature (T c C) Piezelectric cefficients (10-1 m/v) d d d Piezelectric cupling factrs PZT4 (hard) k k k

22 Table 7. Measured lngitudinal piezelectric cupling cefficient d measured relative dielectric cnstant κ calculated piezelectric vltage cefficient g and calculated vltage change resulting frm a stress change f 1 kpa fr a specimen thickness f 1 cm in the directin f plarizatin. PZT Material Cement paste (plain) Cement paste with steel fibers and PVA Cement paste with carbn fibers d (10-13 m/v) * ± ± ± κ g (10-4 m /C) Vltage change (mv) Piezplymer Bimrph (bi-strip) Mnie Cymbal Cantilever beam cnfiguratin fr actuatin Cmpsites with piezelectric/ferrelectric material sandwiched by metal faceplates f enhancing the piezelectric cupling cefficient

23 Pyrelectric - The ability f a material t spntaneusly plarize and prduce a vltage due t changes in temperature. p dp dt Σ dκ dt p pyrelectirc cefficient P plarizatin Table 7.5 Pyrelectric cefficient (10-6 C/m.K) 0 BaTiO 3 PZT 380 PVDF 7 Cement paste 0.00 Px V ( κ -1) Vltage sensitivity dv P dx x + dσ ( κ -1) dσ ( κ 1) dp dσ Cmpliance Piezelectric cupling cefficient d 3

24 Piezelectric cmpsite When any material underges plarizatin (due t an applied electric field) its ins and electrnic cluds are displaced causing the develpment f a mechanical strain in the material. plarizatin. This phenmenn is knwn as the electrstrictin. Examples f ceramic capacitrs. (a)single-layer ceramic capacitr (disk capacitrs). (b) Multilayer ceramic capacitr (stacked ceramic layers). 4

Dielectric Materials: Properties and Applications

Dielectric Materials: Properties and Applications Dielectric Materials: Properties and Applications Content 1. Dielectrics : Properties 2. Fundamental definitions and Properties of electric dipole 3. Various polarization mechanisms involved in dielectric

More information

ELECTROSTATIC FIELDS IN MATERIAL MEDIA

ELECTROSTATIC FIELDS IN MATERIAL MEDIA MF LCTROSTATIC FILDS IN MATRIAL MDIA 3/4/07 LCTURS Materials media may be classified in terms f their cnductivity σ (S/m) as: Cnductrs The cnductivity usually depends n temperature and frequency A material

More information

Lecture 17. Dielectric Materials

Lecture 17. Dielectric Materials Lecture 17 Dielectric Materials 3/ 3 3 3/ 3/ 4 4 exp = = = e R R B B e B v c B g v c e k k k k E π π π Dielectric aterials play a large rle in electrnics. One exaple was te xide in te MOS structures. Als

More information

Chapter 6. Dielectrics and Capacitance

Chapter 6. Dielectrics and Capacitance Chapter 6. Dielectrics and Capacitance Hayt; //009; 6- Dielectrics are insulating materials with n free charges. All charges are bund at mlecules by Culmb frce. An applied electric field displaces charges

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-3 Transductin Based n Changes in the Energy Stred in an Electrical ield Department f Mechanical Engineering Example:Capacitive Pressure Sensr Pressure sensitive capacitive device With separatin

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance summary C = ε A / d = πε L / ln( b / a ) ab C = 4πε 4πε a b a b >> a Chapter 16 Electric Energy and Capacitance Capacitance Q=CV Parallel plates, caxial cables, Earth Series and parallel 1 1 1 = + +..

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

TOPPER SAMPLE PAPER 2 Class XII- Physics

TOPPER SAMPLE PAPER 2 Class XII- Physics TOPPER SAMPLE PAPER 2 Class XII- Physics Time: Three Hurs Maximum Marks: 70 General Instructins (a) All questins are cmpulsry. (b) There are 30 questins in ttal. Questins 1 t 8 carry ne mark each, questins

More information

Chapter 30. Inductance

Chapter 30. Inductance Chapter 30 nductance 30. Self-nductance Cnsider a lp f wire at rest. f we establish a current arund the lp, it will prduce a magnetic field. Sme f the magnetic field lines pass thrugh the lp. et! be the

More information

Lecture 6: Phase Space and Damped Oscillations

Lecture 6: Phase Space and Damped Oscillations Lecture 6: Phase Space and Damped Oscillatins Oscillatins in Multiple Dimensins The preius discussin was fine fr scillatin in a single dimensin In general, thugh, we want t deal with the situatin where:

More information

NGSS High School Physics Domain Model

NGSS High School Physics Domain Model NGSS High Schl Physics Dmain Mdel Mtin and Stability: Frces and Interactins HS-PS2-1: Students will be able t analyze data t supprt the claim that Newtn s secnd law f mtin describes the mathematical relatinship

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 2100 Circuit Analysis Lessn 25 Chapter 9 & App B: Passive circuit elements in the phasr representatin Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 2100 Circuit Analysis Lessn

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit. EEL6246 Pwer Electrnics II Chapter 6 Lecture 6 Dr. Sam Abdel-Rahman ZVS Bst Cnverter The quasi-resnant bst cnverter by using the M-type switch as shwn in Fig. 6.29(a) with its simplified circuit shwn in

More information

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high

Problem 1 Known: Dimensions and materials of the composition wall, 10 studs each with 2.5m high Prblem Knwn: Dimensins and materials f the cmpsitin wall, 0 studs each with.5m high Unknwn:. Thermal resistance assciate with wall when surfaces nrmal t the directin f heat flw are isthermal. Thermal resistance

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

Lecture 7: Damped and Driven Oscillations

Lecture 7: Damped and Driven Oscillations Lecture 7: Damped and Driven Oscillatins Last time, we fund fr underdamped scillatrs: βt x t = e A1 + A csω1t + i A1 A sinω1t A 1 and A are cmplex numbers, but ur answer must be real Implies that A 1 and

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Circuit Analysis Lessn 6 Chapter 4 Sec 4., 4.5, 4.7 Series LC Circuit C Lw Pass Filter Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 00 Circuit Analysis Lessn 5 Chapter 9 &

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments Lectures 5-6: Magnetic diple mments Sdium D-line dublet Orbital diple mments. Orbital precessin. Grtrian diagram fr dublet states f neutral sdium shwing permitted transitins, including Na D-line transitin

More information

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC.

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC. PHYSIS 536 Experiment 4: D Pwer Supply I. Intrductin The prcess f changing A t D is investigated in this experiment. An integrated circuit regulatr makes it easy t cnstruct a high-perfrmance vltage surce

More information

EXAMPLE: THERMAL DAMPING. work in air. sealed outlet

EXAMPLE: THERMAL DAMPING. work in air. sealed outlet EXAMLE HERMAL DAMING wrk in air sealed utlet A BIYLE UM WIH HE OULE EALED When the pistn is depressed, a fixed mass f air is cmpressed mechanical wrk is dne he mechanical wrk dne n the air is cnerted t

More information

Coulomb = V m. The line integral of the electric field around any closed path is always zero (conservative field)

Coulomb = V m. The line integral of the electric field around any closed path is always zero (conservative field) Chapter 3 Static Electric Fields Cheng; 3//009; 3-3. Overview Static electric fields are prduced by statinary electric charges N change in time N change in space 3. Fundamental Pstulates f Electrstatics

More information

Classification of Dielectrics & Applications

Classification of Dielectrics & Applications Classification of Dielectrics & Applications DIELECTRICS Non-Centro- Symmetric Piezoelectric Centro- Symmetric Pyroelectric Non- Pyroelectric Ferroelectrics Non-Ferroelectric Piezoelectric Effect When

More information

Chapter 32. Maxwell s Equations and Electromagnetic Waves

Chapter 32. Maxwell s Equations and Electromagnetic Waves Chapter 32 Maxwell s Equatins and Electrmagnetic Waves Maxwell s Equatins and EM Waves Maxwell s Displacement Current Maxwell s Equatins The EM Wave Equatin Electrmagnetic Radiatin MFMcGraw-PHY 2426 Chap32-Maxwell's

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

OTHER USES OF THE ICRH COUPL ING CO IL. November 1975

OTHER USES OF THE ICRH COUPL ING CO IL. November 1975 OTHER USES OF THE ICRH COUPL ING CO IL J. C. Sprtt Nvember 1975 -I,," PLP 663 Plasma Studies University f Wiscnsin These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated.

More information

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1 Crdinatr: Al-Shukri Thursday, May 05, 2011 Page: 1 1. Particles A and B are electrically neutral and are separated by 5.0 μm. If 5.0 x 10 6 electrns are transferred frm particle A t particle B, the magnitude

More information

Trimester 2 Exam 3 Study Guide Honors Chemistry. Honors Chemistry Exam 3 Review

Trimester 2 Exam 3 Study Guide Honors Chemistry. Honors Chemistry Exam 3 Review Trimester 2 Exam 3 Study Guide Hnrs Chemistry BOND POLARITY Hnrs Chemistry Exam 3 Review Identify whether a bnd is plar r nnplar based ff difference in electrnegativity btwn 2 atms (electrnegativity values

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information

PHYS College Physics II Final Examination Review

PHYS College Physics II Final Examination Review PHYS 1402- Cllege Physics II Final Examinatin Review The final examinatin will be based n the fllwing Chapters/Sectins and will cnsist f tw parts. Part 1, cnsisting f Multiple Chice questins, will accunt

More information

EE247B/ME218: Introduction to MEMS Design Lecture 7m1: Lithography, Etching, & Doping CTN 2/6/18

EE247B/ME218: Introduction to MEMS Design Lecture 7m1: Lithography, Etching, & Doping CTN 2/6/18 EE247B/ME218 Intrductin t MEMS Design Lecture 7m1 Lithgraphy, Etching, & Dping Dping f Semicnductrs Semicnductr Dping Semicnductrs are nt intrinsically cnductive T make them cnductive, replace silicn atms

More information

MME 467: Ceramics for Advanced Applications

MME 467: Ceramics for Advanced Applications MME 467: Ceramics for Advanced Applications Lecture 26 Dielectric Properties of Ceramic Materials 2 1. Barsoum, Fundamental Ceramics, McGraw-Hill, 2000, pp.513 543 2. Richerson, Modern Ceramic Engineering,

More information

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry

Chapter 19. Electrochemistry. Dr. Al Saadi. Electrochemistry Chapter 19 lectrchemistry Part I Dr. Al Saadi 1 lectrchemistry What is electrchemistry? It is a branch f chemistry that studies chemical reactins called redx reactins which invlve electrn transfer. 19.1

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

Harmonic Motion (HM) Oscillation with Laminar Damping

Harmonic Motion (HM) Oscillation with Laminar Damping Harnic Mtin (HM) Oscillatin with Lainar Daping If yu dn t knw the units f a quantity yu prbably dn t understand its physical significance. Siple HM r r Hke' s Law: F k x definitins: f T / T / Bf x A sin

More information

Unit 14 Thermochemistry Notes

Unit 14 Thermochemistry Notes Name KEY Perid CRHS Academic Chemistry Unit 14 Thermchemistry Ntes Quiz Date Exam Date Lab Dates Ntes, Hmewrk, Exam Reviews and Their KEYS lcated n CRHS Academic Chemistry Website: https://cincchem.pbwrks.cm

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY 013 SUBJECT: ENGINEERING PHYSICS (PHY101/10) Time: 3 Hrs. Max. Marks: 50 Nte: Answer any

More information

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1 Crdinatr: Sunaidi Wednesday, March 06, 2013 Page: 1 Q1. An 8.00 m lng wire with a mass f 10.0 g is under a tensin f 25.0 N. A transverse wave fr which the wavelength is 0.100 m, and the amplitude is 3.70

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

Q x = cos 1 30 = 53.1 South

Q x = cos 1 30 = 53.1 South Crdinatr: Dr. G. Khattak Thursday, August 0, 01 Page 1 Q1. A particle mves in ne dimensin such that its psitin x(t) as a functin f time t is given by x(t) =.0 + 7 t t, where t is in secnds and x(t) is

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

Coupled Inductors and Transformers

Coupled Inductors and Transformers Cupled nductrs and Transfrmers Self-nductance When current i flws thrugh the cil, a magnetic flux is prduced arund it. d d di di v= = = dt di dt dt nductance: = d di This inductance is cmmnly called self-inductance,

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

( ) ( ) ( ) ( ) ( z) ( )

( ) ( ) ( ) ( ) ( z) ( ) EE433-08 Planer Micrwave Circuit Design Ntes Returning t the incremental sectin, we will nw slve fr V and I using circuit laws. We will assume time-harmnic excitatin. v( z,t ) = v(z)cs( ωt ) jωt { s }

More information

PHYSICS Unit 3 Trial Examination

PHYSICS Unit 3 Trial Examination STAV Publishing Pty Ltd 005 PHYSICS Unit 3 Trial Examinatin SOLUTIONS BOOK Published by STAV Publishing Pty Ltd. STAV Huse, 5 Munr Street, Cburg VIC 3058 Australia. Phne: 6 + 3 9385 3999 Fax: 6 + 3 9386

More information

CHAPTER 5. Solutions for Exercises

CHAPTER 5. Solutions for Exercises HAPTE 5 Slutins fr Exercises E5. (a We are given v ( t 50 cs(00π t 30. The angular frequency is the cefficient f t s we have ω 00π radian/s. Then f ω / π 00 Hz T / f 0 ms m / 50 / 06. Furthermre, v(t attains

More information

11. DUAL NATURE OF RADIATION AND MATTER

11. DUAL NATURE OF RADIATION AND MATTER 11. DUAL NATURE OF RADIATION AND MATTER Very shrt answer and shrt answer questins 1. Define wrk functin f a metal? The minimum energy required fr an electrn t escape frm the metal surface is called the

More information

Phung LeCong, Al Joseph, Erie Udd, and Paul Theriault MeDonnell Douglas Astronauties Company 5301 Bolsa Avenue Huntington Beaeh, California 92647

Phung LeCong, Al Joseph, Erie Udd, and Paul Theriault MeDonnell Douglas Astronauties Company 5301 Bolsa Avenue Huntington Beaeh, California 92647 EMBEDDED FIBER OPTIC STRAIN SENSOR Phung LeCng, Al Jseph, Erie Udd, and Paul Theriault MeDnnell Duglas Astrnauties Cmpany 5301 Blsa Avenue Huntingtn Beaeh, Califrnia 92647 INTRODUCTION In a variety f space

More information

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant)

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant) ε µ0 N mp T kg Kuwait University hysics Department hysics 0 Secnd Midterm Examinatin Summer Term (00-0) July 7, 0 Time: 6:00 7:0 M Name Student N Instructrs: Drs. bdel-karim, frusheh, Farhan, Kkaj, a,

More information

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics CHEM 116 Electrchemistry at Nn-Standard Cnditins, and Intr t Thermdynamics Imprtant annuncement: If yu brrwed a clicker frm me this semester, return it t me at the end f next lecture r at the final exam

More information

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent.

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent. Electrchemistry Review: Reductin: the gaining f electrns Oxidatin: the lss f electrns Reducing agent (reductant): species that dnates electrns t reduce anther reagent. Oxidizing agent (xidant): species

More information

Dispersion Ref Feynman Vol-I, Ch-31

Dispersion Ref Feynman Vol-I, Ch-31 Dispersin Ref Feynman Vl-I, Ch-31 n () = 1 + q N q /m 2 2 2 0 i ( b/m) We have learned that the index f refractin is nt just a simple number, but a quantity that varies with the frequency f the light.

More information

Oscillator. Introduction of Oscillator Linear Oscillator. Stability. Wien Bridge Oscillator RC Phase-Shift Oscillator LC Oscillator

Oscillator. Introduction of Oscillator Linear Oscillator. Stability. Wien Bridge Oscillator RC Phase-Shift Oscillator LC Oscillator Oscillatr Intrductin f Oscillatr Linear Oscillatr Wien Bridge Oscillatr Phase-Shift Oscillatr L Oscillatr Stability Oscillatrs Oscillatin: an effect that repeatedly and regularly fluctuates abut the mean

More information

Lecture 19: Electronic Contributions to OCV in Batteries and Solar Cells. Notes by MIT Student (and MZB) March 18, 2009

Lecture 19: Electronic Contributions to OCV in Batteries and Solar Cells. Notes by MIT Student (and MZB) March 18, 2009 Lecture 19: lectrnic Cntributins t OCV in Batteries and Slar Cells Ntes by MIT Student (and MZB) March 18, 2009 -In many situatins the µ e cnstant fr metal electrdes, this due t the abundance and freedm

More information

Minimum Loss Design of a 100 khz Inductor with Litz Wire

Minimum Loss Design of a 100 khz Inductor with Litz Wire IEEE IAS Annual Meeting New Orleans, LA, Octber 5-9, 1997 Minimum Lss Design f a 100 khz Inductr with Litz Wire Ashkan Rahimi-Kian Ali Keyhani Jeffrey M. Pwell Student Member, IEEE Senir Member, IEEE Department

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

MICROSTRUCTURE STUDY AND CRYSTALLINE PHASE FORMATION ON Nb 2 O 5 -Ba 9 Ti 2 O 20 MICROWAVE RESONATORS

MICROSTRUCTURE STUDY AND CRYSTALLINE PHASE FORMATION ON Nb 2 O 5 -Ba 9 Ti 2 O 20 MICROWAVE RESONATORS MICROSTRUCTURE STUDY AND CRYSTALLINE PHASE FORMATION ON Nb 2 O 5 -Ba 9 Ti 2 O 20 MICROWAVE RESONATORS Maria d Carm de A. Nn 1, and Pedr Jsé de Castr 2 2 Labratóri Assciad de Sensres e Materiais - LAS Institut

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1 Ph 13: General Phsics III 6/14/007 Chapter 8 Wrksheet 1 Magnetic Fields & Frce 1. A pint charge, q= 510 C and m=110-3 m kg, travels with a velcit f: v = 30 ˆ s i then enters a magnetic field: = 110 T ˆj.

More information

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data Benha University Cllege f Engineering at Banha Department f Mechanical Eng. First Year Mechanical Subject : Fluid Mechanics M111 Date:4/5/016 Questins Fr Final Crrective Examinatin Examiner: Dr. Mhamed

More information

CANKAYA UNIVERSITY FACULTY OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER

CANKAYA UNIVERSITY FACULTY OF ENGINEERING MECHANICAL ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER CANKAYA UNIVERSITY FACUTY OF ENGINEERING MECHANICA ENGINEERING DEPARTMENT ME 313 HEAT TRANSFER CHAPTER-3 EXAMPES 1) Cnsider a slab f thicness as illustrated in figure belw. A fluid at temperature T 1 with

More information

Kirchhoff Hypothesis. MER452: Composite Materials

Kirchhoff Hypothesis. MER452: Composite Materials Kirchhff Hpthesis MER45: Cmpsite Materials 1 Cmpsite Design Eperimental Data STRUCTURE CONSTITUENTS COMPOSITE Micr Mechanics STRUCTURAL ELEMENT ELEMENTARY STRUCTURE Finite Element Analsis E E G Classical

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

Chapter 4. Unsteady State Conduction

Chapter 4. Unsteady State Conduction Chapter 4 Unsteady State Cnductin Chapter 5 Steady State Cnductin Chee 318 1 4-1 Intrductin ransient Cnductin Many heat transfer prblems are time dependent Changes in perating cnditins in a system cause

More information

Dielectric studies of layer structured sodium - calcium bismuth titanate mixed ceramics

Dielectric studies of layer structured sodium - calcium bismuth titanate mixed ceramics Indian Jurnal f Engineering & Materials Sciences Vl. 5, April 1998, pp. 83-87 Dielectric studies f layer structured sdium - calcium bismuth titanate mixed ceramics P S Rama Sastry, T Bhimasankaram, G S

More information

Schedule. Time Varying electromagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 only) 6.3 Maxwell s equations

Schedule. Time Varying electromagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 only) 6.3 Maxwell s equations chedule Time Varying electrmagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 nly) 6.3 Maxwell s equatins Wave quatin (3 Week) 6.5 Time-Harmnic fields 7.1 Overview 7.2 Plane Waves in Lssless

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

Fundamental Concepts in Structural Plasticity

Fundamental Concepts in Structural Plasticity Lecture Fundamental Cncepts in Structural Plasticit Prblem -: Stress ield cnditin Cnsider the plane stress ield cnditin in the principal crdinate sstem, a) Calculate the maximum difference between the

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

PHY 2054C Review guide Fall 2018 Chapter 17 Wave optics

PHY 2054C Review guide Fall 2018 Chapter 17 Wave optics PHY 2054C Review guide Fall 2018 Chapter 17 Wave ptics Light acts as a wave, ray, particle, and phtn. Refractive index n = c/v Light waves travel with speed c in a vacuum they slw dwn when they pass thrugh

More information

PIEZOELECTRIC TECHNOLOGY PRIMER

PIEZOELECTRIC TECHNOLOGY PRIMER PIEZOELECTRIC TECHNOLOGY PRIMER James R. Phillips Sr. Member of Technical Staff CTS Wireless Components 4800 Alameda Blvd. N.E. Albuquerque, New Mexico 87113 Piezoelectricity The piezoelectric effect is

More information

Kinematic transformation of mechanical behavior Neville Hogan

Kinematic transformation of mechanical behavior Neville Hogan inematic transfrmatin f mechanical behavir Neville Hgan Generalized crdinates are fundamental If we assume that a linkage may accurately be described as a cllectin f linked rigid bdies, their generalized

More information

STUDENT NAME: STUDENT id #: WORK ONLY 5 QUESTIONS

STUDENT NAME: STUDENT id #: WORK ONLY 5 QUESTIONS GENERAL PHYSICS PH -A (MIROV) Exam 3 (03/31/15) STUDENT NAME: STUDENT i #: ------------------------------------------------------------------------------------------------------------------------------------------

More information

Chapter 5: Diffusion (2)

Chapter 5: Diffusion (2) Chapter 5: Diffusin () ISSUES TO ADDRESS... Nn-steady state diffusin and Fick s nd Law Hw des diffusin depend n structure? Chapter 5-1 Class Eercise (1) Put a sugar cube inside a cup f pure water, rughly

More information

Power Flow in Electromagnetic Waves. The time-dependent power flow density of an electromagnetic wave is given by the instantaneous Poynting vector

Power Flow in Electromagnetic Waves. The time-dependent power flow density of an electromagnetic wave is given by the instantaneous Poynting vector Pwer Flw in Electrmagnetic Waves Electrmagnetic Fields The time-dependent pwer flw density f an electrmagnetic wave is given by the instantaneus Pynting vectr P t E t H t ( ) = ( ) ( ) Fr time-varying

More information

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes Chemistry 20 Lessn 11 Electrnegativity, Plarity and Shapes In ur previus wrk we learned why atms frm cvalent bnds and hw t draw the resulting rganizatin f atms. In this lessn we will learn (a) hw the cmbinatin

More information

ECE 546 Lecture 02 Review of Electromagnetics

ECE 546 Lecture 02 Review of Electromagnetics C 546 Lecture 0 Review f lectrmagnetics Spring 018 Jse. Schutt-Aine lectrical & Cmputer ngineering University f Illinis jesa@illinis.edu C 546 Jse Schutt Aine 1 Printed Circuit Bard C 546 Jse Schutt Aine

More information

TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS

TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS AN 10-18 Applicatin Nte 10-18 PAYNE ENGINEERING TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS q = (h c + h r ) A (T s - T amb ) TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS Thyristr cntrls - mre cmmnly called

More information

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot Mathematics DM 05 Tpic : Trignmetric Functins LECTURE OF 5 TOPIC :.0 TRIGONOMETRIC FUNCTIONS SUBTOPIC :. Trignmetric Ratis and Identities LEARNING : At the end f the lessn, students shuld be able t: OUTCOMES

More information

Matter Content from State Frameworks and Other State Documents

Matter Content from State Frameworks and Other State Documents Atms and Mlecules Mlecules are made f smaller entities (atms) which are bnded tgether. Therefre mlecules are divisible. Miscnceptin: Element and atm are synnyms. Prper cnceptin: Elements are atms with

More information

Fields and Waves I. Lecture 3

Fields and Waves I. Lecture 3 Fields and Waves I ecture 3 Input Impedance n Transmissin ines K. A. Cnnr Electrical, Cmputer, and Systems Engineering Department Rensselaer Plytechnic Institute, Try, NY These Slides Were Prepared by

More information

MICROWAVE COMMUNICATIONS AND RADAR

MICROWAVE COMMUNICATIONS AND RADAR MICROWAVE COMMUNICATIONS AND RADAR Generic Architecture: Signal Amplificatin Guide Antenna Prcessing Micrwave r ptical Signal Prcessing Detectin Guide Antenna tuning, resnance waveguides transitins cupling

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Constitutive Modeling of Piezoelectric Polymer Composites

Constitutive Modeling of Piezoelectric Polymer Composites Acta Materialia, l. 5, n.18, pp.5315-5330 (004) Cnstitutive Mdeling f Piezelectric Plymer Cmpsites G.M. Odegard Michigan Technlgical niversity Department f Mechanical Engineering Engineering Mechanics

More information

Potential and Capacitance

Potential and Capacitance Ptential and apacitance Electric Ptential Electric ptential (V) = Electric ptential energy (U e ) per unit charge () Define: ptential energy U e = 0 at infinity (r = ) lim U 0 r e Nte the similarity f

More information

CBSE Board Class XII Physics Set 1 Board Paper 2008 (Solution)

CBSE Board Class XII Physics Set 1 Board Paper 2008 (Solution) CBSE Bard Class XII Physics Set 1 Bard Paper 2008 (Slutin) 1. The frce is given by F qv B This frce is at right angles t &. 2. Micrwaves. It is used in radar & cmmunicatin purpses. 3. Or As m e e m S,

More information

Work, Energy, and Power

Work, Energy, and Power rk, Energy, and Pwer Physics 1 There are many different TYPES f Energy. Energy is expressed in JOULES (J 419J 4.19 1 calrie Energy can be expressed mre specifically by using the term ORK( rk The Scalar

More information

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above 6.3-110 In the half reactin I 2 2 I the idine is (a) reduced (b) xidized (c) neither f the abve 6.3-120 Vitamin C is an "antixidant". This is because it (a) xidizes readily (b) is an xidizing agent (c)

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

CLASS XI SET A PHYSICS

CLASS XI SET A PHYSICS PHYSIS. If the acceleratin f wedge in the shwn arrangement is a twards left then at this instant acceleratin f the blck wuld be, (assume all surfaces t be frictinless) a () ( cs )a () a () cs a If the

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Capacitance. Applications of Electric Potential. Capacitors in Kodak Cameras 3/17/2014. AP Physics B

Capacitance. Applications of Electric Potential. Capacitors in Kodak Cameras 3/17/2014. AP Physics B 3/7/04 apacitance P Physics B pplicatins f Electric Ptential Is there any way we can use a set f plates with an electric fiel? YES! We can make what is calle a Parallel Plate apacitr an Stre harges between

More information