Gliding, Climbing, and Turning Flight Performance! Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2016

Size: px
Start display at page:

Download "Gliding, Climbing, and Turning Flight Performance! Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2016"

Transcription

1 Gliding, Climbing, and Turning Flight Performance! Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2016 Learning Objectives Conditions for gliding flight Parameters for maximizing climb angle and rate Review the V-n diagram Energy height and specific excess power Alternative expressions for steady turning flight The Herbst maneuver Reading:! Flight Dynamics! Aerodynamic Coefficients, ! Copyright 2016 by Robert Stengel. All rights reserved. For educational use only Review Questions!!! How does air density decrease with altitude?!!! What are the different definitions of airspeed?!!! What is a lift-drag polar?!!! Power and thrust: How do they vary with altitude?!!! What factors define the flight envelope?!!! What were some features of the first commercial transport aircraft?!!! What are the important parameters of the Breguet Range Equation?!!! What is a step climb, and why is it important?! 2

2 Gliding Flight! 3 Equilibrium Gliding Flight D = C D 1 2!V 2 S = "W sin# C L 1 2!V 2 S = W cos#!h = V sin#!r = V cos# 4

3 Gliding Flight Thrust = 0 Flight path angle < 0 in gliding flight Altitude is decreasing Airspeed ~ constant Air density ~ constant Gliding flight path angle tan! = " D L = " C D h =! C L!r = dh dr ;! = # D "tan"1 % $ L Corresponding airspeed & # L & ( = "cot "1 % ( ' $ D ' V glide = 2W!S C D 2 + C L 2 5 Maximum Steady Gliding Range Glide range is maximum when! is least negative, i.e., most positive This occurs at (L/D) max 6

4 Maximum Steady Gliding Range Glide range is maximum when! is least negative, i.e., most positive This occurs at (L/D) max # D &! max = "tan "1 % ( $ L ' min # L & = "cot "1 % ( $ D ' h tan! =!!r = negative constant = h " h o r " r o #r = #h tan! = "#h " tan! = maximum when L D = maximum max 7 Sink Rate, m/s Lift and drag define! and V in gliding equilibrium D = C D 1 2!V 2 S = "W sin# sin# = " D W!h = V sin! L = C L 1 2!V 2 S = W cos" V = 2W cos" C L!S Sink rate = altitude rate, dh/dt (negative) = " 2W cos! C L #S $ D ' & ) = " % W ( 2W cos! C L #S $ L & % W ' ( ) $ D ' & % L ) ( = " 2W cos! C L #S cos! $ 1 ' & ) % L D ( 8

5 Conditions for Minimum Steady Sink Rate Minimum sink rate provides maximum endurance Minimize sink rate by setting!(dh/dt)/!c L = 0 (cos! ~1)!h =! 2W cos" C L #S =! 2W cos3 " $ & #S % cos" $ C ' D & ) % ( C D 3/2 C L C L ' ) *! 2 $ & ( # % W S ' $ )& (% C D 3/2 C L ' ) ( C LME = 3C D o! and C DME = 4C Do 9 L/D and V ME for Minimum Sink Rate ( L D ) = 1 ME 4 3 = 3!C Do 2 ( L D ) " 0.86 L max ( D) max V ME = 2W!S C 2 DME + C " 2 W S 2 LME! # 3C Do " 0.76V L Dmax 10

6 L/D for Minimum Sink Rate For L/D < L/D max, there are two solutions Which one produces smaller sink rate? ( L D )! 0.86 L ME ( D) max V ME! 0.76V L Dmax 11 Checklist! "!Steady flight path angle?! "!Corresponding airspeed?! "!Sink rate?! "!Maximum-range glide?! "!Maximum-endurance glide?! 12

7 !is"rical Fac"ids #if$ng-body Reen%y Vehicles M2-F1 HL-10 M2-F2 X-24A M2-F3 X-24B 13 Climbing Flight! 14

8 !V = 0 = ( T! D! W sin" ) m sin" = ( T! D) W ; " = T! D sin!1 W Climbing Flight Flight path angle Required lift! = 0 = L " W cos! mv L = W cos! Rate of climb, dh/dt = Specific Excess Power!h = V sin! = V ( T " D) W Specific Excess Power (SEP) = ( = P " P ) thrust drag W Excess Power Unit Weight ( # P " P thrust drag ) W 15 Steady Rate of Climb Climb rate *"!h = V sin! = V T % $ '( C 2 ( D o +)C L )q -, / +,# W & ( W S)./ L = C L qs = W cos! " C L = W % # $ S & ' cos! q V = " 2 W % # $ S & ' cos! C L ( Note significance of thrust-to-weight ratio and wing loading *! T $!h = V " # W % & ' C D o q ( W S) ' ( W S )cos 2 ) -, / + q.! = V T ( h) $ " # W % & ' C D o 0 ( h)v 3 ' 2( ( W S )cos 2 ) 2 W S 0 ( h)v 16

9 Condition for Maximum Steady Rate of Climb!!h = V T $ # &' C D o (V 3 " W % 2 W S ' 2) W S cos 2 * (V Necessary condition for a maximum with respect to airspeed! h!!v = 0 = (" T % "!T /!V * $ '+V $ )# W & # W % + '-. 3C D o /V 2 &, 2 W S + 20 W S cos 2 1 /V 2 17 Maximum Steady Rate of Climb: Propeller-Driven Aircraft At constant power! P thrust!v = 0 = (" T % "!T /!V * $ '+V $ )# W & # W With cos 2! ~ 1, optimality condition reduces to! h!!v = 0 = " 3C D o #V 2 2 W S + 2$ ( W S ) #V 2 Airspeed for maximum rate of climb at maximum power, P max % + '- &, 2! V 4 = 4 $ # & ' W S ; V = 2 W S " 3% C Do ( 2 ( ' 3C Do = V ME 18

10 Maximum Steady Rate of Climb: Jet-Driven Aircraft Condition for a maximum at constant thrust and cos 2! ~ 1!!h!V = 0! 3C D o " 2 W S V 4 + T $ W! 3C D o " 2( W S) V 2 Airspeed for maximum rate of climb at maximum thrust, T max # % 2 + # T $ % W Quadratic in V 2 & ' ( V 2 + 2) W S & ' ( V 2 " = 0 + 2) W S " = 0 0 = ax 2 + bx + c and V = + x 19 Checklist! "!Specific excess power?! "!Maximum steady rate of climb?! "!Velocity for maximum climb rate?! 20

11 Optimal Climbing Flight! 21 What is the Fastest Way to Climb from One Flight Condition to Another? 22

12 Energy Height Specific Energy = (Potential + Kinetic Energy) per Unit Weight = Energy Height Total Energy Unit Weight = mgh + mv 2 2 mg! Specific Energy = h + V 2 2g! Energy Height, E h, ft or m Can trade altitude for airspeed with no change in energy height if thrust and drag are zero 23 Specific Excess Power Rate of change of Specific Energy de h dt " = V sin! + V % # $ g & ' = d! h + V 2 $ # & = dh dt " 2g % dt +! V $ # & dv " g % dt " # $ T ( D ( mgsin! m % & ' = V T ( D W = Specific Excess Power (SEP) = Excess Power Unit Weight! P thrust " P drag W = V ( C T! C D ) 1 2 "(h)v 2 S W 24

13 Contours of Constant Specific Excess Power Specific Excess Power is a function of altitude and airspeed SEP is maximized at each altitude, h, when max wrt V [ SEP(h) ] d[ SEP(h) ] = 0 dv 25 Subsonic Minimum-Time Energy Climb Objective: Minimize time to climb to desired altitude and airspeed Minimum-Time Strategy: Zoom climb/dive to intercept SEP max (h) contour Climb at SEP max (h) Zoom climb/dive to intercept target SEP max (h) contour Bryson, Desai, Hoffman,

14 Subsonic Minimum-Fuel Energy Climb Objective: Minimize fuel to climb to desired altitude and airspeed Minimum-Fuel Strategy: Zoom climb/dive to intercept [SEP (h)/(dm/dt)] max contour Climb at [SEP (h)/(dm/dt)] max Zoom climb/dive to intercept target[sep (h)/(dm/dt)] max contour Bryson, Desai, Hoffman, Supersonic Minimum-Time Energy Climb Objective: Minimize time to climb to desired altitude and airspeed Minimum-Time Strategy: Intercept subsonic SEP max (h) contour Climb at SEP max (h) to intercept matching zoom climb/dive contour Zoom climb/dive to intercept supersonic SEP max (h) contour Climb at SEP max (h) to intercept target SEP max (h) contour Zoom climb/dive to intercept target SEP max (h) contour Bryson, Desai, Hoffman,

15 Checklist! "!Energy height?! "!Contours?! "!Subsonic minimum-time climb?! "!Supersonic minimum-time climb?! "!Minimum-fuel climb?! de h = de h dm fuel dt dt dm fuel = 1 ' dh!m fuel dt +! V $ " # g % & dv * ), ( dt + 29 SpaceShipOne" Ansari X Prize, December 17, 2003 Brian Binnie, *78 Pilot, Astronaut 30

16 SpaceShipOne Altitude vs. Range! MAE 331 Assignment #4, SpaceShipOne State Histories 32

17 SpaceShipOne Dynamic Pressure and Mach Number Histories 33 The Maneuvering Envelope! 34

18 Typical Maneuvering Envelope: V-n Diagram Maneuvering envelope: limits on normal load factor and allowable equivalent airspeed! Structural factors! Maximum and minimum achievable lift coefficients! Maximum and minimum airspeeds! Protection against overstressing due to gusts! Corner Velocity: Intersection of maximum lift coefficient and maximum load factor Typical positive load factor limits! Transport: > 2.5! Utility: > 4.4! Aerobatic: > 6.3! Fighter: > 9 Typical negative load factor limits! Transport: < 1! Others: < 1 to 3 35 Maneuvering Envelopes (V-n Diagrams) for Three Fighters of the Korean War Era Republic F-84 Lockheed F-94 North American F-86 36

19 Turning Flight! 37 Level Turning Flight Level flight = constant altitude Sideslip angle = 0 Vertical force equilibrium L cos µ = W Load factor µ : Bank Angle n = L W = L mg = sec µ,"g"s Thrust required to maintain level flight 2 T req = ( C Do +!C L ) 1 2 "V 2 S = D o + 2! = D o + 2! ( "V 2 S nw )2 # W & "V 2 S $ % cos µ ' ( 2 38

20 µ : Bank Angle Maximum Bank Angle in Steady Level Flight = W cos µ = W C L qs = 1 n 2! ( T req " D o )#V 2 S Bank angle * = cos!1, W +, " W % µ = cos!1 # $ C L qs & ' 1 = cos!1 " % # $ n& ' 2( - / ( T req! D o ))V 2 S. / Bank angle is limited by C Lmax or T max or n max 39 Turning Rate and Radius in Level Flight Turning rate!! = C L qssin µ mv = W tan µ mv = g tan µ V = L2 " W 2 mv Turning rate is limited by or T max or n max C Lmax = = W n2 "1 mv ( T req " D o )#V 2 S 2$ " W 2 mv Turning radius V 2 R turn = V! = g n 2 " 1 40

21 Maximum Turn Rates Wind-up turns 41 Corner Velocity Turn Corner velocity V corner = 2n maxw C Lmas!S For steady climbing or diving flight sin! = T max " D W Turning radius R turn = V 2 cos 2! g n 2 max " cos 2! 42

22 Time to complete a full circle Corner Velocity Turn Turning rate! g n 2 max " cos 2 # = V cos# t 2! = V cos" g n 2 max # cos 2 " Altitude gain/loss!h 2" = t 2" V sin# 43 Checklist! "! V-n diagram?! "! Maneuvering envelope?! "! Level turning flight?! "! Limiting factors?! "! Wind-up turn?! "! Corner velocity?! 44

23 Herbst Maneuver Minimum-time reversal of direction Kinetic-/potential-energy exchange Yaw maneuver at low airspeed X-31 performing the maneuver 45 Next Time:! Aircraft Equations of Motion! Reading:! Flight Dynamics,! Section 3.1, 3.2, pp ! Learning Objectives What use are the equations of motion? How is the angular orientation of the airplane described? What is a cross-product-equivalent matrix? What is angular momentum? How are the inertial properties of the airplane described? How is the rate of change of angular momentum calculated? 46

24 &upplemental Ma'rial 47 Gliding Flight of the P-51 Mustang Maximum Range Glide Loaded Weight = 9, 200 lb (3,465 kg) ( L / D) max = L " MR = # cot #1 $ ' % & D( ) C D max 1 2!C Do = = # cot #1 (16.3) = #3.5 L/Dmax = 2C Do = ( C L ) L/Dmax = C D o! = V L/Dmax = * m/s!h L/Dmax = V sin" = # 4.68 * m/s R ho =10km = ( 16.31) ( 10) = km Maximum Endurance Glide Loaded Weight = 9, 200 lb (3,465 kg) S = m 2 C DME = 4C Do = C LME = 3C D o! ( L D) ME = 14.13!h ME = " 2 $ # % & * ME = "4.05 = = 3( ) = W S ' ( ) V ME = # m/s $ & % C DME 3/2 C LME ' ) ( = " 4.11 # m/s 48

Gliding, Climbing, and Turning Flight Performance Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Gliding, Climbing, and Turning Flight Performance Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Gliding, Climbing, and Turning Flight Performance Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Learning Objectives Conditions for gliding flight Parameters for maximizing climb angle and rate

More information

Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Cruising Flight Envelope Robert Stengel, Aircraft Flight Dynamics, MAE 331, 018 Learning Objectives Definitions of airspeed Performance parameters Steady cruising flight conditions Breguet range equations

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics Lecture hours 3, 4 Minimum time to climb Mark Voskuijl Semester 1-2012 Delft University of Technology Challenge

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 1 Introduction Aerospace Engineering Flight Mechanics Dr. ir. Mark Voskuijl 15-12-2012 Delft University of Technology Challenge

More information

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY

Mechanics of Flight. Warren F. Phillips. John Wiley & Sons, Inc. Professor Mechanical and Aerospace Engineering Utah State University WILEY Mechanics of Flight Warren F. Phillips Professor Mechanical and Aerospace Engineering Utah State University WILEY John Wiley & Sons, Inc. CONTENTS Preface Acknowledgments xi xiii 1. Overview of Aerodynamics

More information

Alternative Expressions for the Velocity Vector Velocity restricted to the vertical plane. Longitudinal Equations of Motion

Alternative Expressions for the Velocity Vector Velocity restricted to the vertical plane. Longitudinal Equations of Motion Linearized Longitudinal Equations of Motion Robert Stengel, Aircraft Flig Dynamics MAE 33, 008 Separate solutions for nominal and perturbation flig paths Assume that nominal path is steady and in the vertical

More information

Flight and Orbital Mechanics. Exams

Flight and Orbital Mechanics. Exams 1 Flight and Orbital Mechanics Exams Exam AE2104-11: Flight and Orbital Mechanics (23 January 2013, 09.00 12.00) Please put your name, student number and ALL YOUR INITIALS on your work. Answer all questions

More information

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford

FLIGHT DYNAMICS. Robert F. Stengel. Princeton University Press Princeton and Oxford FLIGHT DYNAMICS Robert F. Stengel Princeton University Press Princeton and Oxford Preface XV Chapter One Introduction 1 1.1 ELEMENTS OF THE AIRPLANE 1 Airframe Components 1 Propulsion Systems 4 1.2 REPRESENTATIVE

More information

Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required,

Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required, Chapter 5 Performance analysis I Steady level flight (Lectures 17 to 20) Keywords: Steady level flight equations of motion, minimum power required, minimum thrust required, minimum speed, maximum speed;

More information

Example of Aircraft Climb and Maneuvering Performance. Dr. Antonio A. Trani Professor

Example of Aircraft Climb and Maneuvering Performance. Dr. Antonio A. Trani Professor Example of Aircraft Climb and Maneuvering Performance CEE 5614 Analysis of Air Transportation Systems Dr. Antonio A. Trani Professor Example - Aircraft Climb Performance Aircraft maneuvering performance

More information

Fundamentals of Airplane Flight Mechanics

Fundamentals of Airplane Flight Mechanics David G. Hull Fundamentals of Airplane Flight Mechanics With 125 Figures and 25 Tables y Springer Introduction to Airplane Flight Mechanics 1 1.1 Airframe Anatomy 2 1.2 Engine Anatomy 5 1.3 Equations of

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2018 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan)! Lighter-than- air (balloons, dirigibles)! Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics Lecture 7 Equations of motion Mark Voskuijl Semester 1-2012 Delft University of Technology Challenge the

More information

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1

Chapter 1 Lecture 2. Introduction 2. Topics. Chapter-1 Chapter 1 Lecture 2 Introduction 2 Topics 1.4 Equilibrium of airplane 1.5 Number of equations of motion for airplane in flight 1.5.1 Degrees of freedom 1.5.2 Degrees of freedom for a rigid airplane 1.6

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

Introduction to Flight Dynamics

Introduction to Flight Dynamics Chapter 1 Introduction to Flight Dynamics Flight dynamics deals principally with the response of aerospace vehicles to perturbations in their flight environments and to control inputs. In order to understand

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and orbital mechanics Flight Mechanics practice questions Dr. ir. Mark Voskuijl 20-11-2013 Delft University of Technology Challenge

More information

Chapter 9. Nonlinear Design Models. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 9, Slide 1

Chapter 9. Nonlinear Design Models. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 9, Slide 1 Chapter 9 Nonlinear Design Models Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012, Chapter 9, Slide 1 Architecture Destination, obstacles Waypoints Path Definition Airspeed, Altitude,

More information

The Fighter of the 21 st Century. Presented By Michael Weisman Configuration Aerodynamics 4/23/01

The Fighter of the 21 st Century. Presented By Michael Weisman Configuration Aerodynamics 4/23/01 The Fighter of the 21 st Century Presented By Michael Weisman Configuration Aerodynamics 4/23/01 1 Joint Strike Fighter (JSF) Program Its purpose is to develop and field an affordable and highly common

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering 5. Aircraft Performance 5.1 Equilibrium Flight In order to discuss performance, stability, and control, we must first establish the concept of equilibrium flight.

More information

Aircraft Performance, Stability and control with experiments in Flight. Questions

Aircraft Performance, Stability and control with experiments in Flight. Questions Aircraft Performance, Stability and control with experiments in Flight Questions Q. If only the elevator size of a given aircraft is decreased; keeping horizontal tail area unchanged; then the aircraft

More information

Aircraft Stability and Performance 2nd Year, Aerospace Engineering

Aircraft Stability and Performance 2nd Year, Aerospace Engineering Aircraft Stability and Performance 2nd Year, Aerospace Engineering Dr. M. Turner March 6, 207 Aims of Lecture Part. To examine ways aircraft turn 2. To derive expressions for correctly banked turns 3.

More information

Performance. 7. Aircraft Performance -Basics

Performance. 7. Aircraft Performance -Basics Performance 7. Aircraft Performance -Basics In general we are interested in finding out certain performance characteristics of a vehicle. These typically include: how fast and how slow an aircraft can

More information

Performance analysis II Steady climb, descent and glide 3

Performance analysis II Steady climb, descent and glide 3 Chapter 6 Lecture 3 Performance analysis II Steady climb, descent and glide 3 Topics 6.6. Climb hydrograph 6.7. Absolute ceiling and service ceiling 6.8 Time to climb 6.9 Steady descent 6.0 Glide 6.0.

More information

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum

DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum DEPARTMENT OF AEROSPACE ENGINEERING, IIT MADRAS M.Tech. Curriculum SEMESTER I AS5010 Engg. Aerodyn. & Flt. Mech. 3 0 0 3 AS5020 Elements of Gas Dyn. & Propln. 3 0 0 3 AS5030 Aircraft and Aerospace Structures

More information

Performance. 5. More Aerodynamic Considerations

Performance. 5. More Aerodynamic Considerations Performance 5. More Aerodynamic Considerations There is an alternative way of looking at aerodynamic flow problems that is useful for understanding certain phenomena. Rather than tracking a particle of

More information

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008)

Aerodynamics SYST 460/560. George Mason University Fall 2008 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH. Copyright Lance Sherry (2008) Aerodynamics SYST 460/560 George Mason University Fall 2008 1 CENTER FOR AIR TRANSPORTATION SYSTEMS RESEARCH Copyright Lance Sherry (2008) Ambient & Static Pressure Ambient Pressure Static Pressure 2 Ambient

More information

AEROSPACE ENGINEERING

AEROSPACE ENGINEERING AEROSPACE ENGINEERING Subject Code: AE Course Structure Sections/Units Topics Section A Engineering Mathematics Topics (Core) 1 Linear Algebra 2 Calculus 3 Differential Equations 1 Fourier Series Topics

More information

Prediction of Top of Descent Location for Idle-thrust Descents

Prediction of Top of Descent Location for Idle-thrust Descents Prediction of Top of Descent Location for Idle-thrust Descents Laurel Stell NASA Ames Research Center Background 10,000 30,000 ft Vertical profile from cruise to meter fix. Top of Descent (TOD) idle thrust

More information

AOE Problem Sheet 9 (ans) The problems on this sheet deal with an aircraft with the following properties:

AOE Problem Sheet 9 (ans) The problems on this sheet deal with an aircraft with the following properties: AOE Problem Sheet 9 (ans) The problems on this sheet deal with an aircraft with the following properties: W = 600,000 lbs T_max~=~180,000 lbs S = 5128 ft 2 = 0.017 K = 0.042 = 2.2 TSFC = 0.85 (lbs/hr)/lb

More information

Maneuver of fixed-wing combat aircraft

Maneuver of fixed-wing combat aircraft Loughborough University Institutional Repository Maneuver of fixed-wing combat aircraft This item was submitted to Loughborough University's Institutional Repository by the/an author. Citation: RENDER,

More information

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6]

/ m U) β - r dr/dt=(n β / C) β+ (N r /C) r [8+8] (c) Effective angle of attack. [4+6+6] Code No: R05322101 Set No. 1 1. (a) Explain the following terms with examples i. Stability ii. Equilibrium. (b) Comment upon the requirements of stability of a i. Military fighter aircraft ii. Commercial

More information

Aircraft Equations of Motion: Translation and Rotation Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Aircraft Equations of Motion: Translation and Rotation Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Aircraft Equations of Motion: Translation and Rotation Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Learning Objectives What use are the equations of motion? How is the angular orientation of

More information

AOE 3104 Problem Sheet 10 (ans)

AOE 3104 Problem Sheet 10 (ans) AOE 3104 Problem Sheet 10 (ans) Our class business jet has the following characteristics: Gross Weight = 10,000 lbs b = 40 ft C Lmax = 1.8 (normal flight) S = 200 ft 2 C D = 0.02 + 0.05 (C L ) 2 C Lmax

More information

Forces on a banked airplane that travels in uniform circular motion.

Forces on a banked airplane that travels in uniform circular motion. Question (60) Forces on a banked airplane that travels in uniform circular motion. A propeller-driven airplane of mass 680 kg is turning in a horizontal circle with a constant speed of 280 km/h. Its bank

More information

Aircraft Flight Dynamics!

Aircraft Flight Dynamics! Aircraft Flight Dynamics Robert Stengel MAE 331, Princeton University, 2016 Course Overview Introduction to Flight Dynamics Math Preliminaries Copyright 2016 by Robert Stengel. All rights reserved. For

More information

Problem Sheet 8 (ans) above

Problem Sheet 8 (ans) above Problem Sheet 8 (ans) 41. A high speed aircraft has a parabolic drag polar with the coefficients varying according to Mach number. This variation is such that the values of the coefficients are constant

More information

Stability and Control

Stability and Control Stability and Control Introduction An important concept that must be considered when designing an aircraft, missile, or other type of vehicle, is that of stability and control. The study of stability is

More information

MODULAR AEROPLANE SYSTEM. A CONCEPT AND INITIAL INVESTIGATION

MODULAR AEROPLANE SYSTEM. A CONCEPT AND INITIAL INVESTIGATION 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES MODULAR AEROPLANE SYSTEM. A CONCEPT AND INITIAL INVESTIGATION Marcin Figat, Cezary Galiński, Agnieszka Kwiek Warsaw University of Technology mfigat@meil.pw.edu.pl;

More information

Linearized Equations of Motion!

Linearized Equations of Motion! Linearized Equations of Motion Robert Stengel, Aircraft Flight Dynamics MAE 331, 216 Learning Objectives Develop linear equations to describe small perturbational motions Apply to aircraft dynamic equations

More information

Introduction to Flight

Introduction to Flight l_ Introduction to Flight Fifth Edition John D. Anderson, Jr. Curator for Aerodynamics, National Air and Space Museum Smithsonian Institution Professor Emeritus University of Maryland Me Graw Higher Education

More information

Chapter 5 Lecture 19. Performance analysis I Steady level flight 3. Topics. Chapter-5

Chapter 5 Lecture 19. Performance analysis I Steady level flight 3. Topics. Chapter-5 Chapter 5 Lecture 19 Performance analysis I Steady level flight 3 Topics 5.8 Influence of level flight analysis on airplane design 5.9 Steady level flight performance with a given engine 5.10 Steady level

More information

Dynamics and Control Preliminary Examination Topics

Dynamics and Control Preliminary Examination Topics Dynamics and Control Preliminary Examination Topics 1. Particle and Rigid Body Dynamics Meirovitch, Leonard; Methods of Analytical Dynamics, McGraw-Hill, Inc New York, NY, 1970 Chapters 1-5 2. Atmospheric

More information

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow

Lecture AC-1. Aircraft Dynamics. Copy right 2003 by Jon at h an H ow Lecture AC-1 Aircraft Dynamics Copy right 23 by Jon at h an H ow 1 Spring 23 16.61 AC 1 2 Aircraft Dynamics First note that it is possible to develop a very good approximation of a key motion of an aircraft

More information

Aircraft Flight Dynamics Robert Stengel MAE 331, Princeton University, 2018

Aircraft Flight Dynamics Robert Stengel MAE 331, Princeton University, 2018 Aircraft Flight Dynamics Robert Stengel MAE 331, Princeton University, 2018 Course Overview Introduction to Flight Dynamics Math Preliminaries Copyright 2018 by Robert Stengel. All rights reserved. For

More information

Performance analysis II Steady climb, descent and glide 2

Performance analysis II Steady climb, descent and glide 2 Chapter 6 Lecture Performance analysis II Steady climb, descent and glide Topics 6.5 Maximum rate of climb and imum angle of climb 6.5. Parameters influencing (R/C) of a jet airplane 6.5. Parameters influencing

More information

ME 425: Aerodynamics

ME 425: Aerodynamics ME 425: erodynamics r..b.m. oufique Hasan Professor epartment of Mechanical Engineering Bangladesh University of Engineering & echnology (BUE), haka ecture-25 26/0/209 irplane pa Performance toufiquehasan.buet.ac.bd

More information

PART ONE Parameters for Performance Calculations

PART ONE Parameters for Performance Calculations PART ONE Parameters for Performance Calculations As an amateur designer/builder of homebuilt aircraft, you are chief aerodynamicist, structural engineer, dynamicist, mechanic, artist and draftsman all

More information

Seminar 3! Precursors to Space Flight! Orbital Motion!

Seminar 3! Precursors to Space Flight! Orbital Motion! Seminar 3! Precursors to Space Flight! Orbital Motion! FRS 112, Princeton University! Robert Stengel" Prophets with Some Honor" The Human Seed and Social Soil: Rocketry and Revolution" Orbital Motion"

More information

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments

Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments Stability and Control Some Characteristics of Lifting Surfaces, and Pitch-Moments The lifting surfaces of a vehicle generally include the wings, the horizontal and vertical tail, and other surfaces such

More information

AE Stability and Control of Aerospace Vehicles

AE Stability and Control of Aerospace Vehicles AE 430 - Stability and ontrol of Aerospace Vehicles Static/Dynamic Stability Longitudinal Static Stability Static Stability We begin ith the concept of Equilibrium (Trim). Equilibrium is a state of an

More information

Linearized Longitudinal Equations of Motion Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018

Linearized Longitudinal Equations of Motion Robert Stengel, Aircraft Flight Dynamics MAE 331, 2018 Linearized Longitudinal Equations of Motion Robert Stengel, Aircraft Flight Dynamics MAE 331, 018 Learning Objectives 6 th -order -> 4 th -order -> hybrid equations Dynamic stability derivatives Long-period

More information

Induced Drag and High-Speed Aerodynamics Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

Induced Drag and High-Speed Aerodynamics Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Induced Drag and High-Speed Aerodynamics Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018 Drag-due-to-lift and effects of wing planform Effect of angle of attack on lift and drag coefficients Mach

More information

Autopilot design for small fixed wing aerial vehicles. Randy Beard Brigham Young University

Autopilot design for small fixed wing aerial vehicles. Randy Beard Brigham Young University Autopilot design for small fixed wing aerial vehicles Randy Beard Brigham Young University Outline Control architecture Low level autopilot loops Path following Dubins airplane paths and path management

More information

Real-time trajectory generation technique for dynamic soaring UAVs

Real-time trajectory generation technique for dynamic soaring UAVs Real-time trajectory generation technique for dynamic soaring UAVs Naseem Akhtar James F Whidborne Alastair K Cooke Department of Aerospace Sciences, Cranfield University, Bedfordshire MK45 AL, UK. email:n.akhtar@cranfield.ac.uk

More information

Aircraft Structures Design Example

Aircraft Structures Design Example University of Liège Aerospace & Mechanical Engineering Aircraft Structures Design Example Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/ Chemin des Chevreuils

More information

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude.

Definitions. Temperature: Property of the atmosphere (τ). Function of altitude. Pressure: Property of the atmosphere (p). Function of altitude. Definitions Chapter 3 Standard atmosphere: A model of the atmosphere based on the aerostatic equation, the perfect gas law, an assumed temperature distribution, and standard sea level conditions. Temperature:

More information

9.4 Miscellaneous topics flight limitations, operating envelop and V-n diagram Flight limitations Operating envelop 9.4.

9.4 Miscellaneous topics flight limitations, operating envelop and V-n diagram Flight limitations Operating envelop 9.4. Chapter 9 Lecture 31 Performance analysis V Manoeuvres 4 Topics 9.4 Miscellaneous topics flight limitations, operating envelop and V-n diagram 9.4.1 Flight limitations 9.4.2 Operating envelop 9.4.3 V-n

More information

Missile Interceptor EXTROVERT ADVANCED CONCEPT EXPLORATION ADL P Ryan Donnan, Herman Ryals

Missile Interceptor EXTROVERT ADVANCED CONCEPT EXPLORATION ADL P Ryan Donnan, Herman Ryals EXTROVERT ADVANCED CONCEPT EXPLORATION ADL P- 2011121203 Ryan Donnan, Herman Ryals Georgia Institute of Technology School of Aerospace Engineering Missile Interceptor December 12, 2011 EXTROVERT ADVANCED

More information

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN ROBBIE BUNGE 1. Introduction The longitudinal dynamics of fixed-wing aircraft are a case in which classical

More information

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics.

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics. KING FAHD UNIVERSITY Department of Aerospace Engineering AE540: Flight Dynamics and Control I Instructor Dr. Ayman Hamdy Kassem What is flight dynamics? Is the study of aircraft motion and its characteristics.

More information

Chapter 8 Performance analysis IV Accelerated level flight and climb (Lecture 27) Keywords: Topics 8.1 Introduction 8.2 Accelerated level flight

Chapter 8 Performance analysis IV Accelerated level flight and climb (Lecture 27) Keywords: Topics 8.1 Introduction 8.2 Accelerated level flight Chapter 8 Performance analysis I Accelerated level flight and climb (Lecture 7) Keywords: Accelerated level flight; accelerated climb; energy height. Topics 8.1 Introduction 8. Accelerated level flight

More information

Translational and Rotational Dynamics!

Translational and Rotational Dynamics! Translational and Rotational Dynamics Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 217 Copyright 217 by Robert Stengel. All rights reserved. For educational use only.

More information

Simulation of Non-Linear Flight Control Using Backstepping Method

Simulation of Non-Linear Flight Control Using Backstepping Method Proceedings of the 2 nd International Conference of Control, Dynamic Systems, and Robotics Ottawa, Ontario, Canada, May 7 8, 2015 Paper No. 182 Simulation of Non-Linear Flight Control Using Backstepping

More information

AER1216: Fundamentals of UAVs PERFORMANCE

AER1216: Fundamentals of UAVs PERFORMANCE AER1216: Fundamentals of UAVs PERFORMANCE P.R. Grant Spring 2016 Introduction What we will cover: 1 Simplified Standard Atmosphere 2 Simplified Airspeed measurements 3 Propulsion Basics 4 Fixed Wing Performance

More information

Where Learning is Fun! Science in the Park

Where Learning is Fun! Science in the Park Where Learning is Fun! Science in the Park Table of Contents Letter to Classroom Teachers...Page 1 Coming out of the Sun is an Advantage...Pages 2-8 Thunderhead......Pages 9-11 Wild Eagle..Pages 12-14

More information

EQUATIONS OF MOTION: RECTANGULAR COORDINATES

EQUATIONS OF MOTION: RECTANGULAR COORDINATES EQUATIONS OF MOTION: RECTANGULAR COORDINATES Today s Objectives: Students will be able to: 1. Apply Newton s second law to determine forces and accelerations for particles in rectilinear motion. In-Class

More information

Entry Aerodynamics MARYLAND U N I V E R S I T Y O F. Entry Aerodynamics. ENAE Launch and Entry Vehicle Design

Entry Aerodynamics MARYLAND U N I V E R S I T Y O F. Entry Aerodynamics. ENAE Launch and Entry Vehicle Design Atmospheric Regimes on Entry Basic fluid parameters Definition of Mean Free Path Rarified gas Newtonian flow Continuum Newtonian flow (hypersonics) 2014 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Giovanni Tarantino, Dipartimento di Fisica e Tecnologie Relative, Università di Palermo (Italia)

Giovanni Tarantino, Dipartimento di Fisica e Tecnologie Relative, Università di Palermo (Italia) THE INTERACTIVE PHYSICS FLIGHT SIMULATOR Giovanni Tarantino, Dipartimento di Fisica e Tecnologie Relative, Università di Palermo (Italia) Abstract This paper describes a modelling approach to the dynamics

More information

A Real Time Fuzzy Modeling of pursuit-evasion in an Air Combat

A Real Time Fuzzy Modeling of pursuit-evasion in an Air Combat A Real Time Fuzzy Modeling of pursuit-evasion in an Air Combat R. GHASEMI, S.K.Y. NIKRAVESH, M.B. MENHAJ and S. AKBARI Department of Electrical Engineering Amirkabir University No. 44, Hafez Ave., 15914,

More information

PRINCIPLES OF FLIGHT

PRINCIPLES OF FLIGHT 1 Considering a positive cambered aerofoil, the pitching moment when Cl=0 is: A infinite B positive (nose-up). C negative (nose-down). D equal to zero. 2 The angle between the aeroplane longitudinal axis

More information

Envelopes for Flight Through Stochastic Gusts

Envelopes for Flight Through Stochastic Gusts AIAA Atmospheric Flight Mechanics Conference 08-11 August 2011, Portland, Oregon AIAA 2011-6213 Envelopes for Flight Through Stochastic Gusts Johnhenri R. Richardson, Ella M. Atkins, Pierre T. Kabamba,

More information

Chapter 4 The Equations of Motion

Chapter 4 The Equations of Motion Chapter 4 The Equations of Motion Flight Mechanics and Control AEM 4303 Bérénice Mettler University of Minnesota Feb. 20-27, 2013 (v. 2/26/13) Bérénice Mettler (University of Minnesota) Chapter 4 The Equations

More information

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD) Introduction to Aerodynamics Dr. Guven Aerospace Engineer (P.hD) Aerodynamic Forces All aerodynamic forces are generated wither through pressure distribution or a shear stress distribution on a body. The

More information

MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES

MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES Journal of KONES Powertrain and Transport, Vol. 21, No. 2 2014 MODIFICATION OF AERODYNAMIC WING LOADS BY FLUIDIC DEVICES Institute of Aviation Department of Aerodynamics and Flight Mechanics Krakowska

More information

MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight. G. Leng, MDTS, NUS

MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight. G. Leng, MDTS, NUS MDTS 5734 : Aerodynamics & Propulsion Lecture 1 : Characteristics of high speed flight References Jack N. Nielsen, Missile Aerodynamics, AIAA Progress in Astronautics and Aeronautics, v104, 1986 Michael

More information

System Design and Optimization of a Hypersonic Launch Vehicle

System Design and Optimization of a Hypersonic Launch Vehicle System Design and Optimization of a Hypersonic Launch Vehicle A project present to The Faculty of the Department of Aerospace Engineering San Jose State University in partial fulfillment of the requirements

More information

Orbital Mechanics! Space System Design, MAE 342, Princeton University! Robert Stengel

Orbital Mechanics! Space System Design, MAE 342, Princeton University! Robert Stengel Orbital Mechanics Space System Design, MAE 342, Princeton University Robert Stengel Conic section orbits Equations of motion Momentum and energy Kepler s Equation Position and velocity in orbit Copyright

More information

GUIDANCE AND CONTROL FOR D-SEND#2

GUIDANCE AND CONTROL FOR D-SEND#2 GUIDANCE AND CONTROL FOR D-SEND#2 Jun ichiro Kawaguchi, Tetsujiro Ninomiya, Hirokazu Suzuki Japan Aerospace Exploration Agency kawaguchi.junichiroh@jaxa.jp; ninomiya.tetsujiro@jaxa.jp; suzuki.hirokazu@jaxa.jp

More information

Air Loads. Airfoil Geometry. Upper surface. Lower surface

Air Loads. Airfoil Geometry. Upper surface. Lower surface AE1 Jha Loads-1 Air Loads Airfoil Geometry z LE circle (radius) Chord line Upper surface thickness Zt camber Zc Zl Zu Lower surface TE thickness Camber line line joining the midpoints between upper and

More information

Project 2 Conceptual Design

Project 2 Conceptual Design Project onceptual Design Second Project, entitled onceptual Design includes two parts: 1. Estimation of selected (basic) geometric and weight parameters of an aircraft,. Drawing (in three views/projections)

More information

Applications Linear Control Design Techniques in Aircraft Control I

Applications Linear Control Design Techniques in Aircraft Control I Lecture 29 Applications Linear Control Design Techniques in Aircraft Control I Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Topics Brief Review

More information

JAA Administrative & Guidance Material Section Five: Licensing, Part Two: Procedures

JAA Administrative & Guidance Material Section Five: Licensing, Part Two: Procedures Introduction: 1 - To fully appreciate and understand subject 032 Performance (Aeroplanes), the applicant will benefit from background knowledge in Subject 081 Principles of Flight (Aeroplanes). 2 For JAR-FCL

More information

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory?

for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? 1. 5% short answers for what specific application did Henri Pitot develop the Pitot tube? what was the name of NACA s (now NASA) first research laboratory? in what country (per Anderson) was the first

More information

Mathematical Techniques for Pre-conceptual Design

Mathematical Techniques for Pre-conceptual Design Mathematical Techniques for Pre-conceptual Design Mathematical Modeling in Industry XI IMA University of Minnesota Mentor: John Hoffman, Lockheed Martin Tactical Systems Michael Case 1, Jeff Haack 2, MoonChang

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering 4. Basic Fluid (Aero) Dynamics Introduction to Aerospace Engineering Here, we will try and look at a few basic ideas from the complicated field of fluid dynamics. The general area includes studies of incompressible,

More information

Localizer Hold Autopilot

Localizer Hold Autopilot Localizer Hold Autopilot Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Localizer hold autopilot is one of the important

More information

Aircraft Design I Tail loads

Aircraft Design I Tail loads Horizontal tail loads Aircraft Design I Tail loads What is the source of loads? How to compute it? What cases should be taken under consideration? Tail small wing but strongly deflected Linearized pressure

More information

Spacecraft Environment! Launch Phases and Loading Issues-1

Spacecraft Environment! Launch Phases and Loading Issues-1 Spacecraft Environment! Space System Design, MAE 342, Princeton University! Robert Stengel! Atmospheric characteristics! Loads on spacecraft! Near-earth and space environment! Spacecraft charging! Orbits

More information

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class

Transonic Aerodynamics Wind Tunnel Testing Considerations. W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics Wind Tunnel Testing Considerations W.H. Mason Configuration Aerodynamics Class Transonic Aerodynamics History Pre WWII propeller tip speeds limited airplane speed Props did encounter

More information

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II

Section 4.1: Introduction to Jet Propulsion. MAE Propulsion Systems II Section 4.1: Introduction to Jet Propulsion Jet Propulsion Basics Squeeze Bang Blow Suck Credit: USAF Test Pilot School 2 Basic Types of Jet Engines Ramjet High Speed, Supersonic Propulsion, Passive Compression/Expansion

More information

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege

Flight Dynamics and Control. Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Flight Dynamics and Control Lecture 3: Longitudinal stability Derivatives G. Dimitriadis University of Liege Previously on AERO0003-1 We developed linearized equations of motion Longitudinal direction

More information

Lecture 11 Overview of Flight Dynamics I. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 11 Overview of Flight Dynamics I. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lecture 11 Overview of Flight Dynamics I Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Point Mass Dynamics Dr. Radhakant Padhi Asst. Professor

More information

Applied Aerodynamics - I

Applied Aerodynamics - I Applied Aerodynamics - I o Course Contents (Tentative) Introductory Thoughts Historical Perspective Flow Similarity Aerodynamic Coefficients Sources of Aerodynamic Forces Fundamental Equations & Principles

More information

AC : A DESIGN-BY-ANALYSIS PROJECT FOR INTRODUC- TORY STUDENTS IN AEROSPACE ENGINEERING

AC : A DESIGN-BY-ANALYSIS PROJECT FOR INTRODUC- TORY STUDENTS IN AEROSPACE ENGINEERING AC 2012-4116: A DESIGN-BY-ANALYSIS PROJECT FOR INTRODUC- TORY STUDENTS IN AEROSPACE ENGINEERING Dr. Mark Anderson, University of California, San Diego c American Society for Engineering Education, 2012

More information

Performance Flight Testing of Small Electric Powered Unmanned Aerial Vehicles

Performance Flight Testing of Small Electric Powered Unmanned Aerial Vehicles Brigham Young University BYU ScholarsArchive All Faculty Publications 9-9 Performance Flight Testing of Small Electric Powered Unmanned Aerial Vehicles Jon N. Ostler Brigham Young University - Provo W.

More information

Computer mechanization of six-degree of freedom flight equations

Computer mechanization of six-degree of freedom flight equations Computer mechanization of six-degree of freedom flight equations by L. E. FOGARTY and R. M. HOWE University of Michigan The authors were introduced last month when we published their article Trajectory

More information

Turn Performance of an Air-Breathing Hypersonic Vehicle

Turn Performance of an Air-Breathing Hypersonic Vehicle Turn Performance of an Air-Breathing Hypersonic Vehicle AIAA Aircraft Flight Mechanics Conference Derek J. Dalle, Sean M. Torrez, James F. Driscoll University of Michigan, Ann Arbor, MI 4809 August 8,

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS

5.3 SOLVING TRIGONOMETRIC EQUATIONS 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information