3/24/2009. Lecture 6 Gradient Echo Based Techniques and Applications. GRE versus SE. Gradient Recalled Echo (GRE) 3D GRE. Spoiling

Size: px
Start display at page:

Download "3/24/2009. Lecture 6 Gradient Echo Based Techniques and Applications. GRE versus SE. Gradient Recalled Echo (GRE) 3D GRE. Spoiling"

Transcription

1 The Antomy of Bsic MR Pulse Sequences Lecture 6 Grdient Echo Bsed Techniques nd Applictions Chen Lin, PhD Indin University School of Medicine & Clrin Helth Prtners Mgnetiztion Preprtion Section Chemicl Shift Selective Sturtion/ Excittion Sptil Selective Sturtion Mgnetiztion Trnsfer (MT), CHESS wter suppression Inversion Recovery (IR) Dt Acquisition Section Slice/Slb Selective Excittion Phse Encoding(s) Echo Genertion Spin Echo (SE), Fst/Turbo SE (TSE), Single-shot FSE (HASTE) Grdient Reclled Echo (GRE), Single-shot GRE (EPI) Diffusion Weighting (DWI/DTI) nd Grdient Moment Nulling (GMN) Frequency Encoding Filling of K-spce Mgnetiztion Recovery Section Spoiling Driven Equilibrium Increment Phse Encoding Grdient Reclled Echo (GRE) Excittion Phse Encoding TE Frequency Encoding GRE versus SE No refocusing RF pulse De-phsing in the trnsverse plne due to chemicl shift nd B 0 inhomogeneity is NOT recovered. T2* weighted insted of T2 weighted Prone to rtifcts Shorter Short scn time 3D nd breth hold cquisitions nd typiclly with FA < 90 0 Lower RF energy deposition per thn SE But not necessry lower SAR 3D GRE Slb Excittion K-spce Phse Encoding in Z Phse Encoding in Frequency Encoding in Spoiling Destroy mgnetiztion build up in the trnsverse plne. >> T 2 or T 2 * (trnsverse relxtion) Crusher grdients (grdient spoiling) Chnge the phse RF excittion pulse (RF spoiling) Suppress signl from remining M xy from previous different sptil encoding -> rtifcts T 2 weighting -> contrst ltertion B 1 Z M Z M 0 M (q n ) (q n+1 ) M Z Z M 0 B 1 M M 0 M Z M Z B 1 (q n+2 ) 1

2 Flvors of GRE Sequence Spoiled GRE: FLASH/SPGR/T1-FFE Multi-echo spoiled GRE MEDIC VIBE Un-spoiled/Rewound/Coherent GRE: FISP/GRASS/FFE PSIF/SSFP/T2-FFE TrueFISP/FIESTA/b-FFE CISS/FIESTA-C DESS 2D FLASH/SPGR/FFE-T1 (q n ) FLASH (q n+1 ) Only use signl only from grdient echo. Signl is T 1 nd T 2 * weighted nd flip ngle dependent: sin 1 e S r 1cose / T1 / T1 e Ernst condition: 1 / T1 Ernst cos e / T 2* T 1 weighed ntomicl DCE imging nd perfusion (T 1 chnge with contrst concentrtion) CE MRA (T 1 reduction due to contrst gent) TOF MRA (T 1 reduction due to inflow) PC MRA SWI (T 2 * reduction due to deoxyhemoglobin in venous blood) B 0 nd B 1 field mpping FLASH Applictions Detection of micro-bleeds Neurordiologi, Ospedle Civile Treviso, Pizz Ospedle, Itly 2D/3D FLASH 3T Bright Center Bright Vessel 2D FLASH Use High rbw to minimize susceptibility rtifcts Use in-phse TE to keep ft bright 3D FLASH In nd Out of Phse for Wter nd Ft TE: 0 ms 2.25 ms T Wter Ft Two-point nd Three-point DION (q n ) (q n+1 ) S T (TE Out ) = S W - S F (TE Out ) S T (TE In ) = S W + S F (TE In ) S W = [S T (TE In ) + S T (TE Out )]/2 ; S F (TE Out ) = [S T (TE In ) - S T (TE Out )]/2 OUT IN OUT 2

3 Courtesy of Dr. K. Sndrsegrn of IUSM In-phse DION Exmple Out-of-phse B 0 Field Mpping (q n ) (q n+1 ) Ft-only Wter only TE 1 TE 2 Df = 2pgDB 0 (TE 2 TE 1 ) Multi-echo (ME) Spoiled GRE (q n ) (q n+1 ) ~ Exp(-TE/T 2 *) T2* Mpping Applictions Crtilge: Erly detection of biochemicl chnges Liver nd myocrdium: Estimtion of iron concentrtion T 2 * Quntifiction/Mpping Crtilge T2 Mp Crtilge T2* Mp MEDIC: Multi Echo Dt Imge Combintion (q n ) (q n+1 ) MEDIC Appliction Crtilge lesions (rrow) + + Schmid, M. R. et l. Am. J. Roentgenol. 2005;184: Mgnitude imges from ech echo re combined using sum of squres lgorithm 3

4 Shnghi Zhongshn Hospitl, Shnghi, Chin First Hill DIC, Settle, USA FLASH versus MEDIC VIBE: Volume Interpolted Breth-hold Exmintion (q n ) (q n+1 ) k z k y FLASH MEDIC VIBE VIBE Appliction 1st phse 2nd phse 3rd phse T1 FLASH T2 TSE w. FS LAVA: Liver Acquisition with Volume Acquisition VIEWS: Volume Interpolted Exmintions with Wter-Stimultion 3D VIEWS with rdil reconstruction 3D VIEWS with isotropic 0.5 x 0.5 x 0.6 mm³ VIBRANT: Volume Imging for BRest AssessmeNT Crdinl MRI Sn Jun, Mnil, Philippines FISP versus PSIF TrueFISP/FIESTA/bFFE FISP PSIF Blnced SSFP (TrueFISP) Combines signl from both prtil SE nd GRE. Typiclly with lrge nd short T 2 S r for 90 & T, T T 1 Bright fluid Susceptible to off-resonnce rtifct. Fst cquisition Cn be SAR intensive 2 1 4

5 Eur J Rdiol Jn;65(1):15-28 TrueFISP/FLASH Setup TrueFISP Applictions Imging of Fluid Crdic (Bright blood imging) MSK (Fluid in the joint spce) Non-contrst MRA (High signl from blood) Fst cquisition Crdic (Rel-time imging) Fetl imging TrueFISP nd FLASH Exmple Off-resonnce Effect Finn, J. P. et l. Rdiology 2006;241: To Reduce phse ccumultion between excittion: Improve B 0 homogeneity Reduce CISS Constructive Interference Stedy Stte + MIP 3D cochle protocol DESS Double Echo Stedy Stte DESS Crtilge/crtilge WE-DESS Crtilge/ cpsule Osteorthritis Crtilge Dec;16(12):

6 Skeletl Rdiol Dec;36(12): WE-DESS Imging of Ligment FLASH vs FISP vs DESS Sg 3D WE-DESS Obl. MPR of 3D DESS Obl. T2 w. FS FLASH FISP DESS Thnk ou! 6

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229

Sequence Overview. Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229 Sequence Overview Gradient Echo Spin Echo Magnetization Preparation Sampling and Trajectories Parallel Imaging 75 Pulse Sequences and k-space RF k y G z k x G x 3D k-space G y k y k z Acq. k x 76 Gradient

More information

Magnetization Preparation Sequences

Magnetization Preparation Sequences Magnetization Preparation Sequences Acquisition method may not give desired contrast Prep block adds contrast (and/or encoding) MP-RAGE = Magnetization prepared rapid acquisition with gradient echo (Mugler,

More information

Tissue Parametric Mapping:

Tissue Parametric Mapping: Tissue Parametric Mapping: Contrast Mechanisms Using SSFP Sequences Jongho Lee Department of Radiology University of Pennsylvania Tissue Parametric Mapping: Contrast Mechanisms Using bssfp Sequences Jongho

More information

Chapter 24 MRA and Flow quantification. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University

Chapter 24 MRA and Flow quantification. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Chapter 24 MRA and Flow quantification Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Previous classes Flow and flow compensation (Chap. 23) Steady state signal (Cha. 18) Today

More information

Part III: Sequences and Contrast

Part III: Sequences and Contrast Part III: Sequences and Contrast Contents T1 and T2/T2* Relaxation Contrast of Imaging Sequences T1 weighting T2/T2* weighting Contrast Agents Saturation Inversion Recovery JUST WATER? (i.e., proton density

More information

FREQUENCY SELECTIVE EXCITATION

FREQUENCY SELECTIVE EXCITATION PULSE SEQUENCES FREQUENCY SELECTIVE EXCITATION RF Grad 0 Sir Peter Mansfield A 1D IMAGE Field Strength / Frequency Position FOURIER PROJECTIONS MR Image Raw Data FFT of Raw Data BACK PROJECTION Image Domain

More information

Pulse Sequences: RARE and Simulations

Pulse Sequences: RARE and Simulations Pulse Sequences: RARE and Simulations M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.04.19 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Final project

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

Basic Pulse Sequences I Saturation & Inversion Recovery UCLA. Radiology

Basic Pulse Sequences I Saturation & Inversion Recovery UCLA. Radiology Basic Pulse Sequences I Saturation & Inversion Recovery Lecture #5 Learning Objectives Explain what the most important equations of motion are for describing spin systems for MRI. Understand the assumptions

More information

Spin Echo Review. Static Dephasing: 1/T2 * = 1/T2 + 1/T2 Spin echo rephases magnetization Spin echoes can be repeated. B.Hargreaves - RAD 229

Spin Echo Review. Static Dephasing: 1/T2 * = 1/T2 + 1/T2 Spin echo rephases magnetization Spin echoes can be repeated. B.Hargreaves - RAD 229 Spin-Echo Sequences Spin Echo Review Echo Trains Applications: RARE, Single-shot, 3D Signal and SAR considerations Hyperechoes 1 Spin Echo Review Static Dephasing: 1/T2 * = 1/T2 + 1/T2 Spin echo rephases

More information

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast

Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Applications of Spin Echo and Gradient Echo: Diffusion and Susceptibility Contrast Chunlei Liu, PhD Department of Electrical Engineering & Computer Sciences and Helen Wills Neuroscience Institute University

More information

Field trip: Tuesday, Feb 5th

Field trip: Tuesday, Feb 5th Pulse Sequences Field trip: Tuesday, Feb 5th Hardware tour of VUIIIS Philips 3T Meet here at regular class time (11.15) Complete MRI screening form! Chuck Nockowski Philips Service Engineer Reminder: Project/Presentation

More information

MRI in Review: Simple Steps to Cutting Edge Part I

MRI in Review: Simple Steps to Cutting Edge Part I MRI in Review: Simple Steps to Cutting Edge Part I DWI is now 2 years old... Mike Moseley Radiology Stanford DWI, b = 1413 T2wt, 28/16 ASN 21 San Francisco + Disclosures: Funding NINDS, NCRR, NCI 45 minutes

More information

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229.

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229. Background II Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging 1 SNR: Signal-to-Noise Ratio Signal: Desired voltage in coil Noise: Thermal, electronic Noise Thermal

More information

Bioengineering 278" Magnetic Resonance Imaging" " Winter 2011" Lecture 9! Time of Flight MRA!

Bioengineering 278 Magnetic Resonance Imaging  Winter 2011 Lecture 9! Time of Flight MRA! Bioengineering 278" Magnetic Resonance Imaging" " Winter 2011" Lecture 9 Motion Encoding using Longitudinal Magnetization: Magnetic Resonance Angiography Time of Flight Contrast Enhanced Arterial Spin

More information

Yuta Kobayashi and Yasuhiko Terada * underestimation was prominent for tissues with large values of T 2. and diffusion coefficients.

Yuta Kobayashi and Yasuhiko Terada * underestimation was prominent for tissues with large values of T 2. and diffusion coefficients. Mgn Reson Med Sci 2018; XX; XXX XXX doi:10.2463/mrms.tn.2018-0027 Pulished Online: My 24, 2018 TECHNICAL NOTE Diffusion-weighting Cused y Spoiler Grdients in the Fst Imging with Stedy-stte Precession Sequence

More information

Overview Optimizing MR Imaging Procedures:

Overview Optimizing MR Imaging Procedures: Overview Optimizing MR Imaging Procedures: The Physicist as a Consultant Lisa C. Lemen, Radiology Department University of Cincinnati Image contrast in standard clinical sequences (pulse timing parameters)

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

A Study of Flow Effects on the Gradient Echo Sequence

A Study of Flow Effects on the Gradient Echo Sequence -MR Flow Imaging- A Study of Flow Effects on the Gradient Echo Sequence Cylinder filled with doped water α pulse α pulse Flowing water Plastic pipes Slice Phase Read a TE b Signal sampling TR Thesis for

More information

Chapter 26 Sequence Design, Artifacts and Nomenclature. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University

Chapter 26 Sequence Design, Artifacts and Nomenclature. Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Chapter 26 Sequence Design, Artifacts and Nomenclature Yongquan Ye, Ph.D. Assist. Prof. Radiology, SOM Wayne State University Previous classes: RF pulse, Gradient, Signal Readout Gradient echo, spin echo,

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging

G Medical Imaging. Outline 4/13/2012. Physics of Magnetic Resonance Imaging G16.4426 Medical Imaging Physics of Magnetic Resonance Imaging Riccardo Lattanzi, Ph.D. Assistant Professor Department of Radiology, NYU School of Medicine Department of Electrical and Computer Engineering,

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

A027 Uncertainties in Local Anisotropy Estimation from Multi-offset VSP Data

A027 Uncertainties in Local Anisotropy Estimation from Multi-offset VSP Data A07 Uncertinties in Locl Anisotropy Estimtion from Multi-offset VSP Dt M. Asghrzdeh* (Curtin University), A. Bon (Curtin University), R. Pevzner (Curtin University), M. Urosevic (Curtin University) & B.

More information

Pulse Sequences: EPG and Simulations

Pulse Sequences: EPG and Simulations Pulse Sequences: EPG and Simulations PBM229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2017.04.13 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Advanced topic

More information

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013

EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 9 Solutions. Due April 29th, 2013 EE5E/BIOE65 Spring 013 Principles of MRI Miki Lustig This is the last homework in class. Enjoy it. Assignment 9 Solutions Due April 9th, 013 1) In class when we presented the spin-echo saturation recovery

More information

Nuclei, Excitation, Relaxation

Nuclei, Excitation, Relaxation Outline 4.1 Principles of MRI uclei, Excitation, Relaxation Carolyn Kaut Roth, RT (R)(MR)(CT)(M)(CV) FSMRT CEO Imaging Education Associates www.imaginged.com candi@imaginged.com What nuclei are MR active?

More information

Lab 2: Magnetic Resonance Imaging

Lab 2: Magnetic Resonance Imaging EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Developed by: Galen Reed and Miki Lustig Lab 2: Magnetic Resonance Imaging Introduction In this lab, we will get some hands-on experience with an

More information

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR

MRI in Practice. Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK. John Talbot MSc, DCRR MRI in Practice Third edition Catherine Westbrook MSc, DCRR, CTC Senior Lecturer Anglia Polytechnic University Cambridge UK and Carolyn Kaut RothRT(R) (MR) (CT) (M) (CV) Fellow SMRT (Section for Magnetic

More information

Arbitrary superpositions of quantum operators by single-photon interference

Arbitrary superpositions of quantum operators by single-photon interference Bri, 29 settembre 2009 Società Itlin di Fisic XCV Congresso Nzionle Seoul Ntionl University Arbitrry superpositions of quntum opertors by single-photon interference Alessndro Zvtt CNR-INOA (Firenze) Vlentin

More information

Basic Pulse Sequences II - Spin Echoes. TE=12ms TE=47ms TE=106ms TE=153ms UCLA. Radiology

Basic Pulse Sequences II - Spin Echoes. TE=12ms TE=47ms TE=106ms TE=153ms UCLA. Radiology TE TR 90 180 90 Basic Pulse Sequences II - Spin Echoes TE=12ms TE=47ms TE=106ms TE=153ms TE=235ms Lecture #6 Summary B1(t) RF TR RF t ~M (1) (0 )= ~ M 0 = 2 4 0 0 M 0 3 5 Initial Condition ~M (1) (0 +

More information

Introduction to the Physics of NMR, MRI, BOLD fmri

Introduction to the Physics of NMR, MRI, BOLD fmri Pittsburgh, June 13-17, 2011 Introduction to the Physics of NMR, MRI, BOLD fmri (with an orientation toward the practical aspects of data acquisition) Pittsburgh, June 13-17, 2001 Functional MRI in Clinical

More information

Advanced Topics and Diffusion MRI

Advanced Topics and Diffusion MRI Advanced Topics and Diffusion MRI Slides originally by Karla Miller, FMRIB Centre Modified by Mark Chiew (mark.chiew@ndcn.ox.ac.uk) Slides available at: http://users.fmrib.ox.ac.uk/~mchiew/teaching/ MRI

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor

MRI Physics II: Gradients, Imaging. Douglas C. Noll, Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

MRI Physics I: Spins, Excitation, Relaxation

MRI Physics I: Spins, Excitation, Relaxation MRI Physics I: Spins, Excitation, Relaxation Douglas C. Noll Biomedical Engineering University of Michigan Michigan Functional MRI Laboratory Outline Introduction to Nuclear Magnetic Resonance Imaging

More information

Bloch Equations & Relaxation UCLA. Radiology

Bloch Equations & Relaxation UCLA. Radiology Bloch Equations & Relaxation MRI Systems II B1 I 1 I ~B 1 (t) I 6 ~M I I 5 I 4 Lecture # Learning Objectives Distinguish spin, precession, and nutation. Appreciate that any B-field acts on the the spin

More information

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania

III, Diffusion, and Susceptibility. August 25, Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania III,, and Departments of Mathematics and Applied Math and Computational Science University of Pennsylvania August 25, 2010 Copyright Page All material in this lecture, except as noted within the text,

More information

Introduction to ISAR imaging systems. Elaborazione Sistemi Radar delle immagini radar

Introduction to ISAR imaging systems. Elaborazione Sistemi Radar delle immagini radar Introduction to ISAR imging systems SAR_RANGE 1 Rdr imging systems More in generl rdr imges re obtined by exploiting the reltive motion between the rdr ntenn nd the scene to be imged. SAR: KNOWN reltive

More information

Physical Chemistry (II) CHEM Lecture 25. Lecturer: Hanning Chen, Ph.D. 05/01/2018

Physical Chemistry (II) CHEM Lecture 25. Lecturer: Hanning Chen, Ph.D. 05/01/2018 Physicl Chemistry (II) CHEM 372-80 Lecture 25 Nucler Overhuser Effect nd Electron Prmgnetic Resonnce Lecturer: Hnning Chen, Ph.D. 05/0/208 Quiz 24 0 minutes Plese stop writing when the timer stops! Spin

More information

z TRANSFORMS z Transform Basics z Transform Basics Transfer Functions Back to the Time Domain Transfer Function and Stability

z TRANSFORMS z Transform Basics z Transform Basics Transfer Functions Back to the Time Domain Transfer Function and Stability TRASFORS Trnsform Bsics Trnsfer Functions Bck to the Time Domin Trnsfer Function nd Stility DSP-G 6. Trnsform Bsics The definition of the trnsform for digitl signl is: -n X x[ n is complex vrile The trnsform

More information

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy First w of hermodynmics Reding Problems 3-3-7 3-0, 3-5, 3-05 5-5- 5-8, 5-5, 5-9, 5-37, 5-0, 5-, 5-63, 5-7, 5-8, 5-09 6-6-5 6-, 6-5, 6-60, 6-80, 6-9, 6-, 6-68, 6-73 Control Mss (Closed System) In this section

More information

Physical fundamentals of magnetic resonance imaging

Physical fundamentals of magnetic resonance imaging Physical fundamentals of magnetic resonance imaging Stepan Sereda University of Bonn 1 / 26 Why? Figure 1 : Full body MRI scan (Source: [4]) 2 / 26 Overview Spin angular momentum Rotating frame and interaction

More information

Course Review. Midterm Review: EE369B Concepts Simulations with Bloch Matrices, EPG SNR. B.Hargreaves - RAD 229. Section F1

Course Review. Midterm Review: EE369B Concepts Simulations with Bloch Matrices, EPG SNR. B.Hargreaves - RAD 229. Section F1 Course Review Midterm Review: EE369B Concepts Simulations with Bloch Matrices, EPG SNR 1 Section F1 Bloch/Matrix Simulations M = [Mx My Mz] T RF and precession ~ 3x3 rotation matrices Relaxation ~ 3x3

More information

The physics US and MRI. Prof. Peter Bogner

The physics US and MRI. Prof. Peter Bogner The physics US and MRI Prof. Peter Bogner Sound waves mechanical disturbance, a pressure wave moves along longitudinal wave compression rarefaction zones c = nl, (c: velocity, n: frequency, l: wavelength

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner

The physics of medical imaging US, CT, MRI. Prof. Peter Bogner The physics of medical imaging US, CT, MRI Prof. Peter Bogner Clinical radiology curriculum blocks of lectures and clinical practice (7x2) Physics of medical imaging Neuroradiology Head and neck I. Head

More information

Introduction to MRI Acquisition

Introduction to MRI Acquisition Introduction to MRI Acquisition James Meakin FMRIB Physics Group FSL Course, Bristol, September 2012 1 What are we trying to achieve? 2 What are we trying to achieve? Informed decision making: Protocols

More information

Comparison of Transient Response Reduction Methods in balanced SSFP

Comparison of Transient Response Reduction Methods in balanced SSFP Comparison of Transient Response Reduction Methods in balanced SSFP EE591 Magnetic Resonance Imaging and Reconstruction Final Project Report Hua Hui Dec.7 th 24 Introduction As a consequence of the mergence

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

M R I Physics Course

M R I Physics Course M R I Physics Course Some Body Techniques/Protocols Nathan Yanasak, Ph.D. Jerry Allison, Ph.D. Tom Lavin, M.S. Department of Radiology Medical College of Georgia References: 1) The Physics of Clinical

More information

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees

Rad Tech 4912 MRI Registry Review. Outline of the Registry Exam: Certification Fees Rad Tech 4912 MRI Registry Review Outline of the Registry Exam: Category: # of questions: A. Patient Care 30 B. Imaging Procedures 62 C. Data Acquisition and Processing 65 D. Physical Principles of Image

More information

MA 201: Partial Differential Equations Lecture - 12

MA 201: Partial Differential Equations Lecture - 12 Two dimensionl Lplce Eqution MA 201: Prtil Differentil Equtions Lecture - 12 The Lplce Eqution (the cnonicl elliptic eqution) Two dimensionl Lplce Eqution Two dimensionl Lplce Eqution 2 u = u xx + u yy

More information

Correction Gradients. Nov7, Reference: Handbook of pulse sequence

Correction Gradients. Nov7, Reference: Handbook of pulse sequence Correction Gradients Nov7, 2005 Reference: Handbook of pulse sequence Correction Gradients 1. Concomitant-Field Correction Gradients 2. Crusher Gradients 3. Eddy-Current Compensation 4. Spoiler Gradients

More information

} B 1 } Coil } Gradients } FFT

} B 1 } Coil } Gradients } FFT Introduction to MRI Daniel B. Ennis, Ph.D. Requirements for MRI UCLA DCVI Requirements for MRI Dipoles to Images MR Active uclei e.g. 1 H in H20 Cryogen Liquid He and 2 Magnetic Field (B0) Polarizer ystem

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

Principles of MRI EE225E / BIO265. Name That Artifact. RF Interference During Readout. RF Interference During Readout. Lecture 19

Principles of MRI EE225E / BIO265. Name That Artifact. RF Interference During Readout. RF Interference During Readout. Lecture 19 Name That Artifact Principles of MRI EE225E / BIO265 Lecture 19 Instructor: Miki Lustig UC Berkeley, EECS 1 http://mri-info.net 2 RF Interference During Readout RF Interference During Readout 1D FFT 1D

More information

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging

BMB 601 MRI. Ari Borthakur, PhD. Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging BMB 601 MRI Ari Borthakur, PhD Assistant Professor, Department of Radiology Associate Director, Center for Magnetic Resonance & Optical Imaging University of Pennsylvania School of Medicine A brief history

More information

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution. Introduction to MRI Spin & Magnetic Moments Relaxation (T1, T2) Spin Echoes 2DFT Imaging Selective excitation, phase & frequency encoding K-space & Spatial Resolution Contrast (T1, T2) Acknowledgement:

More information

Blood Water Dynamics

Blood Water Dynamics Bioengineering 208 Magnetic Resonance Imaging Winter 2007 Lecture 8 Arterial Spin Labeling ASL Basics ASL for fmri Velocity Selective ASL Vessel Encoded ASL Blood Water Dynamics Tissue Water Perfusion:

More information

Part VI: Advanced Concepts (Selection)

Part VI: Advanced Concepts (Selection) Part VI: Advanced Concepts (Selection) Contents Cardiovascular magnetic resonance imaging (CMR; cardiac MRI) Diffusion Imaging (diffusion weighted imaging: DWI, diffusion tensor imaging: DTI) BOLD (blood

More information

Supplementary Information for Directional Reflective Surface Formed via Gradient- Impeding Acoustic Meta-surfaces

Supplementary Information for Directional Reflective Surface Formed via Gradient- Impeding Acoustic Meta-surfaces Supplementry Informtion for Directionl Reflective Surfce Formed vi Grdient- Impeding Acoustic Met-surfces Kyungjun Song 1*, Jedo Kim 2, Hur Shin 1, Jun-Hyuk Kwk 1, Seong-Hyun Lee 3,Tesung Kim 4 1 Deprtment

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 9 Magnetic Resonance Imaging (imaging) Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ 1 Schedule 1. Introduction, Spatial Resolution,

More information

Basis of MRI Contrast

Basis of MRI Contrast Basis of MRI Contrast MARK A. HORSFIELD Department of Cardiovascular Sciences University of Leicester Leicester LE1 5WW UK Tel: +44-116-2585080 Fax: +44-870-7053111 e-mail: mah5@le.ac.uk 1 1.1 The Magnetic

More information

Disclosures. MR Physics. Recipe to Creating Images without Radiation. MRI Physics. Vector Math. What s In an Image 12/21/2012. Siemens Medical Systems

Disclosures. MR Physics. Recipe to Creating Images without Radiation. MRI Physics. Vector Math. What s In an Image 12/21/2012. Siemens Medical Systems Disclosures MR Physics Joseph V. Fritz, PhD Dent Neurologic Institute Sunday, January 20, 2013 9:00 9:50 AM Siemens Medical Systems Research Agreement Philips Healthcare Research Agreement Toshiba Medical

More information

Advanced MRI: Diffusion MRI 1: DTI and k-space

Advanced MRI: Diffusion MRI 1: DTI and k-space k y Advanced MRI: Diffusion MRI 1: DTI and k-space k X Eric Sigmund, PhD February 26th, 2013 LECTURE 1 Neuro Diffusion MRI 3-5 m White matter axons Body 15 m Renal medulla Musculoskeletal 50 m Skeletal

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI:.38/NMAT343 Hybrid Elstic olids Yun Li, Ying Wu, Ping heng, Zho-Qing Zhng* Deprtment of Physics, Hong Kong University of cience nd Technology Cler Wter By, Kowloon, Hong Kong, Chin E-mil: phzzhng@ust.hk

More information

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory 2. Diffusion-Controlled Reaction

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory 2. Diffusion-Controlled Reaction Ch. 4 Moleculr Rection Dynmics 1. Collision Theory. Diffusion-Controlle Rection Lecture 17 3. The Mteril Blnce Eqution 4. Trnsition Stte Theory: The Eyring Eqution 5. Trnsition Stte Theory: Thermoynmic

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction A journey of a thousand miles must begin with a single step. LaoZi Tomography is an important area in the ever-growing field of imaging science. The term tomos (rofio

More information

Chapter 14:Physics of Magnetic Resonance

Chapter 14:Physics of Magnetic Resonance Chapter 14:Physics of Magnetic Resonance Slide set of 141 slides based on the chapter authored by Hee Kwon Song of the publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for

More information

Rochester Institute of Technology Rochester, New York. COLLEGE of Science Department of Chemistry. NEW (or REVISED) COURSE:

Rochester Institute of Technology Rochester, New York. COLLEGE of Science Department of Chemistry. NEW (or REVISED) COURSE: Rochester Institute of Technology Rochester, New York COLLEGE of Science Department of Chemistry NEW (or REVISED) COURSE: 1014-730 1.0 Title: Magnetic Resonance Imaging (MRI) Date: July 2006 Credit Hours:

More information

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 33. Psychrometric Properties of Moist Air

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 33. Psychrometric Properties of Moist Air Deprtment of Mechnicl Engineering ME 3 Mechnicl Engineering hermodynmics Lecture 33 sychrometric roperties of Moist Air Air-Wter Vpor Mixtures Atmospheric ir A binry mixture of dry ir () + ter vpor ()

More information

Fundamentals of MR Imaging

Fundamentals of MR Imaging Fundamentals of MR Imaging Shantanu Sinha. Department of Radiology UCSD School of Medicine, San Diego, CA-92103. E-mail: shsinha@ucsd.edu Background References: R.B.Lufkin, The MRI Manual (2nd Edition).

More information

On Signal to Noise Ratio Tradeoffs in fmri

On Signal to Noise Ratio Tradeoffs in fmri On Signal to Noise Ratio Tradeoffs in fmri G. H. Glover April 11, 1999 This monograph addresses the question of signal to noise ratio (SNR) in fmri scanning, when parameters are changed under conditions

More information

EE591 Magnetic Resonance Imaging and Reconstruction Project Report. S i m u l a t i o n. Professor: Krishna Nayak ID: , Name: Yongjin Cho

EE591 Magnetic Resonance Imaging and Reconstruction Project Report. S i m u l a t i o n. Professor: Krishna Nayak ID: , Name: Yongjin Cho EE591 Magnetic Resonance Imaging and Reconstruction Project Report S S F P S i m u l a t i o n Professor: Krishna Nayak ID: 2486.9458.56, Name: Yongjin Cho SSFP Simulation 1 1. Theory, simulation objective

More information

Principles of Nuclear Magnetic Resonance Microscopy

Principles of Nuclear Magnetic Resonance Microscopy Principles of Nuclear Magnetic Resonance Microscopy Paul T. Callaghan Department of Physics and Biophysics Massey University New Zealand CLARENDON PRESS OXFORD CONTENTS 1 PRINCIPLES OF IMAGING 1 1.1 Introduction

More information

New Insights Into the Mechanisms of Signal Formation in RF-Spoiled Gradient Echo Sequences

New Insights Into the Mechanisms of Signal Formation in RF-Spoiled Gradient Echo Sequences New Insights Into the Mechanisms of Signal Formation in RF-Spoiled Gradient Echo Sequences Vincent Denolin, Céline Azizieh, 2 and Thierry Metens Magnetic Resonance in Medicine 54:937 954 (2005) RF spoiling

More information

MAGNETIC RESONANCE ZEUGMATOGRAPHY

MAGNETIC RESONANCE ZEUGMATOGRAPHY PAUL C. LAUTERBUR Deprtment of Chemistry, Stte University of New York t Stony Brook, Stony Brook, New York 11794, USA ABSTRACT Sptil resolution of mgnetic resonnce signls my be chieved by the use of vrious

More information

FLASH: Clinical three-dimensional magnetic resonance imaging

FLASH: Clinical three-dimensional magnetic resonance imaging RdioGrphics index terms: Imging technology NEWIEXPERIMEIITAL TECHNIQUE Mgnetic resonnc#{149} imging TECHNICAL Cumultive index terms: Mgnetic resonnce (MR) technology FLAH: Clinicl three-dimensionl mgnetic

More information

ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. Chester F. Carlson Center for Imaging Science

ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE. Chester F. Carlson Center for Imaging Science ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM COLLEGE OF SCIENCE Chester F. Carlson Center for Imaging Science NEW COURSE: COS-IMGS-730 Magnetic Resonance Imaging 1.0 Course Designations and Approvals

More information

Global Motion. Estimate motion using all pixels in the image. Parametric flow gives an equation, which describes optical flow for each pixel.

Global Motion. Estimate motion using all pixels in the image. Parametric flow gives an equation, which describes optical flow for each pixel. Globl Flow Globl Motion Estimte motion using ll piels in the imge. Prmetric low gives n eqution, which describes opticl low or ech piel. Aine Projective Globl motion cn be used to generte mosics Object-bsed

More information

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler)

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler) CHE 309: Chemicl Rection Engineering Lecture-8 Module 2: Rte Lw & Stoichiomtery (Chpter 3, Fogler) Topics to be covered in tody s lecture Thermodynmics nd Kinetics Rection rtes for reversible rections

More information

MR Advance Techniques. Flow Phenomena. Class I

MR Advance Techniques. Flow Phenomena. Class I MR Advance Techniques Flow Phenomena Class I Flow Phenomena In this class we will explore different phenomenona produced from nuclei that move during the acquisition of data. Flowing nuclei exhibit different

More information

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes?

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes? Navigator Echoes BioE 594 Advanced Topics in MRI Mauli. M. Modi. 1 What are Navigator Echoes? In order to correct the motional artifacts in Diffusion weighted MR images, a modified pulse sequence is proposed

More information

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys

Visual motion. Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys Visul motion Mn slides dpted from S. Seitz, R. Szeliski, M. Pollefes Outline Applictions of segmenttion to video Motion nd perceptul orgniztion Motion field Opticl flow Motion segmenttion with lers Video

More information

Dynamic Contrast Enhance (DCE)-MRI

Dynamic Contrast Enhance (DCE)-MRI Dynamic Contrast Enhance (DCE)-MRI contrast enhancement in ASL: labeling of blood (endogenous) for this technique: usage of a exogenous contras agent typically based on gadolinium molecules packed inside

More information

Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading

Data Assimilation. Alan O Neill Data Assimilation Research Centre University of Reading Dt Assimiltion Aln O Neill Dt Assimiltion Reserch Centre University of Reding Contents Motivtion Univrite sclr dt ssimiltion Multivrite vector dt ssimiltion Optiml Interpoltion BLUE 3d-Vritionl Method

More information

Chapter One: Calculus Revisited

Chapter One: Calculus Revisited Chpter One: Clculus Revisited 1 Clculus of Single Vrible Question in your mind: How do you understnd the essentil concepts nd theorems in Clculus? Two bsic concepts in Clculus re differentition nd integrtion

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

Quantitative/Mapping Methods

Quantitative/Mapping Methods Quantitative/Mapping Methods Gradient Measurement Fat/Water Separation B0 and B1 mapping T1, T2 and T2* mapping 426 Gradient Measurement Duyn method Modifications 427 Duyn Method - Pulse Sequence Excite

More information

Anonymous Math 361: Homework 5. x i = 1 (1 u i )

Anonymous Math 361: Homework 5. x i = 1 (1 u i ) Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define

More information

Advanced Imaging Techniques

Advanced Imaging Techniques Advanced Imaging Techniques Perfusion Imaging Prof. Dr. Frank G. Zöllner Compuer Assised Clinical Medicine Medical Faculy Mannheim Heidelberg Universiy Theodor-Kuzer-Ufer 1-3 D-68167 Mannheim, Germany

More information

Lecture k-space. k-space illustrations. Zeugmatography 3/7/2011. Use of gradients to make an image echo. K-space Intro to k-space sampling

Lecture k-space. k-space illustrations. Zeugmatography 3/7/2011. Use of gradients to make an image echo. K-space Intro to k-space sampling Lecture 21-3-16 K-space Intro to k-space sampling (chap 3) Frequenc encoding and Discrete sampling (chap 2) Point Spread Function K-space properties K-space sampling principles (chap 3) Basic Contrast

More information

Exam 8N080 - Introduction to MRI

Exam 8N080 - Introduction to MRI Exam 8N080 - Introduction to MRI Friday April 10 2015, 18.00-21.00 h For this exam you may use an ordinary calculator (not a graphical one). In total there are 5 assignments and a total of 50 points can

More information

NMR/MRI examination (8N080 / 3F240)

NMR/MRI examination (8N080 / 3F240) NMR/MRI examination (8N080 / 3F240) Remarks: 1. This test consists of 3 problems with at total of 26 sub-questions. 2. Questions are in English. You are allowed to answer them in English or Dutch. 3. Please

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY

Spatial encoding in Magnetic Resonance Imaging. Jean-Marie BONNY Spatial encoding in Magnetic Resonance Imaging Jean-Marie BONNY What s Qu est an image ce qu une? image? «a reproduction of a material object by a camera or a related technique» Multi-dimensional signal

More information

Reinforcement learning II

Reinforcement learning II CS 1675 Introduction to Mchine Lerning Lecture 26 Reinforcement lerning II Milos Huskrecht milos@cs.pitt.edu 5329 Sennott Squre Reinforcement lerning Bsics: Input x Lerner Output Reinforcement r Critic

More information