Baryogenesis from inverted. hierarchical mass models with

Size: px
Start display at page:

Download "Baryogenesis from inverted. hierarchical mass models with"

Transcription

1 Chapter 5 Baryogenesis from inverted hierarchical mass models with tribimaximal mixings 5.1 Introduction There are several interesting ansatz for neutrino mixings. Two most familiar ansatz are bimaximal and tribimaximal mixings. The bimaximal mixing predicts maximum values of solar and atmospheric mixings i.e., On = 623 = 45 and 0]3 = 0, whereas the tribimaximal mixing represents tan2923 = 1, tan2on = 0.5 and sin&xz = 0. Corresponds to bimaximal and tribimaximal mixing patterns of light neutrinos, the heavy masses can be constructed via inverse seesaw relation. It is well known that heavy masses have serious implication towards baryon asymmetry. In the present work, we investigate the possible baryogenesis 95

2 t scenario for two specific structures of inverted hierarchical mass models: bimaximal mixings(bm) and tribiinaxirnal mixings(tbm), both with opposite CP-parity in the first two mass eigenvalues to,- = ( toi,to2, to3) M i x i n g M a t r i x f o r N e u t r i n o s The unitary matrix U ( = Umns) eq.(l.l) carries the information of mixing angles. The mixing angles are expressed in terms of the matrix elements in eq.(1.33) parameterised by three rotations. For explicit structure of Umns we refer to eq.(3.23) B i m a x i m a l M i x i n g s The Bimaximal mixing(bm) ansatz of neutrinos predicts maximum values for both solar and atmospheric mixing angles. For 0 u = #23 = 45 and 0i3 = 0 the corresponding mixing matrix is expressed as c; to I N > 1 h * O <N _ I m 3 i g to o» 6 O T r i b i m a x i m a l M i x m g s It is a specific leptonic mixing ansatz proposed by Harrison, Perkins and Scott [95], which gathers momentum in the light of SNO results [96]. The 9 6

3 Um n s matrix, which connects the flavor and mass eigenstates takes the following form in HPS scheme: Uh p s = V V F X V3 0 N 1 1 V 3 1 v'a 1 s/g 1 V3 L v/2 / (5.2) The matrix (5.2) has some significant features: (а ) The intermediate mass neutrino v2 is trimaximally mixed between all three lepton flavors i.e., \Ue2\2 = [U^ ] 2 = t/t2[2 = - (б) The heavy neutrino 1/3 is bi-maximally mixed between vtl and vr i.e., M = PrZ? = The various mixing angles corresponds to the above Uh p s are tan' and tan2812 = 0.5. Whereas SNO results shows slight deviation from tribimaxima! mixings with tan2812 = 0.45ion8» there is no reported deviation from atmospheric mixings. The latest data shows deviation of tan2023 from 1. The matching of H PS mixings with experiments can not be treated as a mere coincidence. There must be some deeper underlying symmetry, which can be the backbone of tribimaxima! mixings. To understand H P S scheme, we first consider, how the mixing matrix is controlled by flavor symmetry [97]. The leptonic mixing matrix Umns (eq.(3.23)) is expressed in terms of two unitary matrices: Um n s = U}LUV1 where, UiL and Uv are connected to the diagonalisation of charged lepton and neutrino mass matrix in the following way Diag(me, mt) = U}LMiUtB, Diag(m,i, m2, m3) = (5.3) 97

4 For Majorana neutrinos the structure of Mv is constrained to be symmetric and the charged lepton mass matrix M; can be of any 3 x 3 matrix. If this is the case the mixing matrix can be of any unitary form, and the mass are unrestricted by Standard Model symmetry. The presence of generation symmetry, restricts the structure of mass matrices which in turn fixes the mixing matrix. The associated Lagrangian has to be invariant under the following transformations: v -» X v, Ir > X ril, hi >X rir where Xz(i = v, ll, lr} are three 3 x 3 unitary matrices. This type of transformation results in the specific structure of mass matrices: Mv = XlM Xl, Mt = XlM,XR. (5.4) In UPS scheme, the charged lepton mass matrix was taken to be circulant form: * a b e ^ Mi c a b ) (5.5) ^ b c a j where a, 6, c axe related to the three masses of charged leptons. The above Mi can be generated by using cyclic permutation C3 symmetry [98, 99]. Again the neutrino mass matrix M was expressed in terms of x,y,z which are associated with the three independent neutrino masses: (5.6) (x 0 Mv = l y 0 * / 98

5 The neutrino mass matrix was generated by using 52 x S2 symmetry. The mass matrices Mi and M axe diagonalised by [97] UlL = Ui Ir _1_ V it) 10* ^ 1 u* a) j and U = i r i i 71 U 71 V J (5.7) where ui = e x p (^ ). Combination of the above two matrices gives j Uhps = K u- 5.3 Inverted hierarchical M odel and Chang- ing scenario The inverted hierarchical patterns of light left-handed neutrinos (mi ~ m2 > m3), are brat understood in terms of two mass models [35, 37]: Inverted hierarchical type-2a(invt2a) and Inverted hierarchical type- 2B (InvT2B) based on the relative CP-parity between mi and m2- For InvT2A the mass pattern is denoted by (m i,m2, m3) whereas for InvT2B the mass pattern is ( m i,m2,m 3). The inverted hierarchical model of neutrinos with odd C P parity ( mi, m2,m 3) generally predicts nearly bimaximal mixings in the diagonal basis of the charged lepton mass matrix. This is specifically true when (ll)-element is nearly zero. A familiar mass matrix of InvT2B is generally given by 99

6 ( \ mll = 1 4 l 1 4 4, (5.8) where 1,2,3 < 1. The diagonalisation o f mass matrix (5.8) gives following mass eigenvalues, mi,2= ^[(4 + k + 4) ± ]> m3= m0(4-4); x^ = S+{Sf + 6l + S l)-25t82 ~~ 26x and the three mixing angles are calculated as tan2 = 1, sin 0i3 = O,tan2012 = Such a simplest form (5.8) is found to be realised within seesaw framework [22] mu, - mlrmr]imfjr, using diagonal form o f Dirac neutrino mass matrix rnlr diag(xm, A, l)v and a suitable non-diagonal texture of heavy Majoraaa mass matrix Mrr. For each pair of (m,n), the corresponding texture of Mrr are different, and the light neutrino mass matrices, are left unaffected. For example, we use the following form o f ttill from ref. [35] f 0 1 m i x = 1 (A3 A4)/2 - ( A 3 + A4)/2 mo- (5.9) \ 1 (A3 + A4)/2 (A3 A4)/2 j For input values A = 0.3 and m0 = 0.035eV we have the mass eigenvalue: m fls = diay ( , , )eV 100

7 The corresponding oscillation parameters are calculated as Am i = 9.30 x lo~~5ev 2, Amfg = 2.50 x 10~3eV2.tan2 012 = 0.98, sin , sin 013 = 0. The predicted solar angle is nearly maximal. Several attempts have been made to tone down solar mixing angle but the effect is not so satisfactory to the experimentally acceptable level. It has been pointed out [100] that there is also a possibility to realise the tribimaximal mixings [95, 97] within the inverted hierarchical mass matrix in eq.(5.8), provided the numerical values of 1,2,3 are comparatively larger but smaller than 1. As a specific example we follow the ref. [100] and use the following values: 1 = , 2 = , 3 = ,too = 0.035eU in eq.(5.8).the corresponding mass eigenvalues are TOi = eF, m2 = Q.05299eF and TO3 = eF. The predictions on neutrino oscillation parameters are: A to x = 8.34 x 10-5eF 2, Arnig = 1.95 x l O 'W 2, tan2 012 = 0.45, tan2 023 = 1.0, sin 0i3 = 0. The solar angle is slightly smaller than tribimaximal mixing and agrees with recent data. The above prediction does not require any fine tuning of the solar angle from charged lepton sector or from renormalization effects. The inverted hierarchical neutrino mass matrix in eq(5.8) with bimaxima! mixings as well as tribimaximal mixings is independent of pair of (m, n) appeared in m m within the framework of seesaw formula, and this can however be fixed in the estimation of baryon asymmetry via lepton asymmetry which depends on the texture of MRR. For our interest we take up three different cases [80] of (to, n) depending on ttilr and Mrr as allowed by 50(10) GUT. Casel: mj,r = charged lepton mass matrix with (m,n ) = (6, 2) i.e., m LR = diag{ A6, A2, l)w; 101

8 case2: m m = up quark mass m atrix with (m,n) = (8,4 ) i.e., m m = diag{a8, A4, l)u ; cases: m m = down quark mass m atrix with (m,n) = (4,2 ) i.e., m m = diag{a4, A2, i)v. For a particular choice o f mm one can have three possible structure o f M RR depending on the above choice o f (m, n). The choice o f non-diagonal m m in the basis o f diagonal M rr plays a crucial role in the calculation o f baryon asymmetry via lepton asymmetry produced by the decay o f lightest o f heavy M ajorana neutrino M i [64, 101, 102]. 5.4 Numerical calculation and results W e start with light Majorana neutrino mass m atrix mm and translate this matrix to M RR via the inversion o f seesaw formula, M RR = rn[rm m m m Using the right-handed Majorana mass m atrix MRR, we estimate the baryon asymmetry for bimaximal and tribimaximal cases for three different choices o f Dirac neutrino mass m atrix mm- For the expression o f lepton asymmetry we refer to eq(3.6) and baryon asymmetry is calculated from Y sm = ^6!. (5.10) Again we follow the same procedure for numerical calculation as in subsection As an example we consider tribimaxim al pattern o f mm discussed in section 5.3. The light neutrino mass m atrix is given by(in e V ) 102

9 h i l l ( ^ > } Taking Dirac neutrino mass matrix as down quark mass matrix (case-3) i.e., nilr diag{xa, A2, l)n, with A = 0.3 and v = 174GeV we have the corresponding Mrr (in GeV) as M r r = f x x 10n ^ x x 10u x 1012 N 5.03 x x x x 1014, The mass eigenvalues are = diag(9.7q x 1010, 2.89 x 1012, 6.23 x xlo14). The corresponding diagonalising matrix is ' * ^ u = * ^ * il, The neutrino Yukawa coupling becomes ( * ^ h = * ^ * j ( Jn Jn Jn J = (h*mllhf) = J21 J'2'2 J2& 103 KJn J32 Jz3 j

10 where, Ju = ( i)10-15, J12 = J21 = ( t)10-14, Ji8 = J3 1 = ( i)10-13, J22 = ( t)10~13, </23 = J32 = ( i)10-13 and J33 = ( i)10~n. For the above structures of m u, h and J we have (hh^)u = 6.56 x 10-5, Im{h"miJ[Jh^)n = 7.09 x 10-16, mi = 2.03 x 10~2eV, m* = 1.08 x 10~3eV, K = 18.73, and K\ The lepton asymmetry is found to be = 2.08 x Following t eq(5.10) we found YgM = 3.78 x 10" 10 which is consistent with the experimental bound [39]: Y MB = (6.lio; )10-1. We follow the same procedure to estimate lepton and baryon asymmetry for other cases. For quasi-degenerate structure which appears in bimaximal case, we use eq.(3.7) to calculate lepton asymetry. Such degeneracy is found to be lifted in tribimaximal case and the expression in eq.(3.6) is used. For all the cases under consideration the heavy mass eigenvalues, are collected in table-5.1, the effective mass parameters and dilution factors are presented in table-5.2. Finally the estimated lepton and baryon asymmetry are collected in table-5.3. Table 5.1: The three right-handed Majorana neutrino masses in GeV for bimaximal case{bm) and tribimaximal case(tbm). (m,n) BM Mf * TBM \MA (4.2) (6.2) (8,4) x 10u, x 10n,5.38 x x 1010, x 10lo,5.38 x x 108, x 108,5.34 x x 1010,2.89 x 1012,6.23 x x 108, 2.83 x 1012, 6.23 x x 10, 2.30 x 1010,6.21 x

11 T a b le 5.2: Contains the values of effective mass parameter m i in ev, decay parameter K and dilution factor «i for bimaximal and tribimaximal case. BM TBM (m, n) r h i K «i r h i K K i (4,2) 3.16 X 10~ X 10~ X I Q - 3 (6,2) 2.85 X 10~ X X 10~3 (8,4) 2.83 X X i o X 10 3 T able 5.3: Calculation of lepton asymmetry ei and baryon asymmetry Yg for bimaximal case(bm) and tribimaximal case(tbm) for three choices o f (m,n). BM TBM (m,n) Cl YB Cl Yb (4,2) 1.64 x x IO' x x IO"10 (6,2) 1.47 x 10~ x x x (8,4) 1.62 x 10~ x 10~ x IO" x

12 5.5 Summary and discussion We start with the bimaximal and tribimaximal mixing pattern of inverted hierarchical light neutrino mass matrix niu,. Heavy right-handed Major an a neutrino mass matrices are constructed via inverse seesaw relation. In case of bimaximal mixing pattern of light neutrinos we observe that the corresponding heavy right-handed neutrino masses manifest quasi-degenerate structure i.e., Mx ~ M2 < M3. This peculiar structure of heavy masses enhance the produced asymmetry known as resonance enhancement by modifying the propagator. This scenario completely changes [103] when we come to tribimaximal mixing(tbm) pattern, with hierarchical pattern of heavy neutrinos i.e., < M2 < M3. This type of hierarchical structure will bypass the resonance enhancement effect and this is clearly seen in the produced asymmetry. For bimaximal case the range of lepton asymmetry is found to be 10~4 < ti < 10~2 whereas in tribimaximal scenario the range is 10~11 < t\ < 10~6. The estimated baryon asymmetry Yg = 3.78 x for tribimaximal mixing pattern with down quark mass matrix taken as Dirac neutrino mass matrix is consistent with the experimental value [39]. For hierarchical structure of heavy Majorana neutrino masses, the condition Mi > 4 x 108GeV satifies the famous Davidson-Ibarra bound [87]. In the present calculation we are able to establish the validity of tribimaximal mixing in inverted hierarchical mass model, and also to discriminate the three possible choices of Dirac neutrino mass matrix through the estimation of baryon asymmetry. 106

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

RG evolution of neutrino parameters

RG evolution of neutrino parameters RG evolution of neutrino parameters ( In TeV scale seesaw models ) Sasmita Mishra Physical Research Laboratory, Ahmedabad, India Based on arxiv:1310.1468 November 12, 2013 Institute of Physics, Bhubaneswar.

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B Neutrino Masses & Flavor Mixing Zhi-zhong Xing 邢志忠 (IHEP, Beijing) @Schladming Winter School 2010, Styria, Austria Lecture B Lepton Flavors & Nobel Prize 2 1975 1936 = 1936 1897 = 39 Positron: Predicted

More information

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla JIGSAW 07 Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases Sanjib Kumar Agarwalla Harish-Chandra Research Institute, Allahabad, India work done in collaboration with M. K.

More information

Non-zero Ue3, Leptogenesis in A4 Symmetry

Non-zero Ue3, Leptogenesis in A4 Symmetry Non-zero Ue3, Leptogenesis in A4 Symmetry 2 nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry Y.H.Ahn (Academia Sinica) based on the paper with C.S.Kim and S. Oh 1 Outline

More information

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking National Tsing-Hua Unv. Chian-Shu Chen (NCKU/AS) with Y.H. Ahn & S.K. Kang 11/1/009 ouline Introduction A 4 symmetry The model Neutrino mass

More information

arxiv:hep-ph/ v1 26 Jul 2006

arxiv:hep-ph/ v1 26 Jul 2006 Neutrino mass and baryogenesis arxiv:hep-ph/0607287v1 26 Jul 2006 D. Falcone Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, Napoli, Italy A brief overview of the phenomenology related

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

Electric Dipole Moment and Neutrino Mixing due to Planck Scale Effects

Electric Dipole Moment and Neutrino Mixing due to Planck Scale Effects EJTP 7, No. 23 (2010) 35 40 Electronic Journal of Theoretical Physics Electric Dipole Moment and Neutrino Mixing due to Planck Scale Effects Bipin Singh Koranga Kirori Mal College (University of Delhi,)

More information

Status and prospects of neutrino oscillations

Status and prospects of neutrino oscillations Status and prospects of neutrino oscillations S. Bilenky JINR(Dubna)TRIUMF June 10, 2017 The award of the 2015 Nobel Prize to T. Kajita and A. McDonald for the discovery of neutrino oscillations, which

More information

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Pierre Hosteins Patras University 13th November 2007 Brussels P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arxiv:hep-ph/0606078

More information

Lepton Flavor and CPV

Lepton Flavor and CPV Lepton Flavor and CPV Alexander J. Stuart 25 May 2017 Based on: L.L. Everett, T. Garon, and AS, JHEP 1504, 069 (2015) [arxiv:1501.04336]; L.L. Everett and AS, arxiv:1611.03020 [hep-ph]. The Standard Model

More information

Cosmological Family Asymmetry and CP violation

Cosmological Family Asymmetry and CP violation Cosmological Family Asymmetry and CP violation Satoru Kaneko (Ochanomizu Univ.) 2005. 9. 21 at Tohoku Univ. T. Endoh, S. K., S.K. Kang, T. Morozumi, M. Tanimoto, PRL ( 02) T. Endoh, T. Morozumi, Z. Xiong,

More information

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries Fermion Mixing ngles and the Connection to Non-Trivially Broken Flavor Symmetries C. Hagedorn hagedorn@mpi-hd.mpg.de Max-Planck-Institut für Kernphysik, Heidelberg, Germany. Blum, CH, M. Lindner numerics:.

More information

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016) GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv 1607.07880 PRD 94, 073004 (016) Rasmus W. Rasmussen Matter and the Universe 1-1-16 Theory of elementary

More information

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 1 A. S. Joshipura, W.R., Phys. Lett. B 678, 276 (2009) [arxiv:0905.2126 [hep-ph]] A. Blum,

More information

Steve King, DCPIHEP, Colima

Steve King, DCPIHEP, Colima !!! 1/6/11 Lecture I. The Flavour Problem in the Standard Model with Neutrino Mass Lecture II. Family Symmetry and SUSY Lecture III. SUSY GUTs of Flavour with Discrete Family Symmetry Steve King, DCPIHEP,

More information

Recent progress in leptogenesis

Recent progress in leptogenesis XLIII rd Rencontres de Moriond Electroweak Interactions and Unified Theories La Thuile, Italy, March 1-8, 2008 Recent progress in leptogenesis Steve Blanchet Max-Planck-Institut for Physics, Munich March

More information

Leptonic CP violation theory

Leptonic CP violation theory p. 1/30 Leptonic CP violation theory C. Hagedorn CP 3 -Origins, SDU, Odense, Denmark XXVII International Conference on Neutrino Physics and Astrophysics, 04.07.-09.07.2016, London, UK p. 2/30 Low energy

More information

Neutrino Models with Flavor Symmetry

Neutrino Models with Flavor Symmetry Neutrino Models with Flavor Symmetry November 11, 2010 Mini Workshop on Neutrinos IPMU, Kashiwa, Japan Morimitsu Tanimoto (Niigata University) with H. Ishimori, Y. Shimizu, A. Watanabe 1 Plan of my talk

More information

ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS

ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS H S NATARAJ Under the Supervision of Prof. B P DAS Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Bangalore

More information

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons Neutrinos Thanks to Ian Blockland and Randy Sobie for these slides spin particle with no electric charge; weak isospin partners of charged leptons observed in 193, in 1962 and in the 199s neutrino physics

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1312.xxxxx 2013 Particle Theory Group @ Yonsei Univ. 1 The SM as an effective theory Several theoretical arguments (inclusion

More information

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Neutrinos and Cosmos Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Outline A Little Historical Perspective Interpretation of Data & Seven Questions Matter Anti-Matter Asymmetry

More information

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn Tuesday group seminar 17/03/15 University of Liverpool 1 Introduction Outline The SM & SUSY Flavour Problem. Solving it by imposing a

More information

A. Yu. Smirnov. A. Yu. Smirnov

A. Yu. Smirnov. A. Yu. Smirnov A. Yu. Smirnov A. Yu. Smirnov before nu2012 G. L. Fogli Serious implications for theory Non-zero, relatively Large 1-3 mixing Substantial deviation of the 2-3 mixing from maximal d CP ~ p DB new Robust?

More information

arxiv:hep-ph/ v1 19 Jun 2004

arxiv:hep-ph/ v1 19 Jun 2004 Democratic Neutrino Mixing Reexamined Harald Fritzsch Sektion Physik, Universität München, Theresienstrasse 7A, 80 Munich, Germany arxiv:hep-ph/0400 v1 19 Jun 004 Zhi-zhong Xing Institute of High Energy

More information

Duality in left-right symmetric seesaw

Duality in left-right symmetric seesaw Duality in left-right symmetric seesaw Evgeny Akhmedov KTH, Stockholm & Kurchatov Institute, Moscow In collaboration with Michele Frigerio Evgeny Akhmedov SNOW 2006 Stockholm May 4, 2006 p. 1 Why are neutrinos

More information

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS M. LINDNER Physik Department, Technische Universität München James-Franck-Str., D-85748 Garching/München, Germany E-mail: lindner@ph.tum.de Neutrino

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1311.xxxxx The 3 rd KIAS workshop on Particle physics and Cosmology 1 The SM as an effective theory Several theoretical

More information

Overview of mass hierarchy, CP violation and leptogenesis.

Overview of mass hierarchy, CP violation and leptogenesis. Overview of mass hierarchy, CP violation and leptogenesis. (Theory and Phenomenology) Walter Winter DESY International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN 2016) 3-5 November

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Neutrino Mixing and Cosmological Constant above GUT Scale

Neutrino Mixing and Cosmological Constant above GUT Scale EJTP 6, No. 22 (2009) 197 202 Electronic Journal of Theoretical Physics Neutrino Mixing and Cosmological Constant above GUT Scale Bipin Singh Koranga Department of Physics, Kirori Mal college (University

More information

Introduction Variety of experimental ndings strongly suggest that possibly [] all the neutrinos are massive. But these masses have tobemuch smaller th

Introduction Variety of experimental ndings strongly suggest that possibly [] all the neutrinos are massive. But these masses have tobemuch smaller th Pseudo Dirac Neutrinos in Seesaw model Gautam Dutta and Anjan S. Joshipura Theory Group, Physical Research Laboratory Navrangpura, Ahmedabad 8 9, India Abstract Specic class of textures for the Dirac and

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

Theoretical Particle Physics Yonsei Univ.

Theoretical Particle Physics Yonsei Univ. Yang-Hwan Ahn (KIAS) Appear to arxiv : 1409.xxxxx sooooon Theoretical Particle Physics group @ Yonsei Univ. Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed

More information

New Jarlskog Determinant from Physics above the GUT Scale

New Jarlskog Determinant from Physics above the GUT Scale EJTP 6, No. 2 (29) 229 234 Electronic Journal of Theoretical Physics New Jarlskog Determinant from Physics above the GUT Scale Bipin Singh Koranga and S. Uma Sankar Department of Physics, Indian Institute

More information

Leptonic CP violation and neutrino mass models

Leptonic CP violation and neutrino mass models Leptonic CP violation and neutrino mass models Gustavo C Branco and M N Rebelo Departamento de Física and Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico, Av. Rovisco Pais, 1049-001

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Neutrino Oscillation Probability from Tri-Bimaximality due to Planck Scale Effects

Neutrino Oscillation Probability from Tri-Bimaximality due to Planck Scale Effects EJTP 6, No. 21 (2009) 149 156 Electronic Journal of Theoretical Physics Neutrino Oscillation Probability from Tri-Bimaximality due to Planck Scale Effects Bipin Singh Koranga Department of Physics, Kirori

More information

Leptogenesis with Composite Neutrinos

Leptogenesis with Composite Neutrinos Leptogenesis with Composite Neutrinos Based on arxiv:0811.0871 In collaboration with Yuval Grossman Cornell University Friday Lunch Talk Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite

More information

NEUTRINO COMPLEMENTARITY,SOME RECENT RESULTS. E. Torrente-Lujan. Dept. Fisica, Murcia & Milan University.

NEUTRINO COMPLEMENTARITY,SOME RECENT RESULTS. E. Torrente-Lujan. Dept. Fisica, Murcia & Milan University. NEUTRINO COMPLEMENTARITY,SOME RECENT RESULTS E. Torrente-Lujan. Dept. Fisica, Murcia & Milan University. NEUTRINO COMPLEMENTARITY,SOME RECENT RESULTS E. Torrente-Lujan. Dept. Fisica, Murcia & Milan University.

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

Leptogenesis and the Flavour Structure of the Seesaw

Leptogenesis and the Flavour Structure of the Seesaw Leptogenesis and the Flavour Structure of the Seesaw based on: hep-ph/0609038 (JCAP 0611 (2006) 011) with S.F. King, A. Riotto hep-ph/0611232 (JCAP 0702 (2007) 024) with A.M. Teixeira arxiv:0704.1591 (Phys.

More information

No-go for exactly degenerate neutrinos at high scale? Abstract

No-go for exactly degenerate neutrinos at high scale? Abstract hep-ph/0010079 CERN-TH/2000-301 No-go for exactly degenerate neutrinos at high scale? Amol S. Dighe 1 and Anjan S. Joshipura 1,2 1 Theory Division, CERN, CH-1211 Geneva 23, Switzerland. 2 Theoretical Physics

More information

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Lecture 3 A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy 25 Spring School on Particles and Fields, National Taiwan University, Taipei April 5-8, 2012 E, GeV contours of constant

More information

Quarks and Leptons. Subhaditya Bhattacharya, Ernest Ma, Alexander Natale, and Daniel Wegman

Quarks and Leptons. Subhaditya Bhattacharya, Ernest Ma, Alexander Natale, and Daniel Wegman UCRHEP-T54 October 01 Heptagonic Symmetry for arxiv:110.6936v1 [hep-ph] 5 Oct 01 Quarks and Leptons Subhaditya Bhattacharya, Ernest Ma, Alexander Natale, and Daniel Wegman Department of Physics and Astronomy,

More information

symmetries and unification

symmetries and unification Right unitarity triangles and tribimaximal mixing from discrete symmetries and unification Martin Spinrath FLASY 2011-12th July Based on collaborations with S. Antusch, S.F. King, C. Luhn and M. Malinsky:

More information

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter Alexander Natale Korea Institute for Advanced Study Nucl. Phys. B914 201-219 (2017), arxiv:1608.06999. High1 2017 February 9th, 2017 1/30

More information

Gauged Flavor Symmetries

Gauged Flavor Symmetries Gauged Flavor Symmetries NOW 2012 Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 15.9.2012 based on J.H., Werner Rodejohann, PRD 84 (2011), PRD 85 (2012); Takeshi Araki, J.H., Jisuke Kubo,

More information

Solar and atmospheric neutrino mass splitting with SMASH model

Solar and atmospheric neutrino mass splitting with SMASH model Solar and atmospheric neutrino mass splitting with SMASH model C.R. Das 1, Katri Huitu, Timo Kärkkäinen 3 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie

More information

Neutrino masses, dark matter and baryon asymmetry of the universe

Neutrino masses, dark matter and baryon asymmetry of the universe Neutrino masses, dark matter and baryon asymmetry of the universe Takehiko Asaka (Tohoku University) @ The 4 th COE Symposium The 21 st Century Center-of-Excellence Program Sendai International Center,

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking Shao-Feng Ge (gesf02@mails.thu.edu.cn) Center for High Energy Physics, Tsinghua Univeristy 200-4-8 Collaborators: Hong-Jian

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Number of light neutrinos 3? Masses + Mixing Angles

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London Nuclear Particle Astrophysics Seminar Yale 03/06/2014 Neutrinos Oscillations Absolute Mass Neutrinoless Double Beta Decay Neutrinos in Cosmology

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking Tsinghua University 2009-1-13 Collaborators: Shao-Feng Ge & Fu-Rong Yin Based on arxiv:1001.0940 (and works in preparation)

More information

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter UCRHEP-T593 Aug 018 arxiv:1808.05417v [hep-ph] 5 Jan 019 Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter Ernest Ma Physics and Astronomy Department, University of California, Riverside,

More information

Measurement of CP Violation in B s J/ΨΦ Decay at CDF

Measurement of CP Violation in B s J/ΨΦ Decay at CDF Measurement of CP Violation in B s J/ΨΦ Decay at CDF Gavril Giurgiu Johns Hopkins University University of Virginia Seminar April 4, 2012 Introduction - CP violation means that the laws of nature are not

More information

arxiv: v2 [hep-ph] 2 Mar 2018

arxiv: v2 [hep-ph] 2 Mar 2018 CP Violation in the Lepton Sector and Implications for Leptogenesis arxiv:1711.02866v2 [hep-ph] 2 Mar 2018 C. Hagedorn, R. N. Mohapatra, E. Molinaro 1, C. C. Nishi, S. T. Petcov 2 CP 3 -Origins, University

More information

Neutrinos: status, models, string theory expectations

Neutrinos: status, models, string theory expectations Neutrinos: status, models, string theory expectations Introduction Neutrino preliminaries and status Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook

More information

Nonzero θ 13 and Models for Neutrino Masses and Mixing

Nonzero θ 13 and Models for Neutrino Masses and Mixing Nonzero θ 13 and Models for Neutrino Masses and Mixing Xiao-Gang He NCTS&NTHU&SJTU&NTU θ 13 has been measured T. Schwetz Neutrinos masses, m1, m2, m3. Forero et al, arxiv:1205.4018 Fogli et al, arxiv:1205.3204

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Lifting degenerate neutrino masses, threshold corrections and maximal mixing

Lifting degenerate neutrino masses, threshold corrections and maximal mixing Lifting degenerate neutrino masses, threshold corrections and maximal mixing Young Scientists Workshop Waldhotel Zollernblick, Freudenstadt (Black Forest) Wolfgang Gregor Hollik Oct 31, 2014 INSTITUT FOR

More information

Heavy Sterile Neutrinos at CEPC

Heavy Sterile Neutrinos at CEPC Wei Liao East China University of Science and Technology Based on arxiv:17.09266, in collaboration with X.H. Wu INPAC SJTU, Nov. 17 2017 Outline Review of neutrino mass low energy seesaw model constraint

More information

Modular Symmetry in Lepton Flavors

Modular Symmetry in Lepton Flavors Modular Symmetry in Lepton Flavors Morimitsu Tanimoto Niigata University September 4, 2018, @ Corfu, Greece Corfu Summer Institute, Workshop on Standard Model and Beyond Collaborated with T. Kobayashi,

More information

2 Induced LFV in the SUSY see-saw framework

2 Induced LFV in the SUSY see-saw framework LFV Constraints on the Majorana Mass Scale in msugra Frank Deppisch, Heinrich Päs, Andreas Redelbach, Reinhold Rückl Institut für Theoretische Physik und Astrophysik Universität Würzburg D-97074 Würzburg,

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis David McKeen and AEN, arxiv:1512.05359 Akshay Ghalsasi, David McKeen, AEN., arxiv:1508.05392 (Thursday: Kyle Aitken, David

More information

Pati-Salam GUT-Flavour Models with Three Higgs Generations

Pati-Salam GUT-Flavour Models with Three Higgs Generations Pati-Salam GUT-Flavour Models with Three Higgs Generations Florian Hartmann in collaboration with Wolfgang Kilian and Karsten Schnitter based on: JHEP 1405 (2014) 064 and arxiv:1405.1901 Universität Siegen

More information

Automatic CP Invariance and Flavor Symmetry

Automatic CP Invariance and Flavor Symmetry PRL-TH-95/21 Automatic CP Invariance and Flavor Symmetry arxiv:hep-ph/9602228v1 6 Feb 1996 Gautam Dutta and Anjan S. Joshipura Theory Group, Physical Research Laboratory Navrangpura, Ahmedabad 380 009,

More information

Leptogenesis via varying Weinberg operator

Leptogenesis via varying Weinberg operator Silvia Pascoli IPPP, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom E-mail: silvia.pascoli@durham.ac.uk Jessica Turner Theoretical Physics Department, Fermi National Accelerator

More information

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Neutrinos and Fundamental Symmetries: L, CP, and CP T Neutrinos and Fundamental Symmetries: L, CP, and CP T Outstanding issues Lepton number (L) CP violation CP T violation Outstanding issues in neutrino intrinsic properties Scale of underlying physics? (string,

More information

DIRAC vs MAJORANA? Neutrinos are the only electrically neutral fermions. ff (quarks, charged leptons) If a fermion is charged, ff

DIRAC vs MAJORANA? Neutrinos are the only electrically neutral fermions. ff (quarks, charged leptons) If a fermion is charged, ff DIRAC vs MAJORANA? Neutrinos are the only electrically neutral fermions If a fermion is charged, ff ff (quarks, charged leptons) Majorana Neutrino: ff = ff, cccccccccccc cccccccccc llllllllllll nnnnnnnnnnnn.

More information

Problems for SM/Higgs (I)

Problems for SM/Higgs (I) Problems for SM/Higgs (I) 1 Draw all possible Feynman diagrams (at the lowest level in perturbation theory) for the processes e + e µ + µ, ν e ν e, γγ, ZZ, W + W. Likewise, draw all possible Feynman diagrams

More information

arxiv:hep-ph/ v1 5 Oct 2005

arxiv:hep-ph/ v1 5 Oct 2005 Preprint typeset in JHEP style - HYPER VERSION RITS-PP-003 arxiv:hep-ph/0510054v1 5 Oct 2005 Constraint on the heavy sterile neutrino mixing angles in the SO10) model with double see-saw mechanism Takeshi

More information

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter? Baryo- and leptogenesis Purpose : explain the current excess of matter/antimatter Is there an excess of matter? Baryons: excess directly observed; Antibaryons seen in cosmic rays are compatible with secondary

More information

S 3 Symmetry as the Origin of CKM Matrix

S 3 Symmetry as the Origin of CKM Matrix S 3 Symmetry as the Origin of CKM Matrix Ujjal Kumar Dey Physical Research Laboratory October 25, 2015 Based on: PRD 89, 095025 and arxiv:1507.06509 Collaborators: D. Das and P. B. Pal 1 / 25 Outline 1

More information

SUSY models of neutrino masses and mixings: the left-right connection

SUSY models of neutrino masses and mixings: the left-right connection SUSY models of neutrino masses and mixings: the left-right connection GK Workshop Bad Liebenzell Wolfgang Gregor Hollik October 10, 2012 INSTITUT FÜR THEORETISCHE TEILCHENPHYSIK KIT CAMPUS SÜD KIT University

More information

Light Higgs Production in Two Higgs Doublets Models type III

Light Higgs Production in Two Higgs Doublets Models type III Light Higgs Production in Two Higgs Doublets Models type III Camilo Andrés Jiménez-Cruz (M.Sc. Student), J.-Alexis Rodríguez López, Roberto Martinez Universidad Nacional de Colombia December 5, 2007 Abstract

More information

SM predicts massless neutrinos

SM predicts massless neutrinos MASSIVE NEUTRINOS SM predicts massless neutrinos What is the motivation for considering neutrino masses? Is the question of the existence of neutrino masses an isolated one, or is connected to other outstanding

More information

Right-handed SneutrinoCosmology and Hadron Collider Signature

Right-handed SneutrinoCosmology and Hadron Collider Signature Right-handed Sneutrino and Hadron Northwestern University with Andre de Gouvea ( Northwestern) & Werner Porod ( Valencia)... June 15, 2006 Susy 06, UC Irvine Right-handed Sneutrino and Hadron Collider

More information

CP Violation Predictions from Flavour Symmetries

CP Violation Predictions from Flavour Symmetries CP Violation Predictions from Flavour Symmetries Arsenii V. Titov in collaboration with Ivan Girardi and Serguey T. Petcov SISSA and INFN, Trieste, Italy Neutrino Oscillation Workshop 016 September 6,

More information

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton-flavor violation in tau-lepton decay and the related topics Lepton-flavor violation in tau-lepton decay and the related topics Junji Hisano Institute for Cosmic Ray Research Univ. of Tokyo The Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006

More information

Neutrinos as a Unique Probe: cm

Neutrinos as a Unique Probe: cm Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties of quarks, QCD Weak decays (n pe ν e, µ e ν µ ν e ): Fermi theory, parity violation, quark mixing

More information

Neutrino Mass Models: a road map

Neutrino Mass Models: a road map Neutrino Mass Models: a road map S.F.King School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK E-mail: king@soton.ac.uk Abstract. In this talk we survey some of the recent

More information

Parity violation. no left-handed ν$ are produced

Parity violation. no left-handed ν$ are produced Parity violation Wu experiment: b decay of polarized nuclei of Cobalt: Co (spin 5) decays to Ni (spin 4), electron and anti-neutrino (spin ½) Parity changes the helicity (H). Ø P-conservation assumes a

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Leptogenesis with type II see-saw in SO(10)

Leptogenesis with type II see-saw in SO(10) Leptogenesis wit type II see-saw in SO(10) Andrea Romanino SISSA/ISAS Frigerio Hosteins Lavignac R, arxiv:0804.0801 Te baryon asymmetry η B n B n B n γ = n B n γ Generated dynamically if = (6.15 ± 0.5)

More information

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008 Leptogenesis Neutrino 08 Christchurch, New Zealand 30/5/2008 Yossi Nir (Weizmann Institute of Science) Sacha Davidson, Enrico Nardi, YN Physics Reports, in press [arxiv:0802.2962] E. Roulet, G. Engelhard,

More information

Neutrino mass spectrum from the seesaw extension

Neutrino mass spectrum from the seesaw extension Neutrino mass spectrum from the seesaw extension Darius Jurciukonis, homas Gajdosik, Andrius Juodagalvis and omas Sabonis arxiv:11.691v1 [hep-ph] 31 Dec 01 Vilnius University, Universiteto 3, -01513, Vilnius,

More information

Aspetti della fisica oltre il Modello Standard all LHC

Aspetti della fisica oltre il Modello Standard all LHC Aspetti della fisica oltre il Modello Standard all LHC (con enfasi sulla verificabilità sperimentale in gruppo I e II) Andrea Romanino SISSA e INFN TS Giornata di Seminari, INFN TS, 07.07.09 The Standard

More information

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses Neutrino theory of everything? dark matter, baryogenesis and neutrino masses 25 th International Workshop on Weak Interactions and Neutrinos (WIN2015) June 8-13, 2015, MPIK Heidelberg, Germany @Heidelberg

More information