EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH


 Susanna Gregory
 1 years ago
 Views:
Transcription
1 EXPERIMENT NO. 4 CALIBRATION OF AN ORIFICE PLATE FLOWMETER MECHANICAL ENGINEERING DEPARTMENT KING SAUD UNIVERSITY RIYADH Submitted By: ABDULLAH IBN ABDULRAHMAN ID: GROUP A EXPERIMENT PERFORMED ON 9/01/013 1
2 1 Introduction In this experiment an orifice plate flowmeter is calibrated and the calculated coefficient of discharge, C d, is compared to the given value in the lab report as well as other published data. The orifice plate flowmeter provides a simple and low cost method for measuring the flow rate in a pipe using the pressure drop measurement across the plate. The orifice plate is a circular plate with a sharp square edge hole in the center inserted in a pipe. When a fluid is allowed to flow inside the pipe, the orifice plate obstructs the flow which results in fluid pressure loss. A schematic diagram of an orifice plate installed in a pipe with flow from left to right is shown in figure 1. The pressure loss is dependent on the orifice diameter, pipe diameter and the flow rate. Hence the flow rate is less than the theoretical flow rate which would occur if there were no losses. Figure 1: Orifice plate schematic For ideal flow (no viscous effects) the flow rate can be calculated from Bernoulli s equation, as follows, [3], p 1 ρ + V 1 + gz 1 = p ρ + V + gz (1) Where, p, ρ, V, z and g are the fluid pressure, density, velocity, elevation and acceleration due to gravity, respectively. The subscripts 1 and denote the conditions upstream and downstream of the plate, respectively, as shown in figure Since the flow is incompressible we can write the flow velocity upstream of the orifice, V 1, in terms of the throat velocity, V, using the continuity equation given in equation, [3],
3 Figure : Orifice plate stations A 1 V 1 = A V () V 1 = A V = d V = β V (3) A 1 d 1 Where, β = d d 1 and d 1, d are the pipe and throat diameters, respectively. Substituting equation 3 into equation 1 assuming the flow is horizontal (z 1 = z = 0), we get, V V 1 = [ 1 ( ) ] 4 d d 1 V = (p 1 p ) ρ [ 1 β 4] V = (p 1 p ) ρ V = 1 1 β 4 (p 1 p ) ρ (4) (5) (6) Since the flow rate, Q, is given by Q = AV, where A and V are the crosssection area and average speed at any section, respectively, then we write the flow rate across the orifice plate as follows, Q = A V = A (p 1 p ) 1 β 4 ρ Equation 7, gives an expression for the maximum theoretical volume flow rate assuming ideal flow. However, since real flows are viscous, hence, the maximum flow rate will be less than the ideal value due to viscous losses. This is taken into account by multiplying the ideal Q by a factor, C d, this factor is the coefficient of discharge. Hence, we can define the coefficient of discharge as the ratio of actual to ideal volume flow rate. Q Actual = C d Q Ideal = C da (p 1 p ) 1 β 4 ρ The coefficient of discharge depends on the Reynolds number based on the pipe s diameter as well as the orifice diameter to pipe diameter ratio, β. The main objective of this experiment is to determine this coefficient. In the next section, the apparatus and techniques used to determine C d are discussed. In section 3 the results (7) (8) 3
4 and discussion are presented, then finally conclusions are drawn in section 4.1 Apparatus and Techniques Apparatus The orifice plate used is part of SOLTEQ flowmeter measurement apparatus, model FM 101, shown in Figure 3. Figure 3: SOLTEQ flowmeter measurement apparatus, FM101. The SOLTEQ FM 101 flow meter apparatus consists of three different types of volume flowmeters. It contains a Venturi type flowmeter, an orifice plate flowmeter as well as a Rotameter. All flowmeters are connected in series. The apparatus also includes a flow control valve that can be used to adjust the volume flow rate. Water is allowed into the apparatus through the water inlet and is dumped through the water outlet as shown in Figure 3. The apparatus is connected to a TQ H10 Volumetric Bench, which contains a closed circuit water pump. The water exiting the FM 101 module is dumped in a collection tank and is pumped back into the water inlet. The SOLTEQ FM 101 also contains a multitube manometer to measure the difference in pressure across the Venturi and orifice plate flowmeters. The manometer has a range of 450 mm and the graduation is in 1 mm increments. The orifice plate flowmeter, shown in Figure 4(a), is fitted with two pressure taps located one tube diameter upstream of the orifice plate and half a tube diameter downstream the plate. The difference in these pressures is the required p in equation 8. The tube diameter, D, is equal to 6 mm while the orificemeter throat diameter, DT, is equal to 16 mm. Therefore the ratio of diameters, β, is β = DDT =
5 (a) Orifice plate flowmeter. (b) Rotameter. Figure 4: SOLTEQ FM101. Procedures and Techniques In this experiment, the SOLTEQ FM101 was connected to the TQ H10 Volumetric Bench. The flowrate was set at three different values 5, 10 and 15 L/min. This was done by adjusting the flow control valve. The volume flowrate value was read off the Rotameter. Before any measurements were taken, the flow was allowed to reach a steady condition such that there are no air bubbles in the system and all pressure readings were stable. Once the pressure readings in the manometer were stable and all air bubbles were out, the pressure measurements were recorded for each volume flowrate. Each time the valve position changed, the flow was allowed to stabilize before recording the new pressure readings. The measurements were repeated for the 10 L/min flowrate case for uncertainty estimates purposes. It is worth noting that reading the water height in the manometer was difficult due to the fact that the water used was clear and the background was white. 3 Results and Discussions In this section the results will be presented and discussed. The atmospheric pressure and temperature during the experiment were measured to be 940 ± 1.5 mbar and ± 1 C, respectively. Since the working fluid is water, the water temperature was measured to be 0 ± 1 C. The water density, ρ, and viscosity, µ, at this temperature were taken as 998. kg/m3 and 10 3 P a s, respectively, []. The pressure measurements upstream, p1, and downstream, p, of the orifice plate are shown in Table 1. Also shown in Table 1, are the average velocity U and the Reynolds 5
6 number, Re U defined as follows, U = Q A = 4Q πd (9) Re U = ρud µ (10) Where, ρ and µ are the water density and viscosity, respectively. Finally, using equation 8 Table 1: Pressure Measurement Q [L/min] p 1 [mm H O] p [mm H O] U [m/s] Re U C d we can write the coefficient of discharge, C d, as follows, C d = Q A ρ (1 β 4 ) (p 1 p ) (11) Equation 11 is used to calculate the values of C d shown in Table 1. The measured discharge coefficient values are close to the supplied value in the lab manual of While recording the pressure measurements it was noticed that there are some fluctuations in the pressure values. This might be due to the fact that the pipe length between the Venturimeter,and the orifice flowmeter is too short, less than three pipe diameters. This was amplified when the flow rate was set to 5L/min, which corresponds to a Re = This value is in the transition region, hence the flow is not fully turbulent. To get a better reading there should be longer pipe connecting the venturimeter and the orifice plate or the Reynolds number should be increased. In the next section the uncertainty in measured quantities is presented. 3.1 Uncertainty Analysis Uncertainty analysis is performed based on two readings of the pressure difference at 10 L/min flowrate. The values are listed in Table. Table : Pressure Measurement for uncertainty estimates at Q = 10 L/min Run 1 p S p p 1 [mm H O] p [mm H O] Where, p and S p are the mean and standard deviation of the measured pressures, respectively. The uncertainty in the measured pressure is given by U p = t p S α/,ν n, Where t is the tdistribution and α = 0.05 is the level of significance, and ν = n 1, where n = is the number of observations. Hence, the uncertainties in the upstream and downstream pressures 6
7 are given as follows, S p1 U p1 = t 0.05,1 n = = 6.35 mm H O (1) S p U p = t 0.05,1 n = = 1.71 mm H O (13) Using, equation 11 we can estimate the uncertainty in C d, U Cd, as follows, [4], U Cd = ( Cd Q U Q ) ( Cd + p 1 U p1 (14) ) ( ) Cd + U p (15) p The uncertianty in the measured flowrate is taken to be 4% F ull Scale, such that δq = 0.88 L/min. Using equation 11 and the calculated pressure and flowrate uncertainties we can evaluate the uncertainty in C d as U Cd = ± Since in general the discharge coefficient is a function of the Reynolds number, Re, a plot of the measured C d versus the Reynolds number is shown in Figure 5. Also shown in the figure is a curve fit for experimental data reported in the literature versus Re as given by equation 16, [1]. The length L 1 and L are the pressure taps locations upstream and downstream, respectively. In this case, L 1 = d 1 and L = d. Figure 5: Discharge coefficient versus Reynolds number. 7
8 C d = β β β.5 ( ( ) [ L1 β 4 ] D (1 β ) Re ( L D ) 0.75 ) β 3 (16) The measured coefficient of discharge is C d = 0.67 ± while the value supplied in the lab manual is This is about 6% difference. However, the measured values are within 4.5% from the empirical relation given by equation 16 for Q = 10, 15 L/min while the difference is 8% for the case Q = 5 L/min. This is probably due to the low Reynolds number which is in the transition region. To get higher accuracy we need to make more measurements with more accurate pressure transducers. 4 Conclusions In this work the discharge coefficient of an orifice plate flowmeter was estimated at three values of flow rate, Q = 5, 10 and 15 L/min. The measured values were compared with the values obtained from the lab manual and from a curve fit of empirical data. The following conclusions are made, The mean coefficient of discharge was estimated to be C d = 0.67 ± The difference between current measured C d and values in the literature are within experimental uncertainty Main source of uncertainty is the unsteadiness in pressure measurement. This is due to the fact that the Reynolds number is in the transition region for low values of flow rates The variation in C d versus the Reynolds number follows the curve fit of empirical data in the literature The results can be improved if a more accurate manometer is used as well as more data points are taken Using a very light dye in the water would improve will eliminate human reading errors References [1] Emperical fit for c d : [] Water properties: [3] Robert W. Fox Alan T. McDonald Philip J. Pritchard. Fluid Mechanics. John Wiley & Sons, eighth edition, 01. [4] Thomas G. Beckwith Roy D. Marangoni John H. Lienhard V. Mechanical Measurements. Addison Wesley, fifth edition,
Compressible Gas Flow
Compressible Gas Flow by Elizabeth Adolph Submitted to Dr. C. Grant Willson CHE53M Department of Chemical Engineering The University of Texas at Austin Fall 008 Compressible Gas Flow Abstract In this lab,
More informationCHAPTER THREE FLUID MECHANICS
CHAPTER THREE FLUID MECHANICS 3.1. Measurement of Pressure Drop for Flow through Different Geometries 3.. Determination of Operating Characteristics of a Centrifugal Pump 3.3. Energy Losses in Pipes under
More informationEXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER
EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER 1.1 AIM: To determine the coefficient of discharge of the orifice meter 1.2 EQUIPMENTS REQUIRED: Orifice meter test rig, Stopwatch 1.3 PREPARATION 1.3.1
More informationMeasurements using Bernoulli s equation
An Internet Book on Fluid Dynamics Measurements using Bernoulli s equation Many fluid measurement devices and techniques are based on Bernoulli s equation and we list them here with analysis and discussion.
More informationMass of fluid leaving per unit time
5 ENERGY EQUATION OF FLUID MOTION 5.1 Eulerian Approach & Control Volume In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics.
More informationLECTURE 6 ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS
LECTURE 6 ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a
More informationLab Section Date. ME4751 Air Flow Rate Measurement
Name Lab Section Date ME4751 Air Flow Rate Measurement Objective The objective of this experiment is to determine the volumetric flow rate of air flowing through a pipe using a Pitotstatic tube and a
More informationLecture23. Flowmeter Design.
Lecture23 Flowmeter Design. Contents of lecture Design of flowmeter Principles of flow measurement; i) Venturi and ii) Orifice meter and nozzle Relationship between flow rate and pressure drop Relation
More informationDETERMINATION OF DISCHARGE AND HEAD LOSS USING A FLOWMEASURING APPARATUS
DETERMINATION OF DISCHARGE AND HEAD LOSS USING A FLOWMEASURING APPARATUS 1. INTRODUCTION Through use of the FlowMeasuring Apparatus, this experiment is designed to accustom students to typical methods
More informationExperiment No.4: Flow through Venturi meter. Background and Theory
Experiment No.4: Flow through Venturi meter Background and Theory Introduction Flow meters are used in the industry to measure the volumetric flow rate of fluids. Differential pressure type flow meters
More informationLaboratory work No 2: Calibration of Orifice Flow Meter
Laboratory work No : Calibration of Orifice Flow Meter 1. Objective Calibrate the orifice flow meter and draw the graphs p = f 1 (Q) and C d = f (Re ).. Necessary equipment 1. Orifice flow meter. Measuring
More informationLecture 13 Flow Measurement in Pipes. I. Introduction
Lecture 13 Flow Measurement in Pipes I. Introduction There are a wide variety of methods for measuring discharge and velocity in pipes, or closed conduits Many of these methods can provide very accurate
More informationFlow Measurement in Pipes and Ducts COURSE CONTENT
Flow Measurement in Pipes and Ducts Dr. Harlan H. Bengtson, P.E. COURSE CONTENT 1. Introduction This course is about measurement of the flow rate of a fluid flowing under pressure in a closed conduit.
More informationFLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1
FLUID MECHANICS D203 SAE SOLUTIONS TUTORIAL 2 APPLICATIONS OF BERNOULLI SELF ASSESSMENT EXERCISE 1 1. A pipe 100 mm bore diameter carries oil of density 900 kg/m3 at a rate of 4 kg/s. The pipe reduces
More informationCalibration of Orifice Flow Meter and Venturi Flow Meter
Calibration of Orifice Flow Meter and Venturi Flow Meter D. Till Abstract Orifice and venturi flow meters decrease the pressure of a fluid b increasing its velocit as it flows through them. This is done
More informationMAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, FLUID MECHANICS LABORATORY MANUAL
MAHATMA GANDHI MISSION S JAWAHARLAL NEHRU ENGINEERING COLLEGE, AURANGABAD. (M.S.) DEPARTMENT OF CIVIL ENGINEERING FLUID MECHANICS LABORATORY MANUAL Prepared By Mr. L. K. Kokate Lab Incharge Approved By
More informationCHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD
CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.
More informationME 4600:483 Lab Notes Revised 11/16/2015. Flow Measurement
Table of Contents Flow Measurement Flow Measurement... 1 I. Objective... 1 II. Apparatus... 1 III. Principles and Background... 1 PitotStatic Tubes... 2 Orifice Plates and Unrecoverable Losses... 4 Flow
More informationABSTRACT I. INTRODUCTION
2016 IJSRSET Volume 2 Issue 4 Print ISSN : 23951990 Online ISSN : 23944099 Themed Section: Engineering and Technology Analysis of Compressible Effect in the Flow Metering By Orifice Plate Using Prasanna
More informationThe Mechatronics Design for Measuring Fluid Friction Losses in Pipe Flows Rıza Gurbuz
Solid State Phenomena Vol. 113 (2006) pp 603608 Online available since 2006/Jun/15 at www.scientific.net (2006) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.113.603 The Mechatronics
More informationvector H. If O is the point about which moments are desired, the angular moment about O is given:
The angular momentum A control volume analysis can be applied to the angular momentum, by letting B equal to angularmomentum vector H. If O is the point about which moments are desired, the angular moment
More informationFlow Measurement in Pipes and Ducts
Flow Measurement in Pipes and Ducts Course No: M04040 Credit: 4 PDH Harlan H. Bengtson, Ph.D., P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 3225800
More informationChapter 3 Bernoulli Equation
1 Bernoulli Equation 3.1 Flow Patterns: Streamlines, Pathlines, Streaklines 1) A streamline, is a line that is everywhere tangent to the velocity vector at a given instant. Examples of streamlines around
More informationPhysics 3 Summer 1990 Lab 7  Hydrodynamics
Physics 3 Summer 1990 Lab 7  Hydrodynamics Theory Consider an ideal liquid, one which is incompressible and which has no internal friction, flowing through pipe of varying cross section as shown in figure
More informationPredictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD Method
International Journal of Engineering and Technical Research (IJETR) ISSN: 23210869, Volume3, Issue5, May 2015 Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical
More informationInstruction Manual. Equipment for Engineering Education
Equipment for Engineering Education Instruction Manual HM15007 Bernoulli s Principle Demonstrator GUNT Gerätebau GmbH PO Box 1125 D22881 Barsbüttel Germany Phone (040) 6708540 Fax (040) 67085442 Instruction
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationVisualization of flow pattern over or around immersed objects in open channel flow.
EXPERIMENT SEVEN: FLOW VISUALIZATION AND ANALYSIS I OBJECTIVE OF THE EXPERIMENT: Visualization of flow pattern over or around immersed objects in open channel flow. II THEORY AND EQUATION: Open channel:
More informationWater Circuit Lab. The pressure drop along a straight pipe segment can be calculated using the following set of equations:
Water Circuit Lab When a fluid flows in a conduit, there is friction between the flowing fluid and the pipe walls. The result of this friction is a net loss of energy in the flowing fluid. The fluid pressure
More informationOrifice and Venturi Pipe Flow Meters
Orifice and Venturi Pipe Flow Meters by Harlan H. Bengtson, PhD, P.E. 1. Introduction Your Course Title Here The flow rate of a fluid flowing in a pipe under pressure is measured for a variety of applications,
More informationBenha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016
Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 01 May 4/ 016 Second year Mech. Time :180 min. Examiner:Dr.Mohamed Elsharnoby Attempt
More informationGiven Find Water Properties
Venturi Example Given: A venturi is to be used to measure a 50 gpm flow of 70 F water in a 4in ID pipe. Find: Select a throat diameter that provides Re d > 00,000 in the throat, and determine what differential
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More information57:020 Mechanics of Fluids and Transfer Processes CONSERVATION OF MASS, LINEAR MOMENTUM, AND ENERGY IN A SLUICE GATE FLOW. dt dt. d ( momentum.
57: Mechani of Fluids and Transfer Processes CONSERVATION OF MASS, LINEAR MOMENTUM, AND ENERGY IN A SLUICE GATE FLOW Purpose To measure the total piezometric pressure at various locations along a vertical
More informationChapter (3) Water Flow in Pipes
Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study
More informationExperimental Study on Port to Channel Flow Distribution of Plate Heat Exchangers
Proceedings of Fifth International Conference on Enhanced, Compact and UltraCompact Heat Exchangers: Science, Engineering and Technology, Eds. R.K. Shah, M. Ishizuka, T.M. Rudy, and V.V. Wadekar, Engineering
More information53:071 Principles of Hydraulics Laboratory Experiment #3 ANALYSIS OF OPENCHANNEL FLOW TRANSITIONS USING THE SPECIFIC ENERGY DIAGRAM
53:071 Principles of Hydraulics Laboratory Experiment #3 ANALYSIS OF OPENCHANNEL FLOW TRANSITIONS USING THE SPECIFIC ENERGY DIAGRAM Principle Adaptation of the Bernoulli equation to openchannel flows
More informationEstimation of Flow Meter Losses
1 Estimation of Flow Meter Losses T. Littleton Abstract. In this article, experimental data concerning flow rates, discharge coefficients, pressure losses, and energy losses of water flowing through flow
More informationFLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560
FLOW MEASUREMENT INC 102 Fundamental of Instrumentation and Process Control 2/2560 TABLE OF CONTENTS A. INTRODUCTION B. LOCAL FLOW MEASUREMENT B.1 Particle Image Velocimetry (PIV) B.2 Laser doppler anemometry
More informationVolume and Mass Flow Rate Measurement Author: John M. Cimbala, Penn State University Latest revision: 07 December 2007
Volume and Mass Flow Rate Measurement Author: John M. Cimbala, Penn State University Latest revision: 07 ecember 2007 Introduction and notation In many engineering applications, either mass flow rate or
More informationThe Expansibility Factor Equations in ISO and ISO : Do They Deliver What They Promise?
The Expansibility Factor Equations in ISO 5672 and ISO 5674: Do They Deliver What They Promise? Michael ReaderHarris, NEL INTRODUCTION The expansibility factor equations in ISO 5672:2003 [] and ISO
More informationTeacher s Signature. S. No. Experiment marks. 3 To determine the coefficient of discharge of Notch (V and Rectangular types)
S. No. Index Name of experiment Date of performance 1. To determine the coefficient of impact for vanes. 2 To determine coefficient of discharge of an orificemeter. 3 To determine the coefficient of discharge
More informationChapter 8: Flow in Pipes
Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks
More informationIf a stream of uniform velocity flows into a blunt body, the stream lines take a pattern similar to this: Streamlines around a blunt body
Venturimeter & Orificemeter ELEMENTARY HYDRAULICS National Certificate in Technology (Civil Engineering) Chapter 5 Applications of the Bernoulli Equation The Bernoulli equation can be applied to a great
More informationLarge Rocket Engine Environments
Balanced Flow Metering and Conditioning Technology for Fluid Systems (Space Liquid Propulsion Systems) for 2006 Instrumentation Symposium for the Process Industries Anthony R. Kelley EV23 Advanced Sensors
More informationLaboratory exercise 1: Open channel flow measurement
Chapter 1 Laboratory exercise 1: Open channel flow measurement Laboratory exercise Open channel flow measurement is placed on the Faculty of Civil and Geodetic Engineering, on Department of Environmental
More informationFluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational
Fluid Mechanics 1. Which is the cheapest device for measuring flow / discharge rate. a) Venturimeter b) Pitot tube c) Orificemeter d) None of the mentioned 2. Which forces are neglected to obtain Euler
More informationNPTEL Course Developer for Fluid Mechanics DYMAMICS OF FLUID FLOW
Module 04; Lecture DYMAMICS OF FLUID FLOW Energy Equation (Conservation of Energy) In words, the conservation of energy can be stated as, Time rate of increase in stored energy of the system = Net time
More informationFluids. Fluids in Motion or Fluid Dynamics
Fluids Fluids in Motion or Fluid Dynamics Resources: Serway  Chapter 9: 9.79.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT  8: Hydrostatics, Archimedes' Principle,
More informationIn steady flow the velocity of the fluid particles at any point is constant as time passes.
Chapter 10 Fluids Fluids in Motion In steady flow the velocity of the fluid particles at any point is constant as time passes. Unsteady flow exists whenever the velocity of the fluid particles at a point
More informationGiven Find Water Properties
Venturi Example Given: A venturi is to be used to measure a 50 gpm flow of 70 F water in a 4in ID pipe. Find: Select a throat diameter that provides Re d > 00,000 in the throat, and determine what differential
More informationDEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Fluid Mechanics Lab
DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore Fluid Mechanics Lab Introduction Fluid Mechanics laboratory provides a hands on environment that is crucial for developing
More informationTheory and Fundamental of Fluid Mechanics
1 2 Lecture (1) on Fayoum University Theory and Fundamental of Fluid Mechanics By Dr. Emad M. Saad Mechanical Engineering Dept. Faculty of Engineering Fayoum University Faculty of Engineering Mechanical
More informationAnnubar Primary Element Flow Calculations
Rosemount 485 Annubar Annubar Primary Element Flow Calculations ANNUBAR PRIMARY ELEMENT FLOW EQUATIONS The Annubar primary element flow equations are all derived from the hydraulic equations which are
More informationFRICTION LOSS ALONG A PIPE
FRICTION LOSS ALONG A PIPE 1. INTRODUCTION The frictional resistance to which fluid is subjected as it flows along a pipe results in a continuous loss of energy or total head of the fluid. Fig 1 illustrates
More informationChapter 8: Flow in Pipes
81 Introduction 82 Laminar and Turbulent Flows 83 The Entrance Region 84 Laminar Flow in Pipes 85 Turbulent Flow in Pipes 86 Fully Developed Pipe Flow 87 Minor Losses 88 Piping Networks and Pump
More informationCE 321 Sample Laboratory Report Packet
CE 321 Sample Laboratory Report Packet This packet contains the following materials to help you prepare your lab reports in CE 321: An advice table with Dr. Wallace s hints regarding common strengths and
More informationFLUID MECHANICS PROF. DR. METİN GÜNER COMPILER
FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes
More informationExperimental and CFD analysis of flow through venturimeter to determine the coefficient of discharge
Experimental and CFD analysis of flow through venturimeter to determine the coefficient of discharge Nikhil Tamhankar Amar Pandhare Ashwinkumar Joglekar Vaibhav Bansode Abstract The pressure distribution
More informationSudden Expansion Exercise
Sudden Expansion Exercise EAS 361, Fall 2009 Before coming to the lab, read sections 1 through 4 of this document. Engineering of Everyday Things Gerald Recktenwald Portland State University gerry@me.pdx.edu
More informationHydraulics and hydrology
Hydraulics and hydrology  project exercises  Class 4 and 5 Pipe flow Discharge (Q) (called also as the volume flow rate) is the volume of fluid that passes through an area per unit time. The discharge
More informationCOMPARISION OF FLOW ANALYSIS THROUGH A DIFFERENT GEOMETRY OF FLOWMETERS USING FLUENT SOFTWARE
COMPARISION OF FLOW ANALYSIS THROUGH A DIFFERENT GEOMETRY OF FLOWMETERS USING FLUENT SOFTWARE T.Sridevi 1, Dhana Sekhar 2, V.Subrahmanyam 3 1 M.Tech Scholar, Department of Mechanical Engineering, Kakinada
More informationHYDRAULICS 1 (HYDRODYNAMICS) SPRING 2005
HYDRAULICS (HYDRODYNAMICS) SPRING 005 Part. FluidFlow Principles. Introduction. Definitions. Notation and fluid properties.3 Hydrostatics.4 Fluid dynamics.5 Control volumes.6 Visualising fluid flow.7
More informationEXPERIMENT II  FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS
MM 30 FLUID MECHANICS II Prof. Dr. Nuri YÜCEL Yrd. Doç. Dr. Nureddin DİNLER Arş. Gör. Dr. Salih KARAASLAN Arş. Gör. Fatih AKTAŞ EXPERIMENT II  FRICTION LOSS ALONG PIPE AND LOSSES AT PIPE FITTINGS A. Objective:
More informationConducting Flow Measurement Laboratory Test Work M. B. Kime
Vol:8, No:8, 04 Conducting Flow Measurement Laboratory Test Work M. B. Kime International Science Index, Chemical and Molecular Engineering Vol:8, No:8, 04 waset.org/publication/9999675 Abstract Mass flow
More informationObjectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation
Objectives Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation Conservation of Mass Conservation of Mass Mass, like energy, is a conserved
More information3.8 The First Law of Thermodynamics and the Energy Equation
CEE 3310 Control Volume Analysis, Sep 30, 2011 65 Review Conservation of angular momentum 1D form ( r F )ext = [ˆ ] ( r v)d + ( r v) out ṁ out ( r v) in ṁ in t CV 3.8 The First Law of Thermodynamics and
More informationMechanical Engineering Programme of Study
Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel
More informationPCBased Teaching Tools for Fluid Mechanics
PCBased Teaching Tools for Fluid Mechanics S. U. Rahman *, N. M. Tukur and I. A. Khan Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran31261, Kingdom of Saudi
More informationReynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment:
7 STEADY FLOW IN PIPES 7.1 Reynolds Number Reynolds, an engineering professor in early 1880 demonstrated two different types of flow through an experiment: Laminar flow Turbulent flow Reynolds apparatus
More informationLab 1a Wind Tunnel Testing Principles & Drag Coefficients of Golf balls
Lab 1a Wind Tunnel Testing Principles & Drag Coefficients of Golf balls OBJECTIVES  To perform air flow measurement using the wind tunnel.  To compare measured and theoretical velocities for various
More informationPipe Flow. Lecture 17
Pipe Flow Lecture 7 Pipe Flow and the Energy Equation For pipe flow, the Bernoulli equation alone is not sufficient. Friction loss along the pipe, and momentum loss through diameter changes and corners
More informationMASS, MOMENTUM, AND ENERGY EQUATIONS
MASS, MOMENTUM, AND ENERGY EQUATIONS This chapter deals with four equations commonly used in fluid mechanics: the mass, Bernoulli, Momentum and energy equations. The mass equation is an expression of the
More informationAER210 VECTOR CALCULUS and FLUID MECHANICS. Quiz 4 Duration: 70 minutes
AER210 VECTOR CALCULUS and FLUID MECHANICS Quiz 4 Duration: 70 minutes 26 November 2012 Closed Book, no aid sheets Nonprogrammable calculators allowed Instructor: Alis Ekmekci Family Name: Given Name:
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More informationLECTURE 4 FLUID FLOW & SURFACE TENSION. Lecture Instructor: Kazumi Tolich
LECTURE 4 FLUID FLOW & SURFACE TENSION Lecture Instructor: Kazumi Tolich Lecture 4 2 Reading chapter 15.6 to 15.9 Continuity equation Bernoulli s equation n Torricelli s law Viscosity Surface tension Equation
More informationSteven Burian Civil & Environmental Engineering September 25, 2013
Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session
More informationChapter (3) Water Flow in Pipes
Chapter (3) Water Flow in Pipes Water Flow in Pipes Bernoulli Equation Recall fluid mechanics course, the Bernoulli equation is: P 1 ρg + v 1 g + z 1 = P ρg + v g + z h P + h T + h L Here, we want to study
More informationChapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn
Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:
More informationChapter 7 FLOW THROUGH PIPES
Chapter 7 FLOW THROUGH PIPES 71 Friction Losses of Head in Pipes 72 Secondary Losses of Head in Pipes 73 Flow through Pipe Systems 48 71 Friction Losses of Head in Pipes: There are many types of losses
More informationSourabh V. Apte. 308 Rogers Hall
Sourabh V. Apte 308 Rogers Hall sva@engr.orst.edu 1 Topics Quick overview of Fluid properties, units Hydrostatic forces Conservation laws (mass, momentum, energy) Flow through pipes (friction loss, Moody
More informationLesson 37 Transmission Of Air In Air Conditioning Ducts
Lesson 37 Transmission Of Air In Air Conditioning Ducts Version 1 ME, IIT Kharagpur 1 The specific objectives of this chapter are to: 1. Describe an Air Handling Unit (AHU) and its functions (Section 37.1).
More informationChapter 15B  Fluids in Motion. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University
Chapter 15B  Fluids in Motion A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 007 Paul E. Tippens Fluid Motion The lower falls at Yellowstone National
More informationR09. d water surface. Prove that the depth of pressure is equal to p +.
Code No:A109210105 R09 SET1 B.Tech II Year  I Semester Examinations, December 2011 FLUID MECHANICS (CIVIL ENGINEERING) Time: 3 hours Max. Marks: 75 Answer any five questions All questions carry equal
More informationPART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG
1 PART 1B EXPERIMENTAL ENGINEERING SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) EXPERIMENT T3 (LONG) BOUNDARY LAYERS AND DRAG OBJECTIVES a) To measure the velocity
More informationFriction Factors and Drag Coefficients
Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the
More informationKeywords: Bernoulli s principle, fluid, pressure, speed, Venturi meter
LowCost Venturi Meter: Understanding Bernoulli s Equation Through A Demonstration Renan P. Limjuco 1, Fr. Francisco G. Glover, and Isagani M. Mendez 1 Abstract This study intended to concretize Bernoulli
More informationDEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M.
DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M. Sahu 1, Kishanjit Kumar Khatua and Kanhu Charan Patra 3, T. Naik 4 1, &3 Department of Civil Engineering, National Institute of technology,
More informationPressure Losses for Fluid Flow Through Abrupt Area. Contraction in Compact Heat Exchangers
Pressure Losses for Fluid Flow Through Abrupt Area Contraction in Compact Heat Exchangers Undergraduate Research Spring 004 By Bryan J. Johnson Under Direction of Rehnberg Professor of Ch.E. Bruce A. Finlayson
More informationHeat Transfer Convection
Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection
More informationDarcy's Law. Laboratory 2 HWR 531/431
Darcy's Law Laboratory HWR 531/4311 Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed in an attempt to quantify
More informationWORKBOOK FOR CHEMICAL REACTOR RELIEF SYSTEM SIZING ANNEX 10 NOMENCLATURE A crosssectional flow area of relief system (m 2 ) A actual actual crosssectional area of safety valve nozzle (m 2 ) A approx
More informationPiping Systems and Flow Analysis (Chapter 3)
Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution
More informationEFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP
Fourth International Water Technology Conference IWTC 99, Alexandria, Egypt 255 EFFECT OF BAFFLE BLOCKS ON THE PERFORMANCE OF RADIAL HYDRAULIC JUMP O. S. Rageh Irrigation & Hydraulics Dept., Faculty of
More informationHydraulics for Urban Storm Drainage
Urban Hydraulics Hydraulics for Urban Storm Drainage Learning objectives: understanding of basic concepts of fluid flow and how to analyze conduit flows, free surface flows. to analyze, hydrostatic pressure
More informationBackground Information for Use of Pitot Tube, Manometer, Hot Wires, and Hot Films
AAE 50 Notes, 9Jan04 Page 1 Background Information for Use of Pitot Tube, Manometer, Hot Wires, and Hot Films 1 Background The following is adapted from the handout in AAE333L. 1.1.1 Specific Applications:
More informationExperimental Investigation of the Fluid Dynamics of a Finned Heat Sink under Operating Conditions
Journal of Electronics Cooling and Thermal Control, 014, 4, 8695 Published Online September 014 in SciRes. http://www.scirp.org/journal/jectc http://dx.doi.org/10.436/jectc.014.43010 Experimental Investigation
More informationUniversität DuisburgEssen Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi
1 Universität DuisburgEssen 3. Semester Fakultät für Ingenieurwissenschaften WS 2012 Maschinenbau, IVG, Thermodynamik Dr. M. A. Siddiqi THERMODYNAMICS LAB (ISE) Pressure Measurement 2 2 Pressure Measurement
More informationPIPE FLOW. The Energy Equation. The first law of thermodynamics for a system is, in words = +
The Energy Equation PIPE FLOW The first law of thermodynamics for a system is, in words Time rate of increase of the total storage energy of the t Net time rate of energy addition by heat transfer into
More informationVelocity Measurement in Free Surface Flows
Velocity Measurement in Free Surface Flows Generally, the flow is assumed as one dimensional and standard. Pitot tube is used for measurement of velocity using either an inclined manometer or other type
More information