Output Voltage Control of a Wind Generation Scheme using Neural Networks

Size: px
Start display at page:

Download "Output Voltage Control of a Wind Generation Scheme using Neural Networks"

Transcription

1 25-30 September 200, Abu Dhabi, UAE Output Voltage Control of a Wind Generation Scheme using Neural Networks Mohammed Abdulla Abdulsada, Furat A. Abbas, Fathi R. Abusief and A. A. Hassan 2 Faculty of Engineering, Omar Al-Mukhtar University, Tobruk, Libya 2 Faculty of Engineering, Omar Al-Mukhtar University, Darna, Libya mohammed_alsaraj73@yahoo.com Abstract This paper presents the use of excitation capacitance variation for controlling of the output voltage of Self-Excited Induction Generator (SEIG) driven by wind turbine and supplies static load. The effects of rotor speed, load impedance and the excitation capacitance variations on the terminal voltage of the SEIG are discussed. An adaptive controller scheme based on Radial Basic Function Neural Network (RBFNN) is proposed to predict the suitable value of regulator capacitance for maintaining a constant output voltage of the SEIG. A programmable high speed controller (PHSC) is used to switch ON the required capacitor for providing the predicted capacitance. Computer simulation results are presented to demonstrate the performance of the SEIG with the proposed control scheme. The results proved that the proposed scheme is able to regulate the terminal voltage in spite of the wind speed and load variations. Keywords: wind generation, output voltage control, neural networks.. Introduction The wind energy market has grown because of the environmental advantages of harnessing a clean and inexhaustible energy source and because of the economic incentives supplied by several governments [].According to the American Wind Energy Association, the installed capacity of wind grew at an average rate of 29% per year. At the end of 2009, the worldwide installed capacity of wind energy was over 59 MW. The prediction capacity for 200 is over 203 MW [2].However, there are still many unsolved challenges in expanding wind power. The standard controls as well as recently developed advanced controls for variable-speed, horizontal axis wind turbines have been investigated [3].Most of the wind turbines are equipped with self-excited induction generators (SEIG). They are simple and rugged in construction and offer impressive efficiency under varying operating conditions. Characteristics of these generators like the over speed capability make them suitable for wind turbine application [4].Recent advancements in Power Electronics have made it possible to regulate the SEIG in many ways, which has resulted in an increased interest in the use of SEIG for power generation with wind power [5]. The use of artificial neural networks (ANNs) is the most powerful approach in artificial intelligence. One of the most important features of neural networks is their ability to learn and improve their operation using a set of examples named training data set [6]. ANNs have been used in diverse applications and play an important role in modelling and prediction of the performance and control of wind energy processes [7-0]. The need for adaptive regulating capacitance value comes from the fact that the wind turbine operates over a wide range of operating conditions, which means that the terminal voltage of the induction generator is not constant. Changing the value of regulator capacitance with the change of operating conditions (wind speed and loading conditions) can regulate the induction generator terminal voltage. In this paper, an adaptive controller scheme based on Radial Basic Function Neural Network (RBFNN) is proposed to predict the suitable value of regulator capacitance for maintaining a constant output voltage of the SEIG. A programmable high speed controller (PHSC) is used to switch ON the required capacitor for providing the predicted capacitance. Computer simulation results are presented to demonstrate the performance of the SEIG with the proposed control scheme. W E: Wind Energy Applications

2 25-30 September 200, Abu Dhabi, UAE 2. Effect of Excitation Capacitance on Amplitude of Terminal Voltage The steady-state operation of the SEIG may be analyzed by using the conventional equivalent circuit representation. The output voltage or terminal voltage V t is expressed in terms of air-gap voltage E and given by []: A E V t = () B 2 + D 2 Where : A 2 2 = ( X L X c a) + 3 ( X c R L ) B = ( R RL a + X L X ca + X X ca X X L a ), D = 2 2 ( R X L a X c R RL X c + RL X a ) The induction machine used as the SEIG in this investigation has the specification and parameters which given in appendix. Eq. () is used to demonstrate the effect of excitation capacitance on the terminal voltage of induction generator. Fig. shows the variation of terminal voltage V t around a desired value (20 volts) against the variation of rotor speed at different values of excitation capacitance and the load resistance is kept constant at 70 ohms. Fig. 2 shows the variations of terminal voltage versus the excitation capacitance at different values of rotor speed. Terminal voltage (V) C=54 uf C=76 uf C=200 uf Rotor speed (rpm) Figure Terminal voltage variation against rotor speed at different excitation capacitances N=600 rpm N=700 rpm N=800 rpm Terminal voltage (V) Capacitance (uf) Figure 2 Terminal voltage variation versus excitation capacitance at different rotor speeds It can be noted that smaller values of excitation capacitance are required to maintain constant terminal voltage at high speeds and vice versa. At fixed rotor speed, the terminal voltage rises if larger values of excitation capacitance are used. W E: Wind Energy Applications 2

3 25-30 September 200, Abu Dhabi, UAE Fig. 3 shows the variation of terminal voltage Vt against the load impedance for different values of excitation capacitance and the speed is kept constant at 700 rpm. With fixed load impedance, the terminal voltage increases if larger excitation capacitor is used instead of a smaller one. terminal voltage (V) C=54 uf C=76 uf C=200 uf Load impedance (ohm) Figure 3 Terminal voltage variation against load impedance at different values of excitation capacitance 3. Adaptive Excitation Capacitor Based on Neural Network for SEIG The proposed RBFNN consists of three layers as shown in Fig. 4; the input, hidden and output layers. The input layer has two inputs, rotor speed and load impedance. The output layer has one output, which represent the prediction values of excitation capacitance. Figure 4 Proposed radial basic function neural network The rotor speed is changed in steps of 20 from 600 rpm to 900 rpm. The load impedance is increased gradually from 50 Ω to 00Ω. The calculated values of excitation capacitance are used as an output target of the proposed neural network. The results of the training are shown in Fig. 5.a. To test the generalization capabilities of the neural network, 96 operating conditions (rather than the training points) are used. The results of the test are depicted in Fig. 5.b, which shows that the RBFNN is able to predict the capacitor value for new operating conditions. 4. Implementation of the Proposed System Fig. 6 shows the proposed wind turbine - SEIG voltage control scheme. A fixed excitation capacitor and regulator excitation capacitor banks are connected in parallel at the stator terminal of the induction generator. A regulator capacitor is used to stabilize the SEIG terminal voltage for a wide range of operating conditions while the fixed capacitor is responsible for voltage build up. In this scheme, the induction generator, regulator capacitor and neural network are interfaced to the programmable high speed controller as shown in Fig. 6. In this figure, voltage and current sensors are used to measure the load impedance. The load impedance is equal the load voltage divided by the load current. A speed sensor is used to measure the generator s rotor speed. The RBFNN algorithm is used to adapt the desired regulator capacitor values for different operating conditions (different load impedances and rotor speeds). The desired values of the regulator capacitance, which meet most of the expected operating conditions, are stored in a programmable high speed controller. A ladder program is used in the controller to compare the predicted value of the regulator capacitance with the desired one to decide which capacitor must be ON. W E: Wind Energy Applications 3

4 25-30 September 200, Abu Dhabi, UAE The firing angle of the thyristor is zero or π, i.e., the thyristor acts as a switch to turn on the required capacitor. The firing signal of the thyristor is controlled by the PHSC. (a) (b) Figure 5 Predicted excitation capacitance at different operation condition (a) Training results, (b) Testing results Figure 6 Schematic diagram of the proposed system 5. Results and Discussions A comparison results between adaptive and constant excitation capacitors are investigated and explained in this section. Firstly, assuming that the excitation capacitance value of the SEIG is kept constant at 74 µf and the rotor speed and the terminal load impedance are changed simultaneously for a specific period. As expected, the terminal voltage is not constant in this case, because it depends mainly on the rotor speed and the load impedance. Therefore, to keep the terminal voltage constant, an adaptation scheme is used to adapt the excitation capacitance value, when the rotor speed and load impedance are changed. This scheme is based on the neural network and programmable high speed controller. Fig. 7.a show the changed rotor speed in step from 700 rpm to 750 rpm, then it is changed from 750 rpm to 660 rpm. Also, the load impedance is changed simultaneously from 50 Ω to 80 Ω and then changed to 60 Ω as shown in Fig. 7.b. Fig. 8 shows the variation of the excitation capacitance value with the simultaneous variation of the rotor speed and load impedance in comparison with the constant one (74 µf). Fig. 9 shows the corresponding variation of the terminal voltage of the SEIG with and without adaptive capacitance value. It is found that the value of the adapted capacitance swings between 48 µf and 85 µf to W E: Wind Energy Applications 4

5 25-30 September 200, Abu Dhabi, UAE maintain the terminal voltage constant at rated value (20 V), with the corresponding variation of the rotor speed from 660 rpm to 750 rpm and the load impedance from 50 Ω to 80 Ω. Generally, the proposed RBFNN is able to control successfully the terminal voltage of the SEIG by adapting the excitation capacitance for a wide range of operating conditions. Rotor speed (rpm) Figure 7.a Variation of the rotor speed Load impedance (ohm) Figure 7.b Variation of the load impedance adaptive capacitance constant capacitance Capacitance (uf) Figure 8 Variation of the excitation capacitance constant capacitance adaptive capacitance Terminal voltage (V) Figure 9 Variation of the terminal voltage W E: Wind Energy Applications 5

6 25-30 September 200, Abu Dhabi, UAE 6. Conclusions In this paper, the output voltage of SEIG driven by wind turbine and supplies static load is controlled. A neural adaptive controller is used to control the generator terminal voltage at any operating condition. The use of an adaptive regulator capacitance value is motivated by the fact that the wind turbine generator operates over a wide range of operating conditions, and hence no single capacitance value is sufficient for regulating the terminal voltage. The RBFNN is used to predict the suitable value of regulator capacitor for any operating condition. Simulation results are presented to investigate the variation of terminal voltage when the rotor speed and load impedance are changed simultaneously with and without adapting the value of regulator capacitance. To maintain the terminal voltage of the SEIG constant at a desired value, large values of regulator capacitance are needed at low speed and small values of regulator capacitance are needed at high load impedance values and vice versa. 7. References [] K. Heinloth (2006) Energy Technologies Subvolume C: Renewable Energy, Springer-Verlag Berlin Heidelberg. [2] World Wind Energy Association. World wind energy installed capacity. Accessed April / 5 / 200. [3] Jason H. Laks, L. Y. Pao and A. Wright (2009) Control of wind turbines: Past, present, and future, American Control Conference 2009 (ACC09), St. Louis, Missouri, USA, pp , June [4] Sathyajith Mathew (2006) Wind Energy Fundamentals, Resource Analysis and Economics, Springer-Verlag Berlin Heidelberg, Germany. [5] Frede Blaabjerg and Zhe Chen (2006) Power Electronics For Modern Wind Turbines, Morgan & Claypool Publishers series,usa. [6] M.N. Cirstea, A. Dinu, J. Khor and M. McCormick (2002) Neural and Fuzzy Logic Control of Drives and Power Systems, Elsevier Ltd., Oxford. [7] Soteris A. Kalogirou (200) Artificial neural networks in renewable energy systems applications: a review, Renewable and Sustainable Energy Reviews (5), PP [8] Raja Singh Khela, Raj Kumar Bansal, K. S. Sandhu and Ashok Kumar Goel (2006) Application of Artificial Neural Network for Analysis of Self-Excited Induction Generator, Journal of Computer Science and Technology (JCS&T), October (6), No. 2, PP [9] M. Carolin Mabel and E. Fernandez (2008) Analysis of wind power generation and prediction using ANN: A case study, Renewable Energy 33 (5), pp [0] L. Rajaji and C. Kumar (2009) Neural network controller based induction generator for wind turbine applications, Indian Journal of Science and Technology, Feb. 2009, Vol.2 No. 2, PP [] R. M. Hilloowala (992) Control and interface of renewable energy systems, Ph. D. Thesis, The University of New Brunswick, Canada. Appendix: Specification and parameters of SEIG Induction machine: Rating: 3-phase, 2 kw, 20 V, 0 A, 4-pole, 740 rpm. Parameters: R = 0.62 Ω, R 2 = Ω, L = L 2 = H, L m = H. Self Excitation Capacitor: Rating: 76 µf / phase, 350 V, 8 A. Air gap voltage (E ) Variation of air gap voltage (E ) with magnetizing reactance at rated frequency induction machine; Xm < E = Xm > Xm E = Xm 08.00> Xm E = Xm Xm E = 0 W E: Wind Energy Applications 6

CHAPTER 3 ANALYSIS OF THREE PHASE AND SINGLE PHASE SELF-EXCITED INDUCTION GENERATORS

CHAPTER 3 ANALYSIS OF THREE PHASE AND SINGLE PHASE SELF-EXCITED INDUCTION GENERATORS 26 CHAPTER 3 ANALYSIS OF THREE PHASE AND SINGLE PHASE SELF-EXCITED INDUCTION GENERATORS 3.1. INTRODUCTION Recently increase in energy demand and limited energy sources in the world caused the researchers

More information

CHAPTER 2 CAPACITANCE REQUIREMENTS OF SIX-PHASE SELF-EXCITED INDUCTION GENERATORS

CHAPTER 2 CAPACITANCE REQUIREMENTS OF SIX-PHASE SELF-EXCITED INDUCTION GENERATORS 9 CHAPTER 2 CAPACITANCE REQUIREMENTS OF SIX-PHASE SELF-EXCITED INDUCTION GENERATORS 2.. INTRODUCTION Rapidly depleting rate of conventional energy sources, has led the scientists to explore the possibility

More information

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department EE471: Electrical Machines-II Tutorial # 2: 3-ph Induction Motor/Generator Question #1 A 100 hp, 60-Hz, three-phase

More information

CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS

CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS 79 CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS 6.. INTRODUCTION The steady-state analysis of six-phase and three-phase self-excited induction generators has been presented

More information

AN EFFICIENT APPROACH FOR ANALYSIS OF ISOLATED SELF EXCITED INDUCTION GENERATOR

AN EFFICIENT APPROACH FOR ANALYSIS OF ISOLATED SELF EXCITED INDUCTION GENERATOR AN EFFICIENT APPROACH FOR ANALYSIS OF ISOLATED SELF EXCITED INDUCTION GENERATOR Deepika 1, Pankaj Mehara Assistant Professor, Dept. of EE, DCRUST, Murthal, India 1 PG Student, Dept. of EE, DCRUST, Murthal,

More information

Determination of Magnetising Reactance and Frequency of Self-Excited Induction Generator using ANN Model

Determination of Magnetising Reactance and Frequency of Self-Excited Induction Generator using ANN Model International Journal of Electrical Engineering. ISSN 0974-2158 Volume 4, Number 5 (2011), pp. 635-646 International Research Publication House http://www.irphouse.com Determination of Magnetising Reactance

More information

CHAPTER 5 STEADY-STATE ANALYSIS OF THREE-PHASE SELF-EXCITED INDUCTION GENERATORS

CHAPTER 5 STEADY-STATE ANALYSIS OF THREE-PHASE SELF-EXCITED INDUCTION GENERATORS 6 CHAPTER 5 STEADY-STATE ANALYSIS OF THREE-PHASE SELF-EXCITED INDUCTION GENERATORS 5.. INTRODUCTION The steady-state analysis of six-phase SEIG has been discussed in the previous chapters. In this chapter,

More information

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator 628 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator A. Kishore,

More information

A simple model based control of self excited induction generators over a wide speed range

A simple model based control of self excited induction generators over a wide speed range ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 10 (2014) No. 3, pp. 206-213 A simple model based control of self excited induction generators over a wide speed range Krishna

More information

TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS

TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS G. HARI BABU Assistant Professor Department of EEE Gitam(Deemed to be University), Visakhapatnam

More information

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Chapter 3 AUTOMATIC VOLTAGE CONTROL Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulic-turbine to ac electric power Synchronous generators are the primary

More information

Brief Steady of Power Factor Improvement

Brief Steady of Power Factor Improvement International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 5 (2013), pp. 531-539 International Research PublicationHouse http://www.irphouse.com Brief Steady of Power Factor Improvement

More information

ECEN 460 Exam 1 Fall 2018

ECEN 460 Exam 1 Fall 2018 ECEN 460 Exam 1 Fall 2018 Name: KEY UIN: Section: Score: Part 1 / 40 Part 2 / 0 Part / 0 Total / 100 This exam is 75 minutes, closed-book, closed-notes. A standard calculator and one 8.5 x11 note sheet

More information

Modeling and Analysis of Six-phase Self-excited Induction Generators for Wind Energy Conversion

Modeling and Analysis of Six-phase Self-excited Induction Generators for Wind Energy Conversion Modeling and Analysis of Six-phase Self-excited Induction Generators for Wind Energy Conversion S.SASIKUMAR AND S.SINGARAVELU Department of Electrical Engineering, Annamalai University, Chidambaram, India

More information

Mini-project report. Modelling and control of a variablespeed subsea tidal turbine equipped with permanent magnet synchronous generator.

Mini-project report. Modelling and control of a variablespeed subsea tidal turbine equipped with permanent magnet synchronous generator. 1 Mini-project report Modelling and control of a variablespeed subsea tidal turbine equipped with permanent magnet synchronous generator. Shoan Mbabazi dtp09sm@sheffield.ac.uk August 2010 2 Modelling and

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 9 Transmission Line Steady State Operation Welcome to lesson 9, in Power

More information

BASIC PRINCIPLES. Power In Single-Phase AC Circuit

BASIC PRINCIPLES. Power In Single-Phase AC Circuit BASIC PRINCIPLES Power In Single-Phase AC Circuit Let instantaneous voltage be v(t)=v m cos(ωt+θ v ) Let instantaneous current be i(t)=i m cos(ωt+θ i ) The instantaneous p(t) delivered to the load is p(t)=v(t)i(t)=v

More information

Introduction to Synchronous. Machines. Kevin Gaughan

Introduction to Synchronous. Machines. Kevin Gaughan Introduction to Synchronous Machines Kevin Gaughan The Synchronous Machine An AC machine (generator or motor) with a stator winding (usually 3 phase) generating a rotating magnetic field and a rotor carrying

More information

A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS

A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS S. S. Murthy Department of Electrical Engineering Indian Institute

More information

STEADY-STATE MODELING AND ANALYSIS OF THREE PHASE SELF-EXCITED INDUCTION GENERATOR WITH SERIES COMPENSATION

STEADY-STATE MODELING AND ANALYSIS OF THREE PHASE SELF-EXCITED INDUCTION GENERATOR WITH SERIES COMPENSATION STEADY-STATE MODELING AND ANALYSIS OF THREE PHASE SELF-EXITED INDUTION GENERATOR WITH SERIES OMPENSATION S. Singaravelu and S. Sasikumar Department of Electrical Engineering, Annamalai University, hidambaram,

More information

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque. Exam Electrical Machines and Drives (ET4117) 11 November 011 from 14.00 to 17.00. This exam consists of 5 problems on 4 pages. Page 5 can be used to answer problem 4 question b. The number before a question

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

Power Factor Improvement

Power Factor Improvement Salman bin AbdulazizUniversity College of Engineering Electrical Engineering Department EE 2050Electrical Circuit Laboratory Power Factor Improvement Experiment # 4 Objectives: 1. To introduce the concept

More information

SSC-JE EE POWER SYSTEMS: GENERATION, TRANSMISSION & DISTRIBUTION SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL

SSC-JE EE POWER SYSTEMS: GENERATION, TRANSMISSION & DISTRIBUTION SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL 1 SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL Power Systems: Generation, Transmission and Distribution Power Systems: Generation, Transmission and Distribution Power Systems:

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

KINGS COLLEGE OF ENGINEERING Punalkulam

KINGS COLLEGE OF ENGINEERING Punalkulam KINGS COLLEGE OF ENGINEERING Punalkulam 613 303 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING POWER SYSTEM ANALYSIS QUESTION BANK UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A (TWO MARK

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

Generators for wind power conversion

Generators for wind power conversion Generators for wind power conversion B. G. Fernandes Department of Electrical Engineering Indian Institute of Technology, Bombay Email : bgf@ee.iitb.ac.in Outline of The Talk Introduction Constant speed

More information

0-2 Operations with Complex Numbers

0-2 Operations with Complex Numbers Simplify. 1. i 10 2. i 2 + i 8 3. i 3 + i 20 4. i 100 5. i 77 esolutions Manual - Powered by Cognero Page 1 6. i 4 + i 12 7. i 5 + i 9 8. i 18 Simplify. 9. (3 + 2i) + ( 4 + 6i) 10. (7 4i) + (2 3i) 11.

More information

Performance Analysis of Self-Excited Induction Generator Driven At Variable Wind Speeds

Performance Analysis of Self-Excited Induction Generator Driven At Variable Wind Speeds International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-1, Issue-2, December 2011 Performance Analysis of Self-Excited Induction Generator Driven At Variable Wind Speeds

More information

0-2 Operations with Complex Numbers

0-2 Operations with Complex Numbers Simplify. 1. i 10 1 2. i 2 + i 8 0 3. i 3 + i 20 1 i esolutions Manual - Powered by Cognero Page 1 4. i 100 1 5. i 77 i 6. i 4 + i 12 2 7. i 5 + i 9 2i esolutions Manual - Powered by Cognero Page 2 8.

More information

Electricity and Light Pre Lab Questions

Electricity and Light Pre Lab Questions Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.

More information

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations 5-1 Repeating the Example on Power Factor Correction (Given last Class) P? Q? S? Light Motor From source 1000 volts @ 60 Htz 10kW

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 39(1) pp. 157-161 (2011) PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR P. HATOS, A. FODOR, A. MAGYAR University of Pannonia, Department of

More information

EE 451 Power System Stability

EE 451 Power System Stability EE 451 Power System Stability Power system operates in synchronous mode Power system is subjected to a wide range of disturbances (small and large) - Loads and generation changes - Network changes - Faults

More information

Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation

Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation Incorporation of Asynchronous Generators as PQ Model in Load Flow Analysis for Power Systems with Wind Generation James Ranjith Kumar. R, Member, IEEE, Amit Jain, Member, IEEE, Power Systems Division,

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

EE Branch GATE Paper 2010

EE Branch GATE Paper 2010 Q.1 Q.25 carry one mark each 1. The value of the quantity P, where, is equal to 0 1 e 1/e 2. Divergence of the three-dimensional radial vector field is 3 1/r 3. The period of the signal x(t) = 8 is 0.4

More information

Unit 21 Capacitance in AC Circuits

Unit 21 Capacitance in AC Circuits Unit 21 Capacitance in AC Circuits Objectives: Explain why current appears to flow through a capacitor in an AC circuit. Discuss capacitive reactance. Discuss the relationship of voltage and current in

More information

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy 1 Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy Mariana Cavique, Student, DEEC/AC Energia, João F.P. Fernandes, LAETA/IDMEC,

More information

RLC Circuits. 1 Introduction. 1.1 Undriven Systems. 1.2 Driven Systems

RLC Circuits. 1 Introduction. 1.1 Undriven Systems. 1.2 Driven Systems RLC Circuits Equipment: Capstone, 850 interface, RLC circuit board, 4 leads (91 cm), 3 voltage sensors, Fluke mulitmeter, and BNC connector on one end and banana plugs on the other Reading: Review AC circuits

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

Steady State Performance of Doubly Fed Induction Generator Used in Wind Power Generation

Steady State Performance of Doubly Fed Induction Generator Used in Wind Power Generation Steady State Performance of Doubly Fed Induction Generator Used in Wind Power Generation Indubhushan Kumar Mewar University Department of Electrical Engineering Chittorgarh, Rajasthan-312902 Abstract:

More information

A Power System Dynamic Simulation Program Using MATLAB/ Simulink

A Power System Dynamic Simulation Program Using MATLAB/ Simulink A Power System Dynamic Simulation Program Using MATLAB/ Simulink Linash P. Kunjumuhammed Post doctoral fellow, Department of Electrical and Electronic Engineering, Imperial College London, United Kingdom

More information

the machine makes analytic calculation of rotor position impossible for a given flux linkage and current value.

the machine makes analytic calculation of rotor position impossible for a given flux linkage and current value. COMPARISON OF FLUX LINKAGE ESTIMATORS IN POSITION SENSORLESS SWITCHED RELUCTANCE MOTOR DRIVES Erkan Mese Kocaeli University / Technical Education Faculty zmit/kocaeli-turkey email: emese@kou.edu.tr ABSTRACT

More information

ECE 585 Power System Stability

ECE 585 Power System Stability Homework 1, Due on January 29 ECE 585 Power System Stability Consider the power system below. The network frequency is 60 Hz. At the pre-fault steady state (a) the power generated by the machine is 400

More information

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz EE 742 Chapter 3: Power System in the Steady State Y. Baghzouz Transmission Line Model Distributed Parameter Model: Terminal Voltage/Current Relations: Characteristic impedance: Propagation constant: π

More information

Physics Investigation 10 Teacher Manual

Physics Investigation 10 Teacher Manual Physics Investigation 10 Teacher Manual Observation When a light bulb is connected to a number of charged capacitors, it lights up for different periods of time. Problem What does the rate of discharging

More information

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types

More information

MATLAB Based Steady State Analysis of Self Excited Induction Generator

MATLAB Based Steady State Analysis of Self Excited Induction Generator MATLAB Based Steady State Analysis of Self Excited Induction Generator S S Murthy, Sandeep Acharya Department of Electrical Engineering, Indian Institute of Technology, Delhi Hauz Khas, New Delhi -006

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

1 Phasors and Alternating Currents

1 Phasors and Alternating Currents Physics 4 Chapter : Alternating Current 0/5 Phasors and Alternating Currents alternating current: current that varies sinusoidally with time ac source: any device that supplies a sinusoidally varying potential

More information

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST ATTEMPT ALL QUESTIONS (EACH QUESTION 20 Marks, FULL MAKS = 60) Given v 1 = 100 sin(100πt+π/6) (i) Find the MS, period and the frequency of v 1 (ii) If v 2 =75sin(100πt-π/10) find V 1, V 2, 2V 1 -V 2 (phasor)

More information

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR MUKESH KUMAR ARYA * Electrical Engg. Department, Madhav Institute of Technology & Science, Gwalior, Gwalior, 474005,

More information

An ANN based Rotor Flux Estimator for Vector Controlled Induction Motor Drive

An ANN based Rotor Flux Estimator for Vector Controlled Induction Motor Drive International Journal of Electrical Engineering. ISSN 974-58 Volume 5, Number 4 (), pp. 47-46 International Research Publication House http://www.irphouse.com An based Rotor Flux Estimator for Vector Controlled

More information

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 5-6, 24, 138 143 PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION Martin Lipták This paper

More information

Nonlinear dynamic simulation model of switched reluctance linear machine

Nonlinear dynamic simulation model of switched reluctance linear machine Procedia Earth and Planetary Science 1 (2009) 1320 1324 Procedia Earth and Planetary Science www.elsevier.com/locate/procedia The 6 th International Conference on Mining Science & Technology Nonlinear

More information

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015 ECE 325 Electric Energy System Components 7- Synchronous Machines Instructor: Kai Sun Fall 2015 1 Content (Materials are from Chapters 16-17) Synchronous Generators Synchronous Motors 2 Synchronous Generators

More information

EE 6501 POWER SYSTEMS UNIT I INTRODUCTION

EE 6501 POWER SYSTEMS UNIT I INTRODUCTION EE 6501 POWER SYSTEMS UNIT I INTRODUCTION PART A (2 MARKS) 1. What is single line diagram? A Single line diagram is diagrammatic representation of power system in which the components are represented by

More information

Research of double claw-pole structure generator

Research of double claw-pole structure generator Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(6):1184-1190 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Research of double claw-pole structure generator

More information

NEURAL NETWORKS APPLICATION FOR MECHANICAL PARAMETERS IDENTIFICATION OF ASYNCHRONOUS MOTOR

NEURAL NETWORKS APPLICATION FOR MECHANICAL PARAMETERS IDENTIFICATION OF ASYNCHRONOUS MOTOR NEURAL NETWORKS APPLICATION FOR MECHANICAL PARAMETERS IDENTIFICATION OF ASYNCHRONOUS MOTOR D. Balara, J. Timko, J. Žilková, M. Lešo Abstract: A method for identification of mechanical parameters of an

More information

Three phase induction motor using direct torque control by Matlab Simulink

Three phase induction motor using direct torque control by Matlab Simulink Three phase induction motor using direct torque control by Matlab Simulink Arun Kumar Yadav 1, Dr. Vinod Kumar Singh 2 1 Reaserch Scholor SVU Gajraula Amroha, U.P. 2 Assistant professor ABSTRACT Induction

More information

FACULTY OF ENGINEERING B.E. 4/4 (EEE) II - Semester (Old) Examination, May 2014 Subject : Electrical Power Distribution Engineering (Elective- II)

FACULTY OF ENGINEERING B.E. 4/4 (EEE) II - Semester (Old) Examination, May 2014 Subject : Electrical Power Distribution Engineering (Elective- II) B.E. 4/4 (EEE) II - Semester (Old) Examination, May 014 Subject : Electrical Power Distribution Engineering (Elective- II) Code No. 649 / O 1 Define Coincidence factor and Diversified factor. (3) Mention

More information

Static Characteristics of Switched Reluctance Motor 6/4 By Finite Element Analysis

Static Characteristics of Switched Reluctance Motor 6/4 By Finite Element Analysis Australian Journal of Basic and Applied Sciences, 5(9): 1403-1411, 2011 ISSN 1991-8178 Static Characteristics of Switched Reluctance Motor 6/4 By Finite Element Analysis 1 T. Jahan. 2 M.B.B. Sharifian

More information

Chapter 4. Synchronous Generators. Basic Topology

Chapter 4. Synchronous Generators. Basic Topology Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.

More information

Loss analysis of a 1 MW class HTS synchronous motor

Loss analysis of a 1 MW class HTS synchronous motor Journal of Physics: Conference Series Loss analysis of a 1 MW class HTS synchronous motor To cite this article: S K Baik et al 2009 J. Phys.: Conf. Ser. 153 012003 View the article online for updates and

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK Course Name : Computer Methods in Power Systems Course Code : A60222

More information

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi AC Machines Operating Principles: Synchronous Motor In synchronous motors, the stator of the motor has a rotating magnetic

More information

Three Phase Circuits

Three Phase Circuits Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE Previously on ELCN102 Three Phase Circuits Balanced

More information

Generators. What its all about

Generators. What its all about Generators What its all about How do we make a generator? Synchronous Operation Rotor Magnetic Field Stator Magnetic Field Forces and Magnetic Fields Force Between Fields Motoring Generators & motors are

More information

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain. Name If you have any questions ask them. Remember to include all units on your answers (V, A, etc). Clearly indicate your answers. All angles must be in the range 0 to +180 or 0 to 180 degrees. 1) [6 pts]

More information

CHAPTER 6. Inductance, Capacitance, and Mutual Inductance

CHAPTER 6. Inductance, Capacitance, and Mutual Inductance CHAPTER 6 Inductance, Capacitance, and Mutual Inductance 6.1 The Inductor Inductance is symbolized by the letter L, is measured in henrys (H), and is represented graphically as a coiled wire. The inductor

More information

Regulation of the Excitation Reactive Power of the Asynchronous Wind Turbine at Variable Speed

Regulation of the Excitation Reactive Power of the Asynchronous Wind Turbine at Variable Speed Smart Grid and Renewable Energy, 013, 4, 7-80 http://dx.doi.org/10.436/sgre.013.43033 Published Online June 013 (http://www.scirp.org/journal/sgre) Regulation of the Excitation Reactive Power of the Asynchronous

More information

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive

A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive A New Model Reference Adaptive Formulation to Estimate Stator Resistance in Field Oriented Induction Motor Drive Saptarshi Basak 1, Chandan Chakraborty 1, Senior Member IEEE and Yoichi Hori 2, Fellow IEEE

More information

Q. 1 Q. 25 carry one mark each.

Q. 1 Q. 25 carry one mark each. Q. 1 Q. 25 carry one mark each. Q.1 Given ff(zz) = gg(zz) + h(zz), where ff, gg, h are complex valued functions of a complex variable zz. Which one of the following statements is TUE? (A) If ff(zz) is

More information

a + b Time Domain i(τ)dτ.

a + b Time Domain i(τ)dτ. R, C, and L Elements and their v and i relationships We deal with three essential elements in circuit analysis: Resistance R Capacitance C Inductance L Their v and i relationships are summarized below.

More information

DESIGNING POWER SYSTEM STABILIZER WITH PID CONTROLLER

DESIGNING POWER SYSTEM STABILIZER WITH PID CONTROLLER International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization on TPE (IOTPE) ISSN 2077-3528 IJTPE Journal www.iotpe.com ijtpe@iotpe.com June 2010

More information

Electrical Engineering Fundamentals for Non-Electrical Engineers

Electrical Engineering Fundamentals for Non-Electrical Engineers Electrical Engineering Fundamentals for Non-Electrical Engineers by Brad Meyer, PE Contents Introduction... 3 Definitions... 3 Power Sources... 4 Series vs. Parallel... 9 Current Behavior at a Node...

More information

7. Transient stability

7. Transient stability 1 7. Transient stability In AC power system, each generator is to keep phase relationship according to the relevant power flow, i.e. for a certain reactance X, the both terminal voltages V1and V2, and

More information

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods International Journal of Electrical and Electronics Research ISSN 348-6988 (online) Vol., Issue 3, pp: (58-66), Month: July - September 04, Available at: www.researchpublish.com Transient Stability Analysis

More information

Proceedings of the 13th WSEAS International Conference on CIRCUITS

Proceedings of the 13th WSEAS International Conference on CIRCUITS About some FACTS devices from the power systems MARICEL ADAM, ADRIAN BARABOI, CATALIN PANCU Power Systems Department, Faculty of Electrical Engineering Gh. Asachi Technical University 51-53, D. Mangeron,

More information

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients) ELEC0047 - Power system dynamics, control and stability (a simple example of electromagnetic transients) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 25 Objectives

More information

GATE 2010 Electrical Engineering

GATE 2010 Electrical Engineering GATE 2010 Electrical Engineering Q.1 Q.25 carry one mark each 1. The value of the quantity P, where P = xe dx, is equal to (A) 0 (B) 1 (C) e (D) 1/e 2. Divergence of the three-dimensional radial vector

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18 Circuit Analysis-II Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.

More information

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat Electric Machines I Three Phase Induction Motor Dr. Firas Obeidat 1 Table of contents 1 General Principles 2 Construction 3 Production of Rotating Field 4 Why Does the Rotor Rotate 5 The Slip and Rotor

More information

Version 001 CIRCUITS holland (1290) 1

Version 001 CIRCUITS holland (1290) 1 Version CIRCUITS holland (9) This print-out should have questions Multiple-choice questions may continue on the next column or page find all choices before answering AP M 99 MC points The power dissipated

More information

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS

2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM FREE-RESPONSE QUESTIONS 2005 AP PHYSICS C: ELECTRICITY AND MAGNETISM In the circuit shown above, resistors 1 and 2 of resistance R 1 and R 2, respectively, and an inductor of inductance L are connected to a battery of emf e and

More information

Chapter 6. Induction Motors. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 6. Induction Motors. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Induction Motors 1 The Development of Induced Torque in an Induction Motor Figure 6-6 The development of induced torque in an induction motor. (a) The rotating stator field B S induces a voltage

More information

INDUCTION MOTOR MODEL AND PARAMETERS

INDUCTION MOTOR MODEL AND PARAMETERS APPENDIX C INDUCTION MOTOR MODEL AND PARAMETERS C.1 Dynamic Model of the Induction Motor in Stationary Reference Frame A three phase induction machine can be represented by an equivalent two phase machine

More information

Fault Calculation Methods

Fault Calculation Methods ELEC9713 Industrial and Commercial Power Systems Fault Calculation Methods There are two major problems that can occur in electrical systems: these are open circuits and short circuits. Of the two, the

More information

LOW HEAD PICO HYDRO UNIT USING LOW COST INDUCTION MOTOR AND WATER WHEEL

LOW HEAD PICO HYDRO UNIT USING LOW COST INDUCTION MOTOR AND WATER WHEEL LOW HEAD PICO HYDRO UNIT USING LOW COST INDUCTION MOTOR AND WATER WHEEL S.S.KATRE shrikantkatre@gmail.com ABSTRACT: This paper presents a case study of employing a water wheel and a self excited induction

More information

Review of DC Electric Circuit. DC Electric Circuits Examples (source:

Review of DC Electric Circuit. DC Electric Circuits Examples (source: Review of DC Electric Circuit DC Electric Circuits Examples (source: http://hyperphysics.phyastr.gsu.edu/hbase/electric/dcex.html) 1 Review - DC Electric Circuit Multisim Circuit Simulation DC Circuit

More information

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 6, January-June 2005 p. 1-16 Robust Controller Design for Speed Control of an Indirect Field Oriented Induction Machine Drive

More information

Capacitors. Example 1

Capacitors. Example 1 Physics 30AP Resistors and apacitors I apacitors A capacitor is a device for storing electrical charge that consists of two conducting objects placed near one another but not touching. A A typical capacitor

More information

د شوقي حامد عرفه ابراهيم

د شوقي حامد عرفه ابراهيم 2015 /1/19 اإلجابة النموذجية لمادة نظم التشغيل الكهربية ك 563 د شوقي حامد عرفه ابراهيم يوم االثنين الموافق Benha University Benha Faculty of Engineering Subject: Electrical drives (E563) Time: 3hours Fifth

More information

ELEC Introduction to power and energy systems. The per unit system. Thierry Van Cutsem

ELEC Introduction to power and energy systems. The per unit system. Thierry Van Cutsem ELEC0014 - Introduction to power and energy systems The per unit system Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 12 Principle The per unit system Principle

More information