Section 7.1 Experiments, Sample Spaces, and Events

Size: px
Start display at page:

Download "Section 7.1 Experiments, Sample Spaces, and Events"

Transcription

1 Section 7.1 Experiments, Sample Spaces, and Events Experiments An experiment is an activity with observable results. 1. Which of the follow are experiments? (a) Going into a room and turning on a light. (b) Rolling a die and observing the number that appears on the uppermost face. (c) Flipping a coin and observing wether the coin lands on heads or tails. (d) Driving a car up and down the street. Sample Spaces and Events A sample space, S, isthesetconsistingofallpossibleoutcomesinanexperiment.thisis like the universal set from Section 6.1. An event, E, isasubsetofthesamplespace. Note: Every set operation discussed in Section 6.1 stillappliesinthiscurrentsection,i.e. the universal set U is replaced by the sample space S, andtheterm subset isreplacedwiththe term event. 2. Let S = {d, g, k, q, v, y} be a sample space of an experiment and let E = {d, g}, F = {d, q, y}, and G = {g, k, v} be events of this experiment. Find the events E c and F c \ G. 3. Consider the sample space S = {s, t, n}. How many total events are there for this sample space?

2 4. Let S = {5, 9, 12} be a sample space associated with an experiment. (a) List all events of this experiment. (b) How many subsets of S contain the number 12? # of subsets = 4 (c) How many subsets of S contain the number 9 or the number 12? # of Subsets = 6 5. An experiment consists of spinning the hand of the numbered disc shown in the following figure and then observing the region in which the pointer stops. (If the needle stops on a line, the result is discounted and the needle is spun again. (a) What is the appropriate sample space S for this experiment? (b) Describe the event E the spinner points to the number 2. (c) Describe the event F the spinner points to an odd number. 2 Fall 2017, Maya Johnson

3 6. An experiment consists of tossing a coin and observing the side that lands up and then rolling a fair 4-sided die and observing the number rolled. Let H and T represent heads and tails respectively. (a) Describe the sample space S corresponding to this experiment. (b) What is the event E 1 that an even number is rolled? (c) What is the event E 2 that a head is tossed or a 3 is rolled? (d) What is the event E 3 that a tail is tossed and an odd number is rolled? 7. The numbers 3, 4, 5, and 7 are written on separate pieces of paper and put into a hat. Two pieces of paper are drawn at the same time and the product of the numbers is recorded. Find the sample space. 3 Fall 2017, Maya Johnson

4 8. An opinion poll is conducted among a state s electorate to determine the relationship between their income levels and their stands on a proposition aimed at reducing state income taxes. Voters are classified as belonging to either the low-, middle-, or upper-income group. They are asked whether they favor, oppose, or are undecided about the proposition. Let the letters L, M, andu represent the low-, middle-, and upper-income groups, respectively, and let the letters f, o, and u represent their responsesfavor, oppose, and undecided, respectively. (a) Describe a sample space S corresponding to this poll. ( M,f ), ( Mio), ( Mu), ( V,f ), ( U, ),( U,u ) } (b) Describe the event E 1 that a respondent favors the proposition. - E, = { ( Lift, ( Nf ), ( UA ) } (c) Describe the event E 2 that a respondent opposes the proposition and does not belong to the low-income group. af ( Md,( 40 ) } 4 Fall 2017, Maya Johnson

5 9. Two fair 6-sided dice are rolled and the numbers shown uppermost are observed. Find the number of outcomes in the following events. (a) The sum of the numbers is 7. (b) A5isrolled. (c) A2isrolledorthesumofthediceisnomorethan5. 5 Fall 2017, Maya Johnson

6 10. A jar contains 8 marbles numbered 1 through 8. An experiment consists of randomly selecting a marble from the jar, observing the number drawn, and then randomly selecting a card from a standard deck and observing the suit of the card (hearts, diamonds, clubs, or spades). (a) How many outcomes are in the sample space for this experiment? (b) How many outcomes are in the event an even number is drawn? (c) How many outcomes are in the event a number more than 1 is drawn and a red card is drawn? (d) How many outcomes are in the event a number less than 2 is drawn or a club is not drawn? 6 Fall 2017, Maya Johnson

Probability Long-Term Memory Review Review 1

Probability Long-Term Memory Review Review 1 Review. The formula for calculating theoretical probability of an event is What does the question mark represent? number of favorable outcomes P.? 2. True or False Experimental probability is always the

More information

Section 7.2 Definition of Probability

Section 7.2 Definition of Probability Section 7.2 Definition of Probability Question: Suppose we have an experiment that consists of flipping a fair 2-sided coin and observing if the coin lands on heads or tails? From section 7.1 we should

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head}

Example. What is the sample space for flipping a fair coin? Rolling a 6-sided die? Find the event E where E = {x x has exactly one head} Chapter 7 Notes 1 (c) Epstein, 2013 CHAPTER 7: PROBABILITY 7.1: Experiments, Sample Spaces and Events Chapter 7 Notes 2 (c) Epstein, 2013 What is the sample space for flipping a fair coin three times?

More information

13-5 Probabilities of Independent and Dependent Events

13-5 Probabilities of Independent and Dependent Events CCSS REASONING Determine whether the events are independent or dependent. Then find the probability. 6. In a game, you roll an even number on a die and then spin a spinner numbered 1 through 5 and get

More information

Chapter 3: Probability 3.1: Basic Concepts of Probability

Chapter 3: Probability 3.1: Basic Concepts of Probability Chapter 3: Probability 3.1: Basic Concepts of Probability Objectives Identify the sample space of a probability experiment and a simple event Use the Fundamental Counting Principle Distinguish classical

More information

(a) Fill in the missing probabilities in the table. (b) Calculate P(F G). (c) Calculate P(E c ). (d) Is this a uniform sample space?

(a) Fill in the missing probabilities in the table. (b) Calculate P(F G). (c) Calculate P(E c ). (d) Is this a uniform sample space? Math 166 Exam 1 Review Sections L.1-L.2, 1.1-1.7 Note: This review is more heavily weighted on the new material this week: Sections 1.5-1.7. For more practice problems on previous material, take a look

More information

4. Probability of an event A for equally likely outcomes:

4. Probability of an event A for equally likely outcomes: University of California, Los Angeles Department of Statistics Statistics 110A Instructor: Nicolas Christou Probability Probability: A measure of the chance that something will occur. 1. Random experiment:

More information

Exam 2 Review (Sections Covered: 3.1, 3.3, , 7.1) Solutro. 1. Write a system of linear inequalities that describes the shaded region.

Exam 2 Review (Sections Covered: 3.1, 3.3, , 7.1) Solutro. 1. Write a system of linear inequalities that describes the shaded region. Exam 2 Review (Sections Covered: 31 33 6164 71) Solutro 1 Write a system of linear inequalities that describes the shaded region :) 5x +2y 30 x +2y " 2) 12 x : 0 y Z 0 : Line as 0 TO ± 30 True Line (2)

More information

Math 1313 Experiments, Events and Sample Spaces

Math 1313 Experiments, Events and Sample Spaces Math 1313 Experiments, Events and Sample Spaces At the end of this recording, you should be able to define and use the basic terminology used in defining experiments. Terminology The next main topic in

More information

= 2 5 Note how we need to be somewhat careful with how we define the total number of outcomes in b) and d). We will return to this later.

= 2 5 Note how we need to be somewhat careful with how we define the total number of outcomes in b) and d). We will return to this later. PROBABILITY MATH CIRCLE (ADVANCED /27/203 The likelyhood of something (usually called an event happening is called the probability. Probability (informal: We can calculate probability using a ratio: want

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Applications Elementary Set Theory Random

More information

Problem # Number of points 1 /20 2 /20 3 /20 4 /20 5 /20 6 /20 7 /20 8 /20 Total /150

Problem # Number of points 1 /20 2 /20 3 /20 4 /20 5 /20 6 /20 7 /20 8 /20 Total /150 Name Student ID # Instructor: SOLUTION Sergey Kirshner STAT 516 Fall 09 Practice Midterm #1 January 31, 2010 You are not allowed to use books or notes. Non-programmable non-graphic calculators are permitted.

More information

The probability of an event is viewed as a numerical measure of the chance that the event will occur.

The probability of an event is viewed as a numerical measure of the chance that the event will occur. Chapter 5 This chapter introduces probability to quantify randomness. Section 5.1: How Can Probability Quantify Randomness? The probability of an event is viewed as a numerical measure of the chance that

More information

Axioms of Probability

Axioms of Probability Sample Space (denoted by S) The set of all possible outcomes of a random experiment is called the Sample Space of the experiment, and is denoted by S. Example 1.10 If the experiment consists of tossing

More information

Algebra 1 End of Course Review

Algebra 1 End of Course Review 1 Fractions, decimals, and integers are not examples of whole numbers, rational numbers, and natural numbers. Numbers divisible by 2 are even numbers. All others are odd numbers. The absolute value of

More information

RULES OF PROBABILITY

RULES OF PROBABILITY RULES OF PROBABILITY COMPLEMENTARY EVENTS: Consider any event A. Let p(a) be the probability that A happens and let p(a ) read as the probability of A prime or A c (A Complement), be the probability that

More information

Section 2.4 Bernoulli Trials

Section 2.4 Bernoulli Trials Section 2.4 Bernoulli Trials A bernoulli trial is a repeated experiment with the following properties: 1. There are two outcomes of each trial: success and failure. 2. The probability of success in each

More information

Intermediate Math Circles November 8, 2017 Probability II

Intermediate Math Circles November 8, 2017 Probability II Intersection of Events and Independence Consider two groups of pairs of events Intermediate Math Circles November 8, 017 Probability II Group 1 (Dependent Events) A = {a sales associate has training} B

More information

Exam III Review Math-132 (Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3)

Exam III Review Math-132 (Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3) 1 Exam III Review Math-132 (Sections 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3) On this exam, questions may come from any of the following topic areas: - Union and intersection of sets - Complement of

More information

Lesson One Hundred and Sixty-One Normal Distribution for some Resolution

Lesson One Hundred and Sixty-One Normal Distribution for some Resolution STUDENT MANUAL ALGEBRA II / LESSON 161 Lesson One Hundred and Sixty-One Normal Distribution for some Resolution Today we re going to continue looking at data sets and how they can be represented in different

More information

green, green, green, green, green The favorable outcomes of the event are blue and red.

green, green, green, green, green The favorable outcomes of the event are blue and red. 0 Chapter Review Review Key Vocabulary experiment, p. 0 outcomes, p. 0 event, p. 0 favorable outcomes, p. 0 probability, p. 08 relative frequency, p. Review Examples and Exercises experimental probability,

More information

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then

If S = {O 1, O 2,, O n }, where O i is the i th elementary outcome, and p i is the probability of the i th elementary outcome, then 1.1 Probabilities Def n: A random experiment is a process that, when performed, results in one and only one of many observations (or outcomes). The sample space S is the set of all elementary outcomes

More information

11. Probability Sample Spaces and Probability

11. Probability Sample Spaces and Probability 11. Probability 11.1 Sample Spaces and Probability 1 Objectives A. Find the probability of an event. B. Find the empirical probability of an event. 2 Theoretical Probabilities 3 Example A fair coin is

More information

Solutionbank S1 Edexcel AS and A Level Modular Mathematics

Solutionbank S1 Edexcel AS and A Level Modular Mathematics Heinemann Solutionbank: Statistics S Page of Solutionbank S Exercise A, Question Write down whether or not each of the following is a discrete random variable. Give a reason for your answer. a The average

More information

Probability Year 10. Terminology

Probability Year 10. Terminology Probability Year 10 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

UNIT 5 ~ Probability: What Are the Chances? 1

UNIT 5 ~ Probability: What Are the Chances? 1 UNIT 5 ~ Probability: What Are the Chances? 1 6.1: Simulation Simulation: The of chance behavior, based on a that accurately reflects the phenomenon under consideration. (ex 1) Suppose we are interested

More information

Formalizing Probability. Choosing the Sample Space. Probability Measures

Formalizing Probability. Choosing the Sample Space. Probability Measures Formalizing Probability Choosing the Sample Space What do we assign probability to? Intuitively, we assign them to possible events (things that might happen, outcomes of an experiment) Formally, we take

More information

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample

Lecture 2: Probability. Readings: Sections Statistical Inference: drawing conclusions about the population based on a sample Lecture 2: Probability Readings: Sections 5.1-5.3 1 Introduction Statistical Inference: drawing conclusions about the population based on a sample Parameter: a number that describes the population a fixed

More information

Objective - To understand experimental probability

Objective - To understand experimental probability Objective - To understand experimental probability Probability THEORETICAL EXPERIMENTAL Theoretical probability can be found without doing and experiment. Experimental probability is found by repeating

More information

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics Probability Rules MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Introduction Probability is a measure of the likelihood of the occurrence of a certain behavior

More information

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018

Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 Mathematical Foundations of Computer Science Lecture Outline October 18, 2018 The Total Probability Theorem. Consider events E and F. Consider a sample point ω E. Observe that ω belongs to either F or

More information

Statistics 100 Exam 2 March 8, 2017

Statistics 100 Exam 2 March 8, 2017 STAT 100 EXAM 2 Spring 2017 (This page is worth 1 point. Graded on writing your name and net id clearly and circling section.) PRINT NAME (Last name) (First name) net ID CIRCLE SECTION please! L1 (MWF

More information

Total. Name: Student ID: CSE 21A. Midterm #2. February 28, 2013

Total. Name: Student ID: CSE 21A. Midterm #2. February 28, 2013 Name: Student ID: CSE 21A Midterm #2 February 28, 2013 There are 6 problems. The number of points a problem is worth is shown next to the problem. Show your work (even on multiple choice questions)! Also,

More information

Probability Year 9. Terminology

Probability Year 9. Terminology Probability Year 9 Terminology Probability measures the chance something happens. Formally, we say it measures how likely is the outcome of an event. We write P(result) as a shorthand. An event is some

More information

Lecture 6 Probability

Lecture 6 Probability Lecture 6 Probability Example: When you toss a coin, there are only two possible outcomes, heads and tails. What if we toss a coin 4 times? Figure below shows the results of tossing a coin 5000 times twice.

More information

Event A: at least one tail observed A:

Event A: at least one tail observed A: Chapter 3 Probability 3.1 Events, sample space, and probability Basic definitions: An is an act of observation that leads to a single outcome that cannot be predicted with certainty. A (or simple event)

More information

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space

4/17/2012. NE ( ) # of ways an event can happen NS ( ) # of events in the sample space I. Vocabulary: A. Outcomes: the things that can happen in a probability experiment B. Sample Space (S): all possible outcomes C. Event (E): one outcome D. Probability of an Event (P(E)): the likelihood

More information

Section F Ratio and proportion

Section F Ratio and proportion Section F Ratio and proportion Ratio is a way of comparing two or more groups. For example, if something is split in a ratio 3 : 5 there are three parts of the first thing to every five parts of the second

More information

Name: Exam 2 Solutions. March 13, 2017

Name: Exam 2 Solutions. March 13, 2017 Department of Mathematics University of Notre Dame Math 00 Finite Math Spring 07 Name: Instructors: Conant/Galvin Exam Solutions March, 07 This exam is in two parts on pages and contains problems worth

More information

(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6)

(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6) Section 7.3: Compound Events Because we are using the framework of set theory to analyze probability, we can use unions, intersections and complements to break complex events into compositions of events

More information

Lecture Lecture 5

Lecture Lecture 5 Lecture 4 --- Lecture 5 A. Basic Concepts (4.1-4.2) 1. Experiment: A process of observing a phenomenon that has variation in its outcome. Examples: (E1). Rolling a die, (E2). Drawing a card form a shuffled

More information

Lecture 1 Introduction to Probability and Set Theory Text: A Course in Probability by Weiss

Lecture 1 Introduction to Probability and Set Theory Text: A Course in Probability by Weiss Lecture 1 to and Set Theory Text: A Course in by Weiss 1.2 2.3 STAT 225 to Models January 13, 2014 to and Whitney Huang Purdue University 1.1 Agenda to and 1 2 3 1.2 Motivation Uncertainty/Randomness in

More information

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E.

Compound Events. The event E = E c (the complement of E) is the event consisting of those outcomes which are not in E. Compound Events Because we are using the framework of set theory to analyze probability, we can use unions, intersections and complements to break complex events into compositions of events for which it

More information

Section 7.5 Conditional Probability and Independent Events

Section 7.5 Conditional Probability and Independent Events Section 75 Conditional Probability and Independent Events Conditional Probability of an Event If A and B are events in an experiment and P (A) 6= 0,thentheconditionalprobabilitythattheevent B will occur

More information

Discussion 01. b) What is the probability that the letter selected is a vowel?

Discussion 01. b) What is the probability that the letter selected is a vowel? STAT 400 Discussion 01 Spring 2018 1. Consider the following experiment: A letter is chosen at random from the word STATISTICS. a) List all possible outcomes and their probabilities. b) What is the probability

More information

Statistics for Engineers

Statistics for Engineers Statistics for Engineers Antony Lewis http://cosmologist.info/teaching/stat/ Starter question Have you previously done any statistics? 1. Yes 2. No 54% 46% 1 2 BOOKS Chatfield C, 1989. Statistics for

More information

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th

HW2 Solutions, for MATH441, STAT461, STAT561, due September 9th HW2 Solutions, for MATH44, STAT46, STAT56, due September 9th. You flip a coin until you get tails. Describe the sample space. How many points are in the sample space? The sample space consists of sequences

More information

Probability Theory Review

Probability Theory Review Cogsci 118A: Natural Computation I Lecture 2 (01/07/10) Lecturer: Angela Yu Probability Theory Review Scribe: Joseph Schilz Lecture Summary 1. Set theory: terms and operators In this section, we provide

More information

an event with one outcome is called a simple event.

an event with one outcome is called a simple event. Ch5Probability Probability is a measure of the likelihood of a random phenomenon or chance behavior. Probability describes the long-term proportion with which a certain outcome will occur in situations

More information

Elementary Discrete Probability

Elementary Discrete Probability Elementary Discrete Probability MATH 472 Financial Mathematics J Robert Buchanan 2018 Objectives In this lesson we will learn: the terminology of elementary probability, elementary rules of probability,

More information

12 1 = = 1

12 1 = = 1 Basic Probability: Problem Set One Summer 07.3. We have A B B P (A B) P (B) 3. We also have from the inclusion-exclusion principle that since P (A B). P (A B) P (A) + P (B) P (A B) 3 P (A B) 3 For examples

More information

Algebra 2 PBA PARCC Packet

Algebra 2 PBA PARCC Packet Algebra PBA PARCC Packet NAME: This packet contains sample questions and refresher worksheets. This packet must be completed and returned to room 111 before the Algebra PARCC test on Wednesday March 4

More information

Chapter 7: Section 7-1 Probability Theory and Counting Principles

Chapter 7: Section 7-1 Probability Theory and Counting Principles Chapter 7: Section 7-1 Probability Theory and Counting Principles D. S. Malik Creighton University, Omaha, NE D. S. Malik Creighton University, Omaha, NE Chapter () 7: Section 7-1 Probability Theory and

More information

If all the outcomes are equally likely, then the probability an event A happening is given by this formula:

If all the outcomes are equally likely, then the probability an event A happening is given by this formula: Understanding Probability Probability Scale and Formula PROBIBILITY Probability is a measure of how likely an event is to happen. A scale is used from zero to one, as shown below. Examples The probability

More information

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0?

(i) Given that a student is female, what is the probability of having a GPA of at least 3.0? MATH 382 Conditional Probability Dr. Neal, WKU We now shall consider probabilities of events that are restricted within a subset that is smaller than the entire sample space Ω. For example, let Ω be the

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Math 4 review exam MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Convert the constraints into linear equations by using slack variables. ) Maximize

More information

Theoretical Probability (pp. 1 of 6)

Theoretical Probability (pp. 1 of 6) Theoretical Probability (pp. 1 of 6) WHAT ARE THE CHANCES? Objectives: Investigate characteristics and laws of probability. Materials: Coin, six-sided die, four-color spinner divided into equal sections

More information

Chapter. Probability

Chapter. Probability Chapter 3 Probability Section 3.1 Basic Concepts of Probability Section 3.1 Objectives Identify the sample space of a probability experiment Identify simple events Use the Fundamental Counting Principle

More information

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B).

P (A B) P ((B C) A) P (B A) = P (B A) + P (C A) P (A) = P (B A) + P (C A) = Q(A) + Q(B). Lectures 7-8 jacques@ucsdedu 41 Conditional Probability Let (Ω, F, P ) be a probability space Suppose that we have prior information which leads us to conclude that an event A F occurs Based on this information,

More information

3.2 Probability Rules

3.2 Probability Rules 3.2 Probability Rules The idea of probability rests on the fact that chance behavior is predictable in the long run. In the last section, we used simulation to imitate chance behavior. Do we always need

More information

Applied Mathematics 12 Selected Solutions Chapter 1

Applied Mathematics 12 Selected Solutions Chapter 1 TLE OF ONTENTS H ELP pplied Mathematics Selected Solutions hapter Tutorial : Experimental and Theoretical Probability Exercises, page 0 hecking Y our Skills The simulation of the 00 trials of each experiment

More information

1. Rolling a six sided die and observing the number on the uppermost face is an experiment with six possible outcomes; 1, 2, 3, 4, 5 and 6.

1. Rolling a six sided die and observing the number on the uppermost face is an experiment with six possible outcomes; 1, 2, 3, 4, 5 and 6. Section 7.1: Introduction to Probability Almost everybody has used some conscious or subconscious estimate of the likelihood of an event happening at some point in their life. Such estimates are often

More information

Probability Notes. Definitions: The probability of an event is the likelihood of choosing an outcome from that event.

Probability Notes. Definitions: The probability of an event is the likelihood of choosing an outcome from that event. ability Notes Definitions: Sample Space: sample space is a set or collection of possible outcomes. Flipping a Coin: {Head, Tail} Rolling Two Die: {,,,, 6, 7, 8, 9, 0,, } Outcome: n outcome is an element

More information

Year 10 Mathematics Probability Practice Test 1

Year 10 Mathematics Probability Practice Test 1 Year 10 Mathematics Probability Practice Test 1 1 A letter is chosen randomly from the word TELEVISION. a How many letters are there in the word TELEVISION? b Find the probability that the letter is: i

More information

Basic Concepts of Probability

Basic Concepts of Probability Probability Probability theory is the branch of math that deals with unpredictable or random events Probability is used to describe how likely a particular outcome is in a random event the probability

More information

Probability & Random Variables

Probability & Random Variables & Random Variables Probability Probability theory is the branch of math that deals with random events, processes, and variables What does randomness mean to you? How would you define probability in your

More information

The set of all outcomes or sample points is called the SAMPLE SPACE of the experiment.

The set of all outcomes or sample points is called the SAMPLE SPACE of the experiment. Chapter 7 Probability 7.1 xperiments, Sample Spaces and vents Start with some definitions we will need in our study of probability. An XPRIMN is an activity with an observable result. ossing coins, rolling

More information

Chapter 6: Probability The Study of Randomness

Chapter 6: Probability The Study of Randomness Chapter 6: Probability The Study of Randomness 6.1 The Idea of Probability 6.2 Probability Models 6.3 General Probability Rules 1 Simple Question: If tossing a coin, what is the probability of the coin

More information

Section 4.2 Basic Concepts of Probability

Section 4.2 Basic Concepts of Probability Section 4.2 Basic Concepts of Probability 2012 Pearson Education, Inc. All rights reserved. 1 of 88 Section 4.2 Objectives Identify the sample space of a probability experiment Identify simple events Use

More information

Basic Concepts of Probability. Section 3.1 Basic Concepts of Probability. Probability Experiments. Chapter 3 Probability

Basic Concepts of Probability. Section 3.1 Basic Concepts of Probability. Probability Experiments. Chapter 3 Probability Chapter 3 Probability 3.1 Basic Concepts of Probability 3.2 Conditional Probability and the Multiplication Rule 3.3 The Addition Rule 3.4 Additional Topics in Probability and Counting Section 3.1 Basic

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MGF 1106 Exam #2 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) Six students, A, B, C, D, E, F, are to give speeches to

More information

Fall Math 140 Week-in-Review #5 courtesy: Kendra Kilmer (covering Sections 3.4 and 4.1) Section 3.4

Fall Math 140 Week-in-Review #5 courtesy: Kendra Kilmer (covering Sections 3.4 and 4.1) Section 3.4 Section 3.4 A Standard Maximization Problem has the following properties: The objective function is to be maximized. All variables are non-negative. Fall 2017 Math 140 Week-in-Review #5 courtesy: Kendra

More information

4.2 Probability Models

4.2 Probability Models 4.2 Probability Models Ulrich Hoensch Tuesday, February 19, 2013 Sample Spaces Examples 1. When tossing a coin, the sample space is S = {H, T }, where H = heads, T = tails. 2. When randomly selecting a

More information

MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES DISTRIBUTION FUNCTION AND ITS PROPERTIES

MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES DISTRIBUTION FUNCTION AND ITS PROPERTIES MODULE 2 RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 7-11 Topics 2.1 RANDOM VARIABLE 2.2 INDUCED PROBABILITY MEASURE 2.3 DISTRIBUTION FUNCTION AND ITS PROPERTIES 2.4 TYPES OF RANDOM VARIABLES: DISCRETE,

More information

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3342 Summer II, July 21, 2000 ANSWERS EXAM Exam # Math 3342 Summer II, 2 July 2, 2 ANSWERS i pts. Problem. Consider the following data: 7, 8, 9, 2,, 7, 2, 3. Find the first quartile, the median, and the third quartile. Make a box and whisker

More information

Term Definition Example Random Phenomena

Term Definition Example Random Phenomena UNIT VI STUDY GUIDE Probabilities Course Learning Outcomes for Unit VI Upon completion of this unit, students should be able to: 1. Apply mathematical principles used in real-world situations. 1.1 Demonstrate

More information

Properties of Probability

Properties of Probability Econ 325 Notes on Probability 1 By Hiro Kasahara Properties of Probability In statistics, we consider random experiments, experiments for which the outcome is random, i.e., cannot be predicted with certainty.

More information

MA 250 Probability and Statistics. Nazar Khan PUCIT Lecture 15

MA 250 Probability and Statistics. Nazar Khan PUCIT Lecture 15 MA 250 Probability and Statistics Nazar Khan PUCIT Lecture 15 RANDOM VARIABLES Random Variables Random variables come in 2 types 1. Discrete set of outputs is real valued, countable set 2. Continuous set

More information

STAT 516 Answers Homework 2 January 23, 2008 Solutions by Mark Daniel Ward PROBLEMS. = {(a 1, a 2,...) : a i < 6 for all i}

STAT 516 Answers Homework 2 January 23, 2008 Solutions by Mark Daniel Ward PROBLEMS. = {(a 1, a 2,...) : a i < 6 for all i} STAT 56 Answers Homework 2 January 23, 2008 Solutions by Mark Daniel Ward PROBLEMS 2. We note that E n consists of rolls that end in 6, namely, experiments of the form (a, a 2,...,a n, 6 for n and a i

More information

Discrete Random Variables (1) Solutions

Discrete Random Variables (1) Solutions STAT/MATH 394 A - PROBABILITY I UW Autumn Quarter 06 Néhémy Lim Discrete Random Variables ( Solutions Problem. The probability mass function p X of some discrete real-valued random variable X is given

More information

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information

Probability the chance that an uncertain event will occur (always between 0 and 1)

Probability the chance that an uncertain event will occur (always between 0 and 1) Quantitative Methods 2013 1 Probability as a Numerical Measure of the Likelihood of Occurrence Probability the chance that an uncertain event will occur (always between 0 and 1) Increasing Likelihood of

More information

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y

Presentation on Theo e ry r y o f P r P o r bab a il i i l t i y Presentation on Theory of Probability Meaning of Probability: Chance of occurrence of any event In practical life we come across situation where the result are uncertain Theory of probability was originated

More information

First Digit Tally Marks Final Count

First Digit Tally Marks Final Count Benford Test () Imagine that you are a forensic accountant, presented with the two data sets on this sheet of paper (front and back). Which of the two sets should be investigated further? Why? () () ()

More information

Chapter 3 : Conditional Probability and Independence

Chapter 3 : Conditional Probability and Independence STAT/MATH 394 A - PROBABILITY I UW Autumn Quarter 2016 Néhémy Lim Chapter 3 : Conditional Probability and Independence 1 Conditional Probabilities How should we modify the probability of an event when

More information

7.5: Conditional Probability and Independent Events

7.5: Conditional Probability and Independent Events c Dr Oksana Shatalov, Spring 2012 1 7.5: Conditional Probability and Independent Events EXAMPLE 1. Two cards are drawn from a deck of 52 without replacement. (a) What is the probability of that the first

More information

ORF 245 Fundamentals of Statistics Chapter 5 Probability

ORF 245 Fundamentals of Statistics Chapter 5 Probability ORF 245 Fundamentals of Statistics Chapter 5 Probability Robert Vanderbei Oct 2015 Slides last edited on October 14, 2015 http://www.princeton.edu/ rvdb Sample Spaces (aka Populations) and Events When

More information

1. Sample spaces, events and conditional probabilities. A sample space is a finite or countable set S together with a function. P (x) = 1.

1. Sample spaces, events and conditional probabilities. A sample space is a finite or countable set S together with a function. P (x) = 1. DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY Probability theory H.W. Lenstra, Jr. These notes contain material on probability for Math 55, Discrete mathematics. They were written to supplement

More information

STP 226 ELEMENTARY STATISTICS

STP 226 ELEMENTARY STATISTICS STP 226 ELEMENTARY STATISTICS CHAPTER 5 Probability Theory - science of uncertainty 5.1 Probability Basics Equal-Likelihood Model Suppose an experiment has N possible outcomes, all equally likely. Then

More information

HW MATH425/525 Lecture Notes 1

HW MATH425/525 Lecture Notes 1 HW MATH425/525 Lecture Notes 1 Definition 4.1 If an experiment can be repeated under the same condition, its outcome cannot be predicted with certainty, and the collection of its every possible outcome

More information

A Event has occurred

A Event has occurred Statistics and probability: 1-1 1. Probability Event: a possible outcome or set of possible outcomes of an experiment or observation. Typically denoted by a capital letter: A, B etc. E.g. The result of

More information

Chapter 2: Probability Part 1

Chapter 2: Probability Part 1 Engineering Probability & Statistics (AGE 1150) Chapter 2: Probability Part 1 Dr. O. Phillips Agboola Sample Space (S) Experiment: is some procedure (or process) that we do and it results in an outcome.

More information

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3.

Independence. P(A) = P(B) = 3 6 = 1 2, and P(C) = 4 6 = 2 3. Example: A fair die is tossed and we want to guess the outcome. The outcomes will be 1, 2, 3, 4, 5, 6 with equal probability 1 6 each. If we are interested in getting the following results: A = {1, 3,

More information

Mutually Exclusive Events

Mutually Exclusive Events 172 CHAPTER 3 PROBABILITY TOPICS c. QS, 7D, 6D, KS Mutually Exclusive Events A and B are mutually exclusive events if they cannot occur at the same time. This means that A and B do not share any outcomes

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

MATH STUDENT BOOK. 12th Grade Unit 9

MATH STUDENT BOOK. 12th Grade Unit 9 MATH STUDENT BOOK 12th Grade Unit 9 Unit 9 COUNTING PRINCIPLES MATH 1209 COUNTING PRINCIPLES INTRODUCTION 1. PROBABILITY DEFINITIONS, SAMPLE SPACES, AND PROBABILITY ADDITION OF PROBABILITIES 11 MULTIPLICATION

More information

MAT Mathematics in Today's World

MAT Mathematics in Today's World MAT 1000 Mathematics in Today's World Last Time We discussed the four rules that govern probabilities: 1. Probabilities are numbers between 0 and 1 2. The probability an event does not occur is 1 minus

More information

Dynamic Programming Lecture #4

Dynamic Programming Lecture #4 Dynamic Programming Lecture #4 Outline: Probability Review Probability space Conditional probability Total probability Bayes rule Independent events Conditional independence Mutual independence Probability

More information

Stats Probability Theory

Stats Probability Theory Stats 241.3 Probability Theory Instructor: Office: W.H.Laverty 235 McLean Hall Phone: 966-6096 Lectures: Evaluation: M T W Th F 1:30pm - 2:50pm Thorv 105 Lab: T W Th 3:00-3:50 Thorv 105 Assignments, Labs,

More information