2.2. THE PRODUCT AND QUOTIENT RULES 179. P dv dt + V dp. dt.

Size: px
Start display at page:

Download "2.2. THE PRODUCT AND QUOTIENT RULES 179. P dv dt + V dp. dt."

Transcription

1 22 THE PRODUCT AND QUOTIENT RULES 179 Thus, using the Product Rule, we find that dt = 1 k P dv + V dp At t = t 0, we obtain dt = 1 [(100, 000)(0005) + (002)( 100)] = 6225 K/s t0 8 Hence, at time t 0, the temperature is increasing at a rate of 6225 K/s Example 2211 In Example 1413, we looked at Newton s 2nd Law of Motion: the net force acting on an object equals the (instantaneous) rate of change, with respect to time, of the momentum of the object, when the mass is constant or when mass is added or subtracted with zero velocity If F denotes the net force, m the mass, v the velocity, a the acceleration, and t the time, Newton s 2nd Law, combined with the Product Rule, tells us F = d dv (mv) = m + v dm = ma + v dm If the mass is constant, which is the usual case, then dm/ equals 0, and the formula above collapses to the familiar F = ma However, if the mass is changing with time, then the dm/ can be very important See, for instance, Exercise 44 in this section 221 Exercises Find the first and second derivatives of the rational functions in Exercises 1 through 8 1 f(x) = x x 1 2 f(x) = x 1 x

2 180 CHAPTER 2 BASIC RULES FOR CALCULATING DERIVATIVES 3 f(x) = 2x2 +15x 2 3x 3 +2x 4 f(x) = 2x 1 x 2x + 1 x 5 f(x) = 3x2 + x 4 + x x f(x) = x + a x + b 7 f(x) = 4 x 2 +2 (x 4)2 8 f(x) = (either expand the numerator and denominator, or rewrite each of them (x 3) 2 as a product) Find the critical points of each of the functions in Exercises 9 through 11, and describe the intervals on which the function is increasing and those on which it is decreasing 9 f(x) =(2x + 8)( 3x + 6) 10 f(x) = x2 2x 1 2x 5 11 f(x) =(x 1)(x 3 +3x 2 +7x + 19) In Exercises 12-15, determine if the statement is true or false If it is true, what theorem(s) supports the conclusion? If it is false, present a counterexample 12 If f and g are di erentiable at x, then the function fg is di erentiable at x 13 If f and g are functions such that the function fg is di erentiable at x, then at least one of f or g must be di erentiable at x 14 If f and g are di erentiable at x, then the quotient f/g is di erentiable at x 15 If f and g are di erentiable at x and g(x) 6= 0, then the quotient f/g is continuous at x 16 What technique (or trick ) is used in the proof of the Product Rule? 17 Generalize the Product Rule to the product of 3 functions, ie, if f = f 1 f 2 f 3,findf 0,in terms of f 1, f 2, f 3, and their individual derivatives Can you see how this generalizes to a product of n functions?

3 22 THE PRODUCT AND QUOTIENT RULES Use your formula for the derivative of a product of n functions from the previous problem to determine the derivative of the following function: f(x) =(2x + 5) n 19 Let k(x) = f(x) Assume f and g are di erentiable, and that f and g are everywhere g(x) f non-zero Show that k 0 0 g 0 = k f g 20 Suppose the cost of producing n cars is p n dollars a Write a formula for the cost per car of producing n cars b Use the Quotient Rule to determine the rate of change of the cost per car function In Exercises 21 through 23, give an equation for the tangent line to the graph of y = f(x) at the given point Leave your answers in point-slope form 21 f(x) = ax + b,(0, b/d) Assume d 6= 0 cx + d 22 f(x) = (x + 1)3 (x + 2) 3,( 1, 0) x 23 f(x) = 1,(1, 1/2) 1+xn 24 Let g n (x) = xn 1 x 1 What is g0 n(1/2)? What is the limit as n!1of gn(1/2)? 0 Is there another way to see this? 25 Assume that f and g are di erentiable Derive expressions for d 2 dx 2 [f(x)g(x)] and d 3 dx 3 [f(x)g(x)] 26 Assume that f and g are di erentiable, and that g is non-zero Derive an expression for d 2 apple f(x) dx 2 g(x) 27 Recall that the magnitude F of the force of gravity between two masses M and m is given by F = GMm/r 2,wherer is the distance between the two masses and G is the universal gravitational constant Suppose that one object is increasing in mass and that the distance between the two objects is increasing Let M = 1000(1 + t 3 ) and r(t) =t 2 Assume m and G are constant and calculate F 0 (t)

4 182 CHAPTER 2 BASIC RULES FOR CALCULATING DERIVATIVES 28 Assume f and g are di erentiable, and that g(x) > 0, for all x Suppose that, for all x, g 0 f(g 2 + 1) + f 0 g(g 2 1) = 0 Show that fg and f/g di er by a constant Calculate the derivatives in Exercises 29 through 33 Assume that f, g and h are all di erentiable and positive valued functions 29 y =(x a) 2 f(x) 30 y = 31 y = f(x) x f(x) g(x) f(x)+g(x) 32 y = f(x) x n,napositive integer 33 y = f(x)g(x) h(x) 34 Let f(x) be di erentiable and let a be any point in the domain of f Consider the AROC function: AROC(x) = f(x) f(a) Calculate d AROC(x) using the Quotient Rule x a dx In Exercises 35 through 38 you are given the velocity function of a particle at time t Calculate the acceleration and jerk functions 35 v(t) =(t 2 +3t + 1)(t 5 1) 36 v(t) = t +2 p t 37 v(t) = 38 v(t) = t7 1 t 1 t 4 1 (t 2 1)(t + 3) 39 A root a of a polynomial p(x) has multiplicity n if (x a) n is the highest power of (x a) that s a factor of p(x) For example, if p(x) =(x 7) 3 (x + 4) 2, then 7 is a root with multiplicity 3 and 4 is a root with multiplicity 2 Show that if x = a is a root of multiplicity n 2 of a polynomial p(x), then a is also a root of p 0 (x) 40 Suppose that f and g are di erentiable functions and that, for all x, f(x) 0, g(x) > 0, and g 0 (x) apple 0 Suppose also that h(x) =f(x) g(x) is an increasing function Show that f(x) must also be an increasing function

5 22 THE PRODUCT AND QUOTIENT RULES Suppose that f(x),g(x) are di erentiable functions whose common domain is I, an open interval Suppose further that neither function has a root in I (ie, for all x in I, f(x) 6= 0, and g(x) 6= 0) Suppose further that, for all x in I, f 0 (x) f(x) = g0 (x) g(x) Show that f(x) g(x) is constant, and conclude that f(x) is a multiple of g(x) 42 Work is defined to be the product of force and displacement Thus, if p(t) is the position, in meters, of an object, which is traveling in a straight line, at time t seconds, and the object is acted on by a constant net force F, in Newtons, then we say that the work done by the force, at time t, isw (t) =F (p(t) variable force requires Integral Calculus) p(0)), in Joules (Calculating work done by a a Write a formula describing the rate of change of work, as a function of time b If p(t) =t 2 +4t + 9 meters, and F = 16 Newtons, find the rate of change of work, with respect to time, at t = 20 seconds 43 Ohm s Law gives a relationship between current, resistance, and voltage in electrical circuits One formulation of Ohm s Law is the relationship I = V/R, where I is current measured in amperes, V is potential di erence (or voltage) across the circuit, measured in volts, and R is resistance, measured in ohms a Assuming that, in some circuit, both V and R are functions of time, find the rate of change of I, withrespecttothetime,t, in seconds, in terms of the rates of change of V and R, withrespecttotime b If V = t 2 2t+11 and R = t 2 2t+3, find the rate of change of current, with respect to time, at t = 1 c At what time does the current reach its maximum? d What are the voltage and resistance when the current is at its maximum? 44 A car is traveling along a road At a particular time t 0 seconds, the velocity of the car is 10 m/s, and its acceleration is 2 m/s 2 Attimet 0, the mass of the car is 2000 kg However, due to a gas leak, the mass of the car is decreasing at a rate of 1/60 kg/s Assume (somewhat strangely) that the leaking gas exits the car with zero velocity (relative to whomever measures the car s velocity as being 10 m/s) What is the rate of change of the momentum of this car, with respect to time, at time t 0? What does this tell you about the net force acting on the car at time t 0? 45 Suppose that the population of a country is modeled using the logistic equation This country can support a maximum population of 25 million people, and the proportionality constant is k =16

6 184 CHAPTER 2 BASIC RULES FOR CALCULATING DERIVATIVES a Write a formula for the rate of change of the population over time, dp b For what values of P is the population increasing? c For what values of P is the population decreasing? d Write a formula for d2 P 2 e For what values of P is the rate of increase of the population increasing? f For what values of P is the rate of increase of the population decreasing? 46 Given a pair (h 1,h 2 ) of di erentiable functions, define the derivative of the pair to be the pair of derivatives, ie, define (h 1,h 2 ) 0 = (h 0 1,h 0 2) Now, consider two pairs of di erentiable functions (f 1 (x),f 2 (x)) and (g 1 (x),g 2 (x)) Given such a pair, we define the dot product as follows: (f 1 (x),f 2 (x)) (g 1 (x),g 2 (x)) = f 1 (x)g 1 (x)+f 2 (x)g 2 (x) Prove that there is a Product Rule for the dot product, that is, prove that [(f 1 (x),f 2 (x)) (g 1 (x),g 2 (x))] 0 = (f 1 (x),f 2 (x)) (g 1 (x),g 2 (x)) 0 + (f 1 (x),f 2 (x)) 0 (g 1 (x),g 2 (x)) Generalize the definition of the dot product to pairs of n functions (pairs of ordered n- tuples), and show that the Product Rule is still satisfied 47 Verify that the Product Rule for dot products from the previous problem holds for the two triplets of functions (x 2 +1, 1/x, 5x + 7) and (4x +3, 1+1/x 2, 2x + 1) 48 Bob and Jane both know the Product Rule and, from Example 1418, they both know that x at not di erentiable at 0 Bob and Jane are having an argument about the di erentiability of f(x) = x x at 0 Bob says that f(x) is not di erentiable at 0, because the Product Rule tells us that f 0 (x) = x x 0 + x (x) 0, and x 0 is not defined at 0

1.1. BASIC ANTI-DIFFERENTIATION 21 + C.

1.1. BASIC ANTI-DIFFERENTIATION 21 + C. .. BASIC ANTI-DIFFERENTIATION and so e x cos xdx = ex sin x + e x cos x + C. We end this section with a possibly surprising complication that exists for anti-di erentiation; a type of complication which

More information

AP Calculus Chapter 3 Testbank (Mr. Surowski)

AP Calculus Chapter 3 Testbank (Mr. Surowski) AP Calculus Chapter 3 Testbank (Mr. Surowski) Part I. Multiple-Choice Questions (5 points each; please circle the correct answer.). If f(x) = 0x 4 3 + x, then f (8) = (A) (B) 4 3 (C) 83 3 (D) 2 3 (E) 2

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION 4.9 Antiderivatives In this section, we will learn about: Antiderivatives and how they are useful in solving certain scientific problems.

More information

Chapter Product Rule and Quotient Rule for Derivatives

Chapter Product Rule and Quotient Rule for Derivatives Chapter 3.3 - Product Rule and Quotient Rule for Derivatives Theorem 3.6: The Product Rule If f(x) and g(x) are differentiable at any x then Example: The Product Rule. Find the derivatives: Example: The

More information

MATH 1902: Mathematics for the Physical Sciences I

MATH 1902: Mathematics for the Physical Sciences I MATH 1902: Mathematics for the Physical Sciences I Dr Dana Mackey School of Mathematical Sciences Room A305 A Email: Dana.Mackey@dit.ie Dana Mackey (DIT) MATH 1902 1 / 46 Module content/assessment Functions

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas Unit IV Derivatives 20 Hours Finish by Christmas Calculus There two main streams of Calculus: Differentiation Integration Differentiation is used to find the rate of change of variables relative to one

More information

MA 137 Calculus 1 with Life Science Applications The Chain Rule and Higher Derivatives (Section 4.4)

MA 137 Calculus 1 with Life Science Applications The Chain Rule and Higher Derivatives (Section 4.4) MA 137 Calculus 1 with Life Science Applications and (Section 4.4) Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky March 2, 2016 1/15 Theorem Rules of Differentiation

More information

1 Antiderivatives graphically and numerically

1 Antiderivatives graphically and numerically Math B - Calculus by Hughes-Hallett, et al. Chapter 6 - Constructing antiderivatives Prepared by Jason Gaddis Antiderivatives graphically and numerically Definition.. The antiderivative of a function f

More information

Chapter. Integration. 1. Antidifferentiation: The Indefinite Integral. 2. Integration by Substitution. 3. Introduction to Differential Equations

Chapter. Integration. 1. Antidifferentiation: The Indefinite Integral. 2. Integration by Substitution. 3. Introduction to Differential Equations Integration Chapter. Antidifferentiation: The Indefinite Integral 2. Integration by Substitution 3. Introduction to Differential Equations 4. Integration by Parts Chapter Summary and Review Problems Antidifferentiation:

More information

MATH 115 SECOND MIDTERM EXAM

MATH 115 SECOND MIDTERM EXAM MATH 115 SECOND MIDTERM EXAM November 22, 2005 NAME: SOLUTION KEY INSTRUCTOR: SECTION NO: 1. Do not open this exam until you are told to begin. 2. This exam has 10 pages including this cover. There are

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus The Fundamental Theorem of Calculus Objectives Evaluate a definite integral using the Fundamental Theorem of Calculus. Understand and use the Mean Value Theorem for Integrals. Find the average value of

More information

Mathematics for Business and Economics - I. Chapter 5. Functions (Lecture 9)

Mathematics for Business and Economics - I. Chapter 5. Functions (Lecture 9) Mathematics for Business and Economics - I Chapter 5. Functions (Lecture 9) Functions The idea of a function is this: a correspondence between two sets D and R such that to each element of the first set,

More information

d = k where k is a constant of proportionality equal to the gradient.

d = k where k is a constant of proportionality equal to the gradient. VARIATION In Physics and Chemistry there are many laws where one quantity varies in some way with another quantity. We will be studying three types of variation direct, inverse and joint.. DIRECT VARIATION

More information

2.1 The Tangent and Velocity Problems

2.1 The Tangent and Velocity Problems 2.1 The Tangent and Velocity Problems Tangents What is a tangent? Tangent lines and Secant lines Estimating slopes from discrete data: Example: 1. A tank holds 1000 gallons of water, which drains from

More information

Solutions to the Review Questions

Solutions to the Review Questions Solutions to the Review Questions Short Answer/True or False. True or False, and explain: (a) If y = y + 2t, then 0 = y + 2t is an equilibrium solution. False: This is an isocline associated with a slope

More information

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4

Limits and Continuity. 2 lim. x x x 3. lim x. lim. sinq. 5. Find the horizontal asymptote (s) of. Summer Packet AP Calculus BC Page 4 Limits and Continuity t+ 1. lim t - t + 4. lim x x x x + - 9-18 x-. lim x 0 4-x- x 4. sinq lim - q q 5. Find the horizontal asymptote (s) of 7x-18 f ( x) = x+ 8 Summer Packet AP Calculus BC Page 4 6. x

More information

March 5, 2009 Name The problems count as marked. The total number of points available is 131. Throughout this test, show your work.

March 5, 2009 Name The problems count as marked. The total number of points available is 131. Throughout this test, show your work. March 5, 2009 Name The problems count as marked. The total number of points available is 131. Throughout this test, show your work. 1. (12 points) Consider the cubic curve f(x) = 2x 3 + 3x + 2. (a) What

More information

MATH 2554 (Calculus I)

MATH 2554 (Calculus I) MATH 2554 (Calculus I) Dr. Ashley K. University of Arkansas February 21, 2015 Table of Contents Week 6 1 Week 6: 16-20 February 3.5 Derivatives as Rates of Change 3.6 The Chain Rule 3.7 Implicit Differentiation

More information

CH 2: Limits and Derivatives

CH 2: Limits and Derivatives 2 The tangent and velocity problems CH 2: Limits and Derivatives the tangent line to a curve at a point P, is the line that has the same slope as the curve at that point P, ie the slope of the tangent

More information

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II)

MATH 18.01, FALL PROBLEM SET #5 SOLUTIONS (PART II) MATH 8, FALL 7 - PROBLEM SET #5 SOLUTIONS (PART II (Oct ; Antiderivatives; + + 3 7 points Recall that in pset 3A, you showed that (d/dx tanh x x Here, tanh (x denotes the inverse to the hyperbolic tangent

More information

3 Polynomial and Rational Functions

3 Polynomial and Rational Functions 3 Polynomial and Rational Functions 3.1 Polynomial Functions and their Graphs So far, we have learned how to graph polynomials of degree 0, 1, and. Degree 0 polynomial functions are things like f(x) =,

More information

What will you learn?

What will you learn? Section 2.2 Basic Differentiation Rules & Rates of Change Calc What will you learn? Find the derivative using the Constant Rule Find the derivative using the Power Rule Find the derivative using the Constant

More information

3 Geometrical Use of The Rate of Change

3 Geometrical Use of The Rate of Change Arkansas Tech University MATH 224: Business Calculus Dr. Marcel B. Finan Geometrical Use of The Rate of Change Functions given by tables of values have their limitations in that nearly always leave gaps.

More information

Business and Life Calculus

Business and Life Calculus Business and Life Calculus George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 112 George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

2. Theory of the Derivative

2. Theory of the Derivative 2. Theory of the Derivative 2.1 Tangent Lines 2.2 Definition of Derivative 2.3 Rates of Change 2.4 Derivative Rules 2.5 Higher Order Derivatives 2.6 Implicit Differentiation 2.7 L Hôpital s Rule 2.8 Some

More information

1. The accumulated net change function or area-so-far function

1. The accumulated net change function or area-so-far function Name: Section: Names of collaborators: Main Points: 1. The accumulated net change function ( area-so-far function) 2. Connection to antiderivative functions: the Fundamental Theorem of Calculus 3. Evaluating

More information

Calculus I Sample Exam #01

Calculus I Sample Exam #01 Calculus I Sample Exam #01 1. Sketch the graph of the function and define the domain and range. 1 a) f( x) 3 b) g( x) x 1 x c) hx ( ) x x 1 5x6 d) jx ( ) x x x 3 6 . Evaluate the following. a) 5 sin 6

More information

AP Calculus BC Class Starter January 22, 2018

AP Calculus BC Class Starter January 22, 2018 January 22, 2018 1. Given the function, find the following. (a) Evaluate f(4). (b) The definition of the derivative can be written two ways, as indicated below. Find both forms and evaluate the derivative

More information

1 + x 2 d dx (sec 1 x) =

1 + x 2 d dx (sec 1 x) = Page This exam has: 8 multiple choice questions worth 4 points each. hand graded questions worth 4 points each. Important: No graphing calculators! Any non-graphing, non-differentiating, non-integrating

More information

Chapter 2 Differentiation. 2.1 Tangent Lines and Their Slopes. Calculus: A Complete Course, 8e Chapter 2: Differentiation

Chapter 2 Differentiation. 2.1 Tangent Lines and Their Slopes. Calculus: A Complete Course, 8e Chapter 2: Differentiation Chapter 2 Differentiation 2.1 Tangent Lines and Their Slopes 1) Find the slope of the tangent line to the curve y = 4x x 2 at the point (-1, 0). A) -1 2 C) 6 D) 2 1 E) -2 2) Find the equation of the tangent

More information

Calculus I. 1. Limits and Continuity

Calculus I. 1. Limits and Continuity 2301107 Calculus I 1. Limits and Continuity Outline 1.1. Limits 1.1.1 Motivation:Tangent 1.1.2 Limit of a function 1.1.3 Limit laws 1.1.4 Mathematical definition of a it 1.1.5 Infinite it 1.1. Continuity

More information

LIMITS AND DERIVATIVES

LIMITS AND DERIVATIVES 2 LIMITS AND DERIVATIVES LIMITS AND DERIVATIVES 1. Equation In Section 2.7, we considered the derivative of a function f at a fixed number a: f '( a) lim h 0 f ( a h) f ( a) h In this section, we change

More information

CHAPTER ONE FUNCTIONS AND GRAPHS. In everyday life, many quantities depend on one or more changing variables eg:

CHAPTER ONE FUNCTIONS AND GRAPHS. In everyday life, many quantities depend on one or more changing variables eg: CHAPTER ONE FUNCTIONS AND GRAPHS 1.0 Introduction to Functions In everyday life, many quantities depend on one or more changing variables eg: (a) plant growth depends on sunlight and rainfall (b) speed

More information

XXIX Applications of Differential Equations

XXIX Applications of Differential Equations MATHEMATICS 01-BNK-05 Advanced Calculus Martin Huard Winter 015 1. Suppose that the rate at which a population of size yt at time t changes is proportional to the amount present. This gives rise to the

More information

Average rates of change May be used to estimate the derivative at a point

Average rates of change May be used to estimate the derivative at a point Derivatives Big Ideas Rule of Four: Numerically, Graphically, Analytically, and Verbally Average rate of Change: Difference Quotient: y x f( a+ h) f( a) f( a) f( a h) f( a+ h) f( a h) h h h Average rates

More information

Solutions to the Review Questions

Solutions to the Review Questions Solutions to the Review Questions Short Answer/True or False. True or False, and explain: (a) If y = y + 2t, then 0 = y + 2t is an equilibrium solution. False: (a) Equilibrium solutions are only defined

More information

More calculations of the derivative

More calculations of the derivative 1 More calculations of the derivative There are more quick rules to help differentiate functions easily. Theorem (Product Rule) Dx [ f(x) g(x) ] = f(x) Dx[g(x)] + g(x) Dx[f(x)]. Using the prime notation,

More information

Introduction to Calculus

Introduction to Calculus Introduction to Calculus Contents 1 Introduction to Calculus 3 11 Introduction 3 111 Origin of Calculus 3 112 The Two Branches of Calculus 4 12 Secant and Tangent Lines 5 13 Limits 10 14 The Derivative

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 A Function and its Second Derivative Recall page 4 of Handout 3.1 where we encountered the third degree polynomial f(x) = x 3 5x 2 4x + 20. Its derivative

More information

Unit #6 Basic Integration and Applications Homework Packet

Unit #6 Basic Integration and Applications Homework Packet Unit #6 Basic Integration and Applications Homework Packet For problems, find the indefinite integrals below.. x 3 3. x 3x 3. x x 3x 4. 3 / x x 5. x 6. 3x x3 x 3 x w w 7. y 3 y dy 8. dw Daily Lessons and

More information

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the Area and Tangent Problem Calculus is motivated by two main problems. The first is the area problem. It is a well known result that the area of a rectangle with length l and width w is given by A = wl.

More information

1.1 : (The Slope of a straight Line)

1.1 : (The Slope of a straight Line) 1.1 : (The Slope of a straight Line) Equations of Nonvertical Lines: A nonvertical line L has an equation of the form y mx b. The number m is called the slope of L and the point (0, b) is called the y-intercept.

More information

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular,

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Lecture 6. Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Newton's second law. However, this is not always the most

More information

Lecture 2. Derivative. 1 / 26

Lecture 2. Derivative. 1 / 26 Lecture 2. Derivative. 1 / 26 Basic Concepts Suppose we wish to nd the rate at which a given function f (x) is changing with respect to x when x = c. The simplest idea is to nd the average rate of change

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

CHAPTER 4: Polynomial and Rational Functions

CHAPTER 4: Polynomial and Rational Functions MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial

More information

8. Limit Laws. lim(f g)(x) = lim f(x) lim g(x), (x) = lim x a f(x) g lim x a g(x)

8. Limit Laws. lim(f g)(x) = lim f(x) lim g(x), (x) = lim x a f(x) g lim x a g(x) 8. Limit Laws 8.1. Basic Limit Laws. If f and g are two functions and we know the it of each of them at a given point a, then we can easily compute the it at a of their sum, difference, product, constant

More information

Math 134 Exam 2 November 5, 2009

Math 134 Exam 2 November 5, 2009 Math 134 Exam 2 November 5, 2009 Name: Score: / 80 = % 1. (24 Points) (a) (8 Points) Find the slope of the tangent line to the curve y = 9 x2 5 x 2 at the point when x = 2. To compute this derivative we

More information

We first review various rules for easy differentiation of common functions: The same procedure works for a larger number of terms.

We first review various rules for easy differentiation of common functions: The same procedure works for a larger number of terms. 1 Math 182 Lecture Notes 1. Review of Differentiation To differentiate a function y = f(x) is to find its derivative f '(x). Another standard notation for the derivative is Dx(f(x)). Recall the meanings

More information

Chapter 2. Motion in One Dimension

Chapter 2. Motion in One Dimension Chapter 2 Motion in One Dimension Types of Motion Translational An example is a car traveling on a highway. Rotational An example is the Earth s spin on its axis. Vibrational An example is the back-and-forth

More information

3.1 Day 1: The Derivative of a Function

3.1 Day 1: The Derivative of a Function A P Calculus 3.1 Day 1: The Derivative of a Function I CAN DEFINE A DERIVATIVE AND UNDERSTAND ITS NOTATION. Last chapter we learned to find the slope of a tangent line to a point on a graph by using a

More information

3.1 Derivative Formulas for Powers and Polynomials

3.1 Derivative Formulas for Powers and Polynomials 3.1 Derivative Formulas for Powers and Polynomials First, recall that a derivative is a function. We worked very hard in 2.2 to interpret the derivative of a function visually. We made the link, in Ex.

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 3 Differentiation Rules 3.1 The Derivative of Polynomial and Exponential Functions In this section we learn how to differentiate constant functions, power functions, polynomials, and exponential functions.

More information

Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions 2/19/7

Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions 2/19/7 Analytic Geometry and Calculus I Exam 1 Practice Problems Solutions /19/7 Question 1 Write the following as an integer: log 4 (9)+log (5) We have: log 4 (9)+log (5) = ( log 4 (9)) ( log (5)) = 5 ( log

More information

One-Variable Calculus

One-Variable Calculus POLI 270 - Mathematical and Statistical Foundations Department of Political Science University California, San Diego September 30, 2010 1 s,, 2 al Relationships Political Science, economics, sociology,

More information

Example: Limit definition. Geometric meaning. Geometric meaning, y. Notes. Notes. Notes. f (x, y) = x 2 y 3 :

Example: Limit definition. Geometric meaning. Geometric meaning, y. Notes. Notes. Notes. f (x, y) = x 2 y 3 : Partial Derivatives 14.3 02 October 2013 Derivative in one variable. Recall for a function of one variable, f (a) = lim h 0 f (a + h) f (a) h slope f (a + h) f (a) h a a + h Partial derivatives. For a

More information

4.9 Anti-derivatives. Definition. An anti-derivative of a function f is a function F such that F (x) = f (x) for all x.

4.9 Anti-derivatives. Definition. An anti-derivative of a function f is a function F such that F (x) = f (x) for all x. 4.9 Anti-derivatives Anti-differentiation is exactly what it sounds like: the opposite of differentiation. That is, given a function f, can we find a function F whose derivative is f. Definition. An anti-derivative

More information

Section 6: Second Derivative and Concavity Second Derivative and Concavity

Section 6: Second Derivative and Concavity Second Derivative and Concavity Chapter The Derivative Applied Calculus 1 Section 6: Second Derivative and Concavity Second Derivative and Concavity Graphically, a function is concave up if its graph is curved with the opening upward

More information

Math 1314 Test 2 Review Lessons 2 8

Math 1314 Test 2 Review Lessons 2 8 Math 1314 Test Review Lessons 8 CASA reservation required. GGB will be provided on the CASA computers. 50 minute exam. 15 multiple choice questions. Do Practice Test for extra practice and extra credit.

More information

(2) Let f(x) = a 2 x if x<2, 4 2x 2 ifx 2. (b) Find the lim f(x). (c) Find all values of a that make f continuous at 2. Justify your answer.

(2) Let f(x) = a 2 x if x<2, 4 2x 2 ifx 2. (b) Find the lim f(x). (c) Find all values of a that make f continuous at 2. Justify your answer. (1) Let f(x) = x x 2 9. (a) Find the domain of f. (b) Write an equation for each vertical asymptote of the graph of f. (c) Write an equation for each horizontal asymptote of the graph of f. (d) Is f odd,

More information

(x) = lim. dx = f f(x + h) f(x)

(x) = lim. dx = f f(x + h) f(x) Chapter 4 The Derivative In our investigation so far, we have defined the notion of an instantaneous rate of change, and called this the derivative. We have also identified this mathematical concept with

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a)

2.1 The derivative. Rates of change. m sec = y f (a + h) f (a) 2.1 The derivative Rates of change 1 The slope of a secant line is m sec = y f (b) f (a) = x b a and represents the average rate of change over [a, b]. Letting b = a + h, we can express the slope of the

More information

ANSWERS, Homework Problems, Spring 2014 Now You Try It, Supplemental problems in written homework, Even Answers R.6 8) 27, 30) 25

ANSWERS, Homework Problems, Spring 2014 Now You Try It, Supplemental problems in written homework, Even Answers R.6 8) 27, 30) 25 ANSWERS, Homework Problems, Spring 2014, Supplemental problems in written homework, Even Answers Review Assignment: Precalculus Even Answers to Sections R1 R7 R.1 24) 4a 2 16ab + 16b 2 R.2 24) Prime 5x

More information

Math 106 Answers to Exam 1a Fall 2015

Math 106 Answers to Exam 1a Fall 2015 Math 06 Answers to Exam a Fall 05.. Find the derivative of the following functions. Do not simplify your answers. (a) f(x) = ex cos x x + (b) g(z) = [ sin(z ) + e z] 5 Using the quotient rule on f(x) and

More information

2.2 Average vs. Instantaneous Description

2.2 Average vs. Instantaneous Description 2 KINEMATICS 2.2 Average vs. Instantaneous Description Name: 2.2 Average vs. Instantaneous Description 2.2.1 Average vs. Instantaneous Velocity In the previous activity, you figured out that you can calculate

More information

Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value

Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value AP Calculus Unit 6 Basic Integration & Applications Day 5 Notes: The Fundamental Theorem of Calculus, Particle Motion, and Average Value b (1) v( t) dt p( b) p( a), where v(t) represents the velocity and

More information

Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April Give your name, TA and section number:

Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April Give your name, TA and section number: Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April 6 2018 Give your name, TA and section number: Name: TA: Section number: 1. There are 6 questions for a total of 100 points. The value of

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

Chapter 5 - Differentiating Functions

Chapter 5 - Differentiating Functions Chapter 5 - Differentiating Functions Section 5.1 - Differentiating Functions Differentiation is the process of finding the rate of change of a function. We have proven that if f is a variable dependent

More information

MATH 121: EXTRA PRACTICE FOR TEST 2. Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam.

MATH 121: EXTRA PRACTICE FOR TEST 2. Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam. MATH 121: EXTRA PRACTICE FOR TEST 2 Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam. 1 Linear Functions 1. Consider the functions f(x) = 3x + 5 and g(x)

More information

Section 3.2 Working with Derivatives

Section 3.2 Working with Derivatives Section 3.2 Working with Derivatives Problem (a) If f 0 (2) exists, then (i) lim f(x) must exist, but lim f(x) 6= f(2) (ii) lim f(x) =f(2). (iii) lim f(x) =f 0 (2) (iv) lim f(x) need not exist. The correct

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3. The Product and Quotient Rules In this section, we will learn about: Formulas that enable us to differentiate new functions formed from old functions by

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module Order of operations 6 Signed Numbers Factorization of Integers 7 Further Signed Numbers 3 Fractions 8 Power Laws 4 Fractions and Decimals 9 Introduction to Algebra 5 Percentages

More information

Physics 141 Energy 1 Page 1. Energy 1

Physics 141 Energy 1 Page 1. Energy 1 Physics 4 Energy Page Energy What I tell you three times is true. Lewis Carroll The interplay of mathematics and physics The mathematization of physics in ancient times is attributed to the Pythagoreans,

More information

Antiderivatives and Indefinite Integrals

Antiderivatives and Indefinite Integrals Antiderivatives and Indefinite Integrals MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After completing this lesson we will be able to use the definition

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES We have: Seen how to interpret derivatives as slopes and rates of change Seen how to estimate derivatives of functions given by tables of values Learned how

More information

x f(x)

x f(x) 1. Name three different reasons that a function can fail to be differential at a point. Give an example for each reason, and explain why your examples are valid. 2. Given the following table of values,

More information

x f(x)

x f(x) 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. 2. Given the following table of values,

More information

p105 Section 2.2: Basic Differentiation Rules and Rates of Change

p105 Section 2.2: Basic Differentiation Rules and Rates of Change 1 2 3 4 p105 Section 2.2: Basic Differentiation Rules and Rates of Change Find the derivative of a function using the Constant Rule Find the derivative of a function using the Power Rule Find the derivative

More information

Complex Numbers. Essential Question What are the subsets of the set of complex numbers? Integers. Whole Numbers. Natural Numbers

Complex Numbers. Essential Question What are the subsets of the set of complex numbers? Integers. Whole Numbers. Natural Numbers 3.4 Complex Numbers Essential Question What are the subsets of the set of complex numbers? In your study of mathematics, you have probably worked with only real numbers, which can be represented graphically

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

2.2 The Limit of a Function

2.2 The Limit of a Function 2.2 The Limit of a Function Introductory Example: Consider the function f(x) = x is near 0. x f(x) x f(x) 1 3.7320508 1 4.236068 0.5 3.8708287 0.5 4.1213203 0.1 3.9748418 0.1 4.0248457 0.05 3.9874607 0.05

More information

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA

Calculus. Weijiu Liu. Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA Calculus Weijiu Liu Department of Mathematics University of Central Arkansas 201 Donaghey Avenue, Conway, AR 72035, USA 1 Opening Welcome to your Calculus I class! My name is Weijiu Liu. I will guide you

More information

Blue Pelican Calculus First Semester

Blue Pelican Calculus First Semester Blue Pelican Calculus First Semester Student Version 1.01 Copyright 2011-2013 by Charles E. Cook; Refugio, Tx Edited by Jacob Cobb (All rights reserved) Calculus AP Syllabus (First Semester) Unit 1: Function

More information

Lecture 7 3.5: Derivatives - Graphically and Numerically MTH 124

Lecture 7 3.5: Derivatives - Graphically and Numerically MTH 124 Procedural Skills Learning Objectives 1. Given a function and a point, sketch the corresponding tangent line. 2. Use the tangent line to estimate the value of the derivative at a point. 3. Recognize keywords

More information

MATH 114 Calculus Notes on Chapter 2 (Limits) (pages 60-? in Stewart)

MATH 114 Calculus Notes on Chapter 2 (Limits) (pages 60-? in Stewart) Still under construction. MATH 114 Calculus Notes on Chapter 2 (Limits) (pages 60-? in Stewart) As seen in A Preview of Calculus, the concept of it underlies the various branches of calculus. Hence we

More information

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the

Chapter 2. Limits and Continuity. 2.1 Rates of change and Tangents to Curves. The average Rate of change of y = f(x) with respect to x over the Chapter 2 Limits and Continuity 2.1 Rates of change and Tangents to Curves Definition 2.1.1 : interval [x 1, x 2 ] is The average Rate of change of y = f(x) with respect to x over the y x = f(x 2) f(x

More information

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET CALCULUS Berkant Ustaoğlu CRYPTOLOUNGE.NET Secant 1 Definition Let f be defined over an interval I containing u. If x u and x I then f (x) f (u) Q = x u is the difference quotient. Also if h 0, such that

More information

MAT137 Calculus! Lecture 6

MAT137 Calculus! Lecture 6 MAT137 Calculus! Lecture 6 Today: 3.2 Differentiation Rules; 3.3 Derivatives of higher order. 3.4 Related rates 3.5 Chain Rule 3.6 Derivative of Trig. Functions Next: 3.7 Implicit Differentiation 4.10

More information

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS AP Calculus 5. Areas and Distances Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) Exercise : Calculate the area between the x-axis and the graph of y = 3 2x.

More information

Math 110 Final Exam General Review. Edward Yu

Math 110 Final Exam General Review. Edward Yu Math 110 Final Exam General Review Edward Yu Da Game Plan Solving Limits Regular limits Indeterminate Form Approach Infinities One sided limits/discontinuity Derivatives Power Rule Product/Quotient Rule

More information

1 Lecture 25: Extreme values

1 Lecture 25: Extreme values 1 Lecture 25: Extreme values 1.1 Outline Absolute maximum and minimum. Existence on closed, bounded intervals. Local extrema, critical points, Fermat s theorem Extreme values on a closed interval Rolle

More information

( 3) ( ) ( ) ( ) ( ) ( )

( 3) ( ) ( ) ( ) ( ) ( ) 81 Instruction: Determining the Possible Rational Roots using the Rational Root Theorem Consider the theorem stated below. Rational Root Theorem: If the rational number b / c, in lowest terms, is a root

More information

MA 102 Mathematics II Lecture Feb, 2015

MA 102 Mathematics II Lecture Feb, 2015 MA 102 Mathematics II Lecture 1 20 Feb, 2015 Differential Equations An equation containing derivatives is called a differential equation. The origin of differential equations Many of the laws of nature

More information

Displacement, Velocity, and Acceleration AP style

Displacement, Velocity, and Acceleration AP style Displacement, Velocity, and Acceleration AP style Linear Motion Position- the location of an object relative to a reference point. IF the position is one-dimension only, we often use the letter x to represent

More information

4.1 Inverse Variation Models

4.1 Inverse Variation Models 4.1. Inverse Variation Models www.ck1.org 4.1 Inverse Variation Models Learning Objectives Distinguish direct and inverse variation. Graph inverse variation equations. Write inverse variation equations.

More information