Regular Rational Diophantine Sextuples

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Regular Rational Diophantine Sextuples"

Transcription

1 Regulr Rtionl Diophntine Sextuples Philip E Gis A polynomil eqution in six vriles is given tht generlises the definition of regulr rtionl Diophntine triples, qudruples nd quintuples to regulr rtionl Diophntine sextuples. The definition n e used to extend rtionl Diophntine quintuple to wek rtionl Diophntine sextuple. In some ses regulr sextuple is full rtionl Diophntine sextuple. Ten exmples of this re provided. Introdution A rtionl Diophntine m-tuple is set of m positive rtionl numers { 1,, m } suh tht the produt of ny two is one less thn rtionl numer squred. i j + 1 = x ij 2, i j, i, x ij Q The prolem of finding suh m-tuples ws originlly introdued in the third entury AD y Diophntus of Alexndri who ws le to find triples nd qudruples of suh numers [1]. Diophntus ws interested in solving vriety of lgeri prolems in rtionl numers. In this se it is not ler why he hoose suh n esoteri prolem without ny nturl motivtion ut it hs turned out to e rih sujet onneting Fioni numers [2] ellipti urves [3] nd lgeri invrints [4] while providing mny onjetures, generlistions, nd of ourse some results. During the renissne Pierre de Fermt reinvented Diophntine numer theory s the serh for solutions in integers rther thn rtionls nd provided the sequene 1,3,8,120 s the first Diophntine qudruple in positive integers [5]. It ws not until the twentieth entury tht Bker nd Dvenport showed tht no fifth integer n e dded to Fermt s sequene to mke Diophntine quintuple [6]. However there re mny suh Diophntine qudruples nd it is n outstnding prolem to determine whether ny suh Diophntine quintuple exists. It is now known tht no Diophntine sextuple exists in integers nd there is ound on the numer of possile quintuples [7,8]. After so muh progress on the prolem in integers, fous is returning to the prolem in rtionls. Euler disovered tht fifth rtionl n e dded to Fermt s sequene to give the following rtionl Diophntine quintuple (the Fermt-Euler sequene) [9] , 3, 8, 120, No sixth rtionl tht extends this sequene further hs een found, nor hs ny lterntive vlue for the fifth rtionl. However, rtionl Diophntine quintuples re lso very undnt nd there re now known exmples of rtionl Diophntine sextuples suh s [10,11,12]

2 96 847, , , , , Very reently some infinite fmilies of sextuples hve een found [13,14,15] ut no sustntil progress hs een mde towrds finding rtionl Diophntine septuple with seven frtions or proving their non-existene. Regulr Diophntine m-tuples If the existene of Diophntine m-tuples were pseudo-rndom proess where the proility of positive integer N eing squre is N 1 2, how mny of them would e expeted? For n m-tuple of height H (height eing the lrgest numertor or denomintor) the proility of it eing rtionl Diophntine m-tuple would e of order H m(m 1) nd the numer of m-tuples of this size is of order H 2m 1. The expeted numer of rtionl Diophntine m-tuples would therefore e given y n integrl of order H 3m m2 1 dh. This integrl diverges logrithmilly for m = 3 nd onverges rpidly for m > 3. This mens infinitely mny rtionl Diophntine triples would e expeted ut they should e rre. Rtionl Diophntine qudruples nd lrger m-tuples would only e finite in numer, if they existed t ll. Only Diophntine pirs (m = 2) should exist in lrge numers. In relity mtuples re not pseudo-rndom in this wy nd it is only the pirs tht follow this predition. There is lso n undne of m-tuples up to t lest m = 6. This mens tht there must e some priniple t work tht mkes them more ommon thn the pseudo-rndom rgument suggests. This unexpeted plenitude of rtionl Diophntine m-tuples n in prt e explined y the existene of symmetri polynomil equtions whih n e solved to extend rtionl Diophntine m-tuples to rtionl Diophntine (m + 1)-tuples for = 2,3,4. Given two distint positive rtionl numers, Q suh tht + 1 = x 2, x Q (lled rtionl Diophntine pir), third rtionl numer n e defined in two wys to mke rtionl Diophntine triple using the formul This is equivlent to the polynomil formul = + ± 2x P(,, ) = ( + ) 2 4( + 1) = 0 When expnded, this expression is found to e symmetri under permuttions of,, nd whih mens it n lso e written s ( + ) 2 = 4( + 1) ( + ) 2 = 4( + 1)

3 Therefore, given the rtionl Diophntine pir {, }, n e found s solution to P(,, ) = 0 nd then + 1 nd + 1 will e squres giving the rtionl Diophntine triple {,, } When using the minus sign to give = + 2x the triple n fil to e vlid euse my e zero or negtive or repetition of or, ut when using the plus sign = + + 2x, is lwys positive nd distint from nd, so vlid rtionl Diophntine triple is lwys formed. A rtionl Diophntine triple tht stisfies the eqution P(,, ) = 0 is sid to e regulr nd one tht does not is irregulr [10]. There re mny exmples of either in oth rtionls nd positive integers. Similr polynomils exist for regulr qudruples nd quintuples. For qudruples the polynomil is defined y [16] P(,,, d) = ( + d) 2 4( + 1)(d + 1) Agin this is symmetri under permuttions of the four vriles. It is qudrti in eh vrile individully ut is qurti overll due to the inlusion of the term 4d The eqution P(,,, d) = 0 n e solved for d y ompleting the squre nd finding tht the disriminnt ftorizes giving, P(,,, d) = ( d) 2 4( + 1)( + 1)( + 1) This shows tht if {,, } is Diophntine triple, then the eqution n e solved for d giving two solutions t lest one of whih is positive nd not equl to, or. {,,, d} will then e rtionl Diophntine qudruple [17] (e.g. d + 1 is squre when + 1 is squre euse of the defining eqution) It stisfies P(,,, d) = 0 so we ll it regulr. For quintuples the orresponding polynomil is defined y P(,,, d, e) = (de d e) 2 4( + 1)( + 1)( + 1)(de + 1) One gin this n e solved for e to extend rtionl Diophntine qudruple to regulr rtionl Diophntine quintuple [18]. This time the expression hs ftor (d 1) 2 in the denomintor nd it n fil in exeptionl irumstnes inluding when {,,, d} is regulr nd d = 1 (It is n interesting exerise to work out the generl solution to this se.) The polynomils re relted y P(,, ) = P(,,, 0) nd P(,,, d) = P(,,, d, 0). For ompleteness P(, ) = P(,, 0) = ( ) 2 4 nd P() = P(, 0) = 2 4 The Fermt-Euler sequene is then the positive solution to = 1, P(, ) = P(,, ) = P(,,, d) = P(,,, d, e) = 0 Is there similr polynomil for extending rtionl Diophntine quintuples to sextuples nd eyond? This would require polynomil P(,,, d, e, f) whih is symmetri under

4 permuttions of ll its rguments nd whose disriminnt s qudrti in f ftorises to four times the produt of ll squres formed in the remining quintuple. To ontinue the sequene we lso expet tht P(,,, d, e) = P(,,, d, e, 0). Until now it hs een ssumed tht no solution to this exists ut in ft it does nd is given s follows, P(,,, d, e, f) = (de + df + ef def def def +2 2def d e f) 2 4( + 1)( + 1)( + 1)(de + 1)(df + 1)(ef + 1) A rtionl Diophntine sextuple will e lled regulr if it stisfies P(,,, d, e, f) = 0. Given ny rtionl Diophntine quintuple {,,, d, e}, this eqution n e solved for f with two roots exept in speil ses. The wekness of this extension method ompred to those for smller m-tuples is tht {,,, d, e, f} is often not rtionl Diophntine sextuple. From the definition we only get tht the produt (df + 1)(ef + 1) is squre nd similrly when {d, e} is repled with other pirs of elements from the originl quintuple. In other words the five produts (f + 1),, (ef + 1) re squres multiplied y single ommon ftor. For exmple this eqution n e used to dd sixth element f to the Fermt-Euler sequene , 3, 8, 120, , This does not mke it Diophntine sextuple. The produt of f with ny of the previous five numers is one less thn squre divided y the denomintor of f. Nevertheless, f is the nturl next element in the sequene euse it solves the eqution P(,,, d, e, f) = 0 Despite its filings s n eqution for extending quintuples to sextuples, it does hve some vlue in the theory of sextuples euse some of the known exmples of sextuples re in ft regulr. Here re ten exmples: 33/ / / /152 19/2 1920/19 249/ / / /128 38/3 920/3 2261/ /78 989/ / / /104 6/ / / / / / / / / / / / / /11 143/ / / / / / / / / / / / / / / / / / / / / / / / / / / /143

5 For referene the polynomil P(,,, d, e, f) whih hs 105 terms when fully expnded n e onveniently written in symmetri form s: P(,,, d, e, f) = (de) 2 + (df) 2 + (ef) 2 + (def) 2 + (def) 2 + (def) 2 4(def) 2 d + e + f + de + df + ef + de 2(def + 2) ( +df + ef + def + de + df + ef + def + def ) + + d + e + f + + d + e 2(2def + 1) ( +f + d + e + f + de + df + ef ) 8def 2( d + e + f)(de + df + ef + def + def + def) Wek Diophntine m-tuples d 2 + e 2 + f 2 4 The vlue of the eqution for regulr Diophntine sextuples n e understood little etter in the ontext of wek Diophntine m-tuples defined s follows. A set of positive rtionl numers { 1,, m } is wek Diophntine m-tuple if ( i j + 1)( i k + 1)( j k + 1) = x 2, x Q, i < j < k A wek Diophntine m-tuple up to m = 6 will e lled regulr when it stisfies the sme polynomil equtions tht define rtionl Diophntine m-tuples s regulr. Here re some properties of wek Diophntine m-tuples: A rtionl Diophntine m-tuple is lso wek Diophntine m-tuple If { 1,, m } is wek Diophntine m-tuple then so is the set of its reiprols { 1,, }. 1 m This is euse ( 1 i 1 j + 1) ( 1 i 1 k + 1) ( 1 j 1 k + 1) = ( i j +1)( i k +1)( j k +1) ( i j k ) 2 A wek Diophntine triple {,, } n e extended to wek Diophntine qudruple {,,, d} y solving P(,,, d) = 0. A wek Diophntine triple {,, } n lso e extended to wek Diophntine qudruple {,,, d} y solving d = 1. A wek Diophntine m-tuple in positive integers is lwys Diophntine m-tuple. Proof: ny wek Diophntine triple in positive integers n e extended to wek Diophntine qudruple in integers y solving P(,,, d) = 0. However, it is known tht ny solution of this eqution in positive integers is Diophntine qudruple (proof is y infinite deent.) This implies tht the wek Diophntine triple is Diophntine triple. Sine this pplies to ny triple in the wek Diophntine m-tuple it mens tht it is Diophntine m-tuple. 1

6 A regulr wek Diophntine quintuple is regulr rtionl Diophntine m-tuple. This follows from the defining eqution for regulr quintuples. In generl wek Diophntine qudruple nnot e extended to wek Diophntine quintuple using the eqution for regulr quintuples. In wek Diophntine quintuple, the produt of 10 ftors D = i<j ( i j + 1) is squre. This is euse the produt i<j<k( i j + 1)( i k + 1)( j k + 1) = D 3 nd sine eh triple ftor is squre this mkes D 3 squre. Therefore D is squre. Sine D is squre, the eqution for regulr Diophntine sextuple n usully e solved in rtionls to extend wek Diophntine quintuple to sextuple. The defining eqution for the polynomil eqution then mkes this wek Diophntine sextuple. If wek Diophntine sextuple is regulr then its reiprol is lso regulr. This follows from the identity P ( 1, 1, 1, 1 d, 1 e, 1 f ) (def)2 = P(,,, d, e, f) whih n e verified from the definition. The unusul se when P(,,, d, e, f) nnot e solved for f given wek Diophntine quintuple {,,, d, e} is when the polynomil oeffiient of f 2 is zero nd the polynomil terms independent if f give zero. In other words when oth the quintuple nd its reiprol re regulr, ut then they re oth rtionl Diophntine quintuples. It is not known if there re ny exmples of regulr rtionl Diophntine quintuples whose reiprols re lso regulr rtionl Diophntine quintuples.

7 The Squre Identities A numer of identities for the polynomils P(,, ) hve lredy een given in the form B 2 P = A 2 4Π Where A nd B re polynomils nd Π is produt of ftors like ( + 1) et. In order to understnd why the polynomil for regulr sextuples does not lwys give full rtionl Diophntine sextuples nd why there is no generlistion to septuples it is helpful to reord the full list of these identities. For qudruples upwrds these identities do not exist for ll possile produts Π ut the ses in whih they do exist n e hrterised s follows: Prtition the m-tuple into two susets of vriles X nd Y. The produts re formed in of two wys, y tking ll ftors ( + 1) where either nd re in the sme suset X or Y, or nd re in different susets X nd Y. The produt in the first se will e written s Π{X; Y} nd in the seond se s Π[X; Y]. For exmple with four vriles Π{, ; p, q} = ( + 1)(pq + 1) Π{,, ; p} = ( + 1)( + 1)( + 1) Π{,,, d} = ( + 1)( + 1)(d + 1)( + 1)(d + 1)(d + 1) Π[, ; p, q] = (p + 1)(p + 1)(q + 1)(q + 1) Π[,, ; p] = (p + 1)(p + 1)(p + 1) Π[,,, d] = 1 For eh of these produts there is n identity written B{X; Y} 2 P(X, Y) = A{X; Y} 2 4Π{X; Y} B[X; Y] 2 P(X, Y) = A[X; Y] 2 4Π[X; Y]

8 The identities n e summrised in two tles. For the lrgest ses YES/NO re used to indite where they exist or not. A{X; Y} p p q p q r 0 p p q 2pqr p q r p p q 2pqr p q r + + p + p q pqr 2pqr p d d e d e f p pq p q d( d) d + 2d + 2d d YES NO d( d) d + 2d + 2d d p(1 d) 2 NO YES q r (pq + pr + qr) pqr( + + ) +2 2pqr p q r The polynomils B{X; Y} hve not een shown. For the first three rows they re 1 nd for the fourth row they re (1 d). How n we e sure tht no solution exists for the sextuple se where indited with NO? If solution did exist in either of these ses then it ould e used to show tht the extension formul would lwys give full rtionl Diophntine sextuple ut the Fermt-Euler sequene is lredy ounterexmple to tht possiility. The entries in the tle hve een written so tht it is possile to move upwrds or leftwrds y setting one of the vriles to zero. This mens tht no entries for septuple ses re possile euse if they were it would e possile to move either up or left nd provide solution for one of the foridden sextuple ses.

9 A[X; Y] p p q 2 2 p 2 2 (p q) p 2 + p 2 (p l) 2 + p + q 2 2 p 2 + p + p 2 (p q) 2 + p + p + q + q + 2pq 2 2 p 2 + p + p + p 2 (p q) 2 + pq(p + q) +( + + )(p + q) +2( + + )pq d d e d e f 2 2 dp 2 p 2 +p + p + p + dp 2 2 NO 2 (p q) 2 + d(2p 2 q 2 (p q) 2 ) +( + d + d + d)pq(p + q) +( d)(p + q) +2( d + d + d)pq The polynomil B[X, Y] is zero for the first olumn (trivil se), p for the seond olumn nd (p q) for the third olumn. One gin the NO se n t exist euse it would imply tht extension gives full sextuples nd no se for septuples fit. No fourth olumn n e dded preserving the rule for moving up nd left y setting vriles to zero. In summry, the identities for sextuples only exist with produts Π{X; Y} or Π[X; Y] when the numer of times eh vrile ppers in the produt is even. The extension formul therefore works to extend wek Diophntine m-tuples ut does not normlly sueed in extending rtionl Diophntine quintuples to full rtionl Diophntine sextuples. Nevertheless it only requires one of the new produts to e one less thn squre nd they will ll e. There re multiple instnes where this hppens nd extension does then produe full rtionl Diophntine sextuple.

10 Further Polynomil Generlistions The polynomils tht define regulr m-tuples n in prt e explined from the theory of ellipti urves [19,20], yet the full level of symmetry remins mysterious. Some further explntion rises from the oservtion tht the polynomil eqution for regulr qudruples is speil se of Cyley s hyperdeterminnt whih generlises the 2 x 2 determinnt to n expression for 2 y 2 y 2 rry. This is done in suh wy s to extend its properties s polynomil invrint nd s disriminnt [4]. A polynomil generlising P(,,, d) n e defined s H(,,, d, k, l, m, n) = (k + l m dn) 2 4( + nm)(d + kl) Then Cyley s hyperdeterminnt for three dimensionl rry of numers ijk is given y Det( ijk ) = H( 000, 110, 101, 011, 111, 001, 010, 100 ) The eqution for regulr Diophntine qudruples n e reovered from P(,,, d) = H(,,, d, 1,1,1,1) = H(1,1,1,1,,,, d) The following identity n lso e verified n 2 H(,,, d, k, l, m, n) = (2 + nk + nl + nm dn 2 ) 2 4( + nm)( + nl)( + nk) This shows tht the qudrti disriminnt for Cyley s hyperdeterminnt when treted s qudrti in ny one of its vriles ftorises into three ftors whih re 2 y 2 determinnts. This hd never een noted efore the omprison with the formul for regulr Diophntine qudruples hd een mde. When redued to expressions for regulr Diophntine qudruples this identity for the hyperdeterminnt yields two ses one from eh of the two tles ove for A[, ;, d] nd A{, ;, d} Given tht P(,,, d) generlises to P(,,, d, e) nd then to P(,,, d, e, f), it is nturl to investigte whether H(,,, d, k, l, m, n) lso generlises to expressions in more vriles whih redue to the expressions for regulr quintuples nd sextuples. Cyley s hyperdeterminnt n e generlises to invrints for multi-dimensionl rrys of ny size ut it does not pper tht ny of these n e redued s required. Nevertheless, the generlistions do exist, ut they re not invrints, disriminnts or ny other kind of previously reognised polynomils. Their origins nd signifine therefore remins mysterious nd nothing more n e done other thn to desrie wht they re.

11 The generlistion for P(,,, d, e) is polynomil of degree ten in fifteen vriles defined in terms of simple lok design. Fifteen vriles n e grouped into six loks of five suh tht eh vrile ppers in two loks. The polynomil is formed from just the produts of eh lok nd its ompliment. I.e. T 1 = de, T 2 = sghk, T 3 = slmn, T 4 = glpq, T 5 = dhmpr, T 6 = eknqr (Notie tht this n lso e regrded s the prmetri solution to the prolem of finding six squre free integers whose produt is squre numer) T 1 T 1 = T 2 T 2 = T 3 T 3 = T 4 T 4 = T 5 T 5 = T 6 T 6 = deghklmnpqrs = T 1 T 2 T 3 T 4 T 5 T 6 Then the polynomil is given y H(,,, d, e, g, h, k, l, m, n, p, q, r, s) = T 2 i 2 T i T j 4 T i Identities stisfied y this polynomil whih redue to the known identities for P(,,, d, e) inlude the following two, i i<j r 2 H(,,, d, e, g, h, k, l, m, n, p, q, r, s) = (der + 2sgl + sghkr + slmnr + glpqr dhmpr 2 eknqr 2 ) 2 4(s + pqr)(g + mnr)(l + hkr)(der + slg) i (hdmp kenq) 2 H(,,, d, e, g, h, k, l, m, n, p, q, r, s) = (2lqngpksmh + 2delmnpq + 2deghkpq + 2dehkmns + d 2 ehmp + de 2 knq + dgh 2 kmps + eghk 2 nqs + dhlm 2 nps + eklmn 2 qs + dghlmp 2 q + egklnpq 2 r(eknq dhmp) 2 ) 2 4(dh + lqn)(dm + gqk)(dp + snk)(ek + pml)(en + gph)(eq + smh)

12 The mster generlistion of the eqution for regulr sextuples is polynomil of degree 32 in 32 vriles whih n e defined y the following identity p 2 P 2 H(,, Z) = (defstuvwxyzrp 2 P + defstuvwxyzrp 2 P + DefstUvwXyzRp 2 P + BCDEFstuvwxYZRp 2 P + ACDEFstuVWXyzrp 2 P + ABDEFSTUvwxyzrp 2 P BdefSTUvwxYZRpP 2 AdefSTUVWXyzrpP 2 CdefstuVWXYZRpP 2 ABCdEFSTuVWxYZrpP 2 ABCDeFStUVwXYzRpP 2 ABCDEfsTUvWXyZRpP^2 + 2DEFstuvwxyzrp 3 2ABCdefSTUVWXYZRP 3 ) 2 4 (stup + ABSTUP) (vwxp + ACVWXP) (yzrp + BCYZRP) (desvyp + DEsvyp) (dftwzp + DFtwzp) (efuxrp + EFuxrp) Referenes [1] T. L. Heth, Diophntus of Alexndri. A Study in the History of Greek Alger. (Cmridge, Englnd, 1910), Mrtino Pulishing, 2003, pp , , [2] F. Lu, A. O. Mungi, Diophntine triples with vlues in the sequenes of Fioni nd Lus numers, Gls. Mt. Ser. III [3] A. Dujell, On Mordell-Weil groups of ellipti urves indued y Diophntine triples, Gls. Mt. Ser. III 42 (2007), [4] P. Gis, Diophntine qudruples nd Cyley's hyperdeterminnt, rxiv mth.nt/ [5] P. Fermt, Oservtions sur Diophnte, Oeuvres de Fermt, Vol. 1 (P. Tnnery, C. Henry, eds.), 1891, p. 303 [6] A. Bker nd H. Dvenport, The equtions 3x2-2 = y2 nd 8x2-7 = z2, Qurt. J. Mth. Oxford Ser. (2) 20 (1969), [7] A. Dujell, There re only finitely mny Diophntine quintuples, J. Reine Angew. Mth. 566 (2004), [8] M. Cipu, T. Trudgin, Serhing for Diophntine quintuples, At Arith. 173 (2016), [9] L. Euler, Opusul Anlyti I, 1783, pp [10] P. Gis, Some rtionl Diophntine sextuples, Gls. Mt. Ser. III 41 (2006),

13 [11] P. Gis, A generlised Stern-Broot tree from regulr Diophntine qudruples, rxiv mth.nt/ [12] A. Dujell, Rtionl Diophntine sextuples with mixed signs, Pro. Jpn Ad. Ser. A Mth. Si. 85 (2009), [13] A. Dujell, M. Kzliki, M. Miki, M. Szikszi, There re infinitely mny rtionl Diophntine sextuples, Int. Mth. Res. Not. IMRN [14] T. Piezs, Extending rtionl Diophntine triples to sextuples, [15] A. Dujell nd M. Kzliki, More on Diophntine sextuples, in Numer Theory - Diophntine prolems, uniform distriution nd pplitions, Festshrift in honour of Roert F. Tihy's 60th irthdy (C. Elsholtz, P. Grner, Eds.), Springer-Verlg, Berlin [16] P. E. Gis, Computer Bulletin 17 (1978), 16 [17] J. Arkin, V. E. Hoggtt nd E. G. Struss, On Euler's solution of prolem of Diophntus, Fioni Qurt. 17 (1979), [18] A. Dujell, On Diophntine quintuples, At Arith. 81 (1997), [19] A. Dujell, Diophntine m-tuples nd ellipti urves, J. Théor. Nomres Bordeux 13 (2001), [20] A. Dujell, Irregulr Diophntine m-tuples nd high-rnk ellipti urves, Pro. Jpn Ad. Ser. A Mth. Si. 76 (2000),

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

Project 6: Minigoals Towards Simplifying and Rewriting Expressions MAT 51 Wldis Projet 6: Minigols Towrds Simplifying nd Rewriting Expressions The distriutive property nd like terms You hve proly lerned in previous lsses out dding like terms ut one prolem with the wy

More information

6.5 Improper integrals

6.5 Improper integrals Eerpt from "Clulus" 3 AoPS In. www.rtofprolemsolving.om 6.5. IMPROPER INTEGRALS 6.5 Improper integrls As we ve seen, we use the definite integrl R f to ompute the re of the region under the grph of y =

More information

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP QUADRATIC EQUATION EXERCISE - 0 CHECK YOUR GRASP. Sine sum of oeffiients 0. Hint : It's one root is nd other root is 8 nd 5 5. tn other root 9. q 4p 0 q p q p, q 4 p,,, 4 Hene 7 vlues of (p, q) 7 equtions

More information

QUADRATIC EQUATION. Contents

QUADRATIC EQUATION. Contents QUADRATIC EQUATION Contents Topi Pge No. Theory 0-04 Exerise - 05-09 Exerise - 09-3 Exerise - 3 4-5 Exerise - 4 6 Answer Key 7-8 Syllus Qudrti equtions with rel oeffiients, reltions etween roots nd oeffiients,

More information

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point GCSE C Emple 7 Work out 9 Give your nswer in its simplest form Numers n inies Reiprote mens invert or turn upsie own The reiprol of is 9 9 Mke sure you only invert the frtion you re iviing y 7 You multiply

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Clulus BC Chpter 8: Integrtion Tehniques, L Hopitl s Rule nd Improper Integrls 8. Bsi Integrtion Rules In this setion we will review vrious integrtion strtegies. Strtegies: I. Seprte the integrnd into

More information

Introduction to Olympiad Inequalities

Introduction to Olympiad Inequalities Introdution to Olympid Inequlities Edutionl Studies Progrm HSSP Msshusetts Institute of Tehnology Snj Simonovikj Spring 207 Contents Wrm up nd Am-Gm inequlity 2. Elementry inequlities......................

More information

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES PAIR OF LINEAR EQUATIONS IN TWO VARIABLES. Two liner equtions in the sme two vriles re lled pir of liner equtions in two vriles. The most generl form of pir of liner equtions is x + y + 0 x + y + 0 where,,,,,,

More information

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix

Matrices SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics (c) 1. Definition of a Matrix tries Definition of tri mtri is regulr rry of numers enlosed inside rkets SCHOOL OF ENGINEERING & UIL ENVIRONEN Emple he following re ll mtries: ), ) 9, themtis ), d) tries Definition of tri Size of tri

More information

Computing data with spreadsheets. Enter the following into the corresponding cells: A1: n B1: triangle C1: sqrt

Computing data with spreadsheets. Enter the following into the corresponding cells: A1: n B1: triangle C1: sqrt Computing dt with spredsheets Exmple: Computing tringulr numers nd their squre roots. Rell, we showed 1 ` 2 ` `n npn ` 1q{2. Enter the following into the orresponding ells: A1: n B1: tringle C1: sqrt A2:

More information

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem.

Lesson 2: The Pythagorean Theorem and Similar Triangles. A Brief Review of the Pythagorean Theorem. 27 Lesson 2: The Pythgoren Theorem nd Similr Tringles A Brief Review of the Pythgoren Theorem. Rell tht n ngle whih mesures 90º is lled right ngle. If one of the ngles of tringle is right ngle, then we

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design nd Anlysis LECTURE 8 Mx. lteness ont d Optiml Ching Adm Smith 9/12/2008 A. Smith; sed on slides y E. Demine, C. Leiserson, S. Rskhodnikov, K. Wyne Sheduling to Minimizing Lteness Minimizing

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx

Calculus Cheat Sheet. Integrals Definitions. where F( x ) is an anti-derivative of f ( x ). Fundamental Theorem of Calculus. dx = f x dx g x dx Clulus Chet Sheet Integrls Definitions Definite Integrl: Suppose f ( ) is ontinuous Anti-Derivtive : An nti-derivtive of f ( ) on [, ]. Divide [, ] into n suintervls of is funtion, F( ), suh tht F = f.

More information

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows:

Improper Integrals. The First Fundamental Theorem of Calculus, as we ve discussed in class, goes as follows: Improper Integrls The First Fundmentl Theorem of Clculus, s we ve discussed in clss, goes s follows: If f is continuous on the intervl [, ] nd F is function for which F t = ft, then ftdt = F F. An integrl

More information

Symmetrical Components 1

Symmetrical Components 1 Symmetril Components. Introdution These notes should e red together with Setion. of your text. When performing stedy-stte nlysis of high voltge trnsmission systems, we mke use of the per-phse equivlent

More information

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P. Chpter 7: The Riemnn Integrl When the derivtive is introdued, it is not hrd to see tht the it of the differene quotient should be equl to the slope of the tngent line, or when the horizontl xis is time

More information

MTH 505: Number Theory Spring 2017

MTH 505: Number Theory Spring 2017 MTH 505: Numer Theory Spring 207 Homework 2 Drew Armstrong The Froenius Coin Prolem. Consider the eqution x ` y c where,, c, x, y re nturl numers. We cn think of $ nd $ s two denomintions of coins nd $c

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Voting Prdoxes Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Voting Prdoxes Properties Arrow s Theorem Leture Overview 1 Rep

More information

Algebra 2 Semester 1 Practice Final

Algebra 2 Semester 1 Practice Final Alger 2 Semester Prtie Finl Multiple Choie Ientify the hoie tht est ompletes the sttement or nswers the question. To whih set of numers oes the numer elong?. 2 5 integers rtionl numers irrtionl numers

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

set is not closed under matrix [ multiplication, ] and does not form a group.

set is not closed under matrix [ multiplication, ] and does not form a group. Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed

More information

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS

ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS ILLUSTRATING THE EXTENSION OF A SPECIAL PROPERTY OF CUBIC POLYNOMIALS TO NTH DEGREE POLYNOMIALS Dvid Miller West Virgini University P.O. BOX 6310 30 Armstrong Hll Morgntown, WV 6506 millerd@mth.wvu.edu

More information

Chapter Gauss Quadrature Rule of Integration

Chapter Gauss Quadrature Rule of Integration Chpter 7. Guss Qudrture Rule o Integrtion Ater reding this hpter, you should e le to:. derive the Guss qudrture method or integrtion nd e le to use it to solve prolems, nd. use Guss qudrture method to

More information

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS QUADRATIC EQUATIONS OBJECTIVE PROBLEMS +. The solution of the eqution will e (), () 0,, 5, 5. The roots of the given eqution ( p q) ( q r) ( r p) 0 + + re p q r p (), r p p q, q r p q (), (d), q r p q.

More information

Non Right Angled Triangles

Non Right Angled Triangles Non Right ngled Tringles Non Right ngled Tringles urriulum Redy www.mthletis.om Non Right ngled Tringles NON RIGHT NGLED TRINGLES sin i, os i nd tn i re lso useful in non-right ngled tringles. This unit

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

Arrow s Impossibility Theorem

Arrow s Impossibility Theorem Rep Fun Gme Properties Arrow s Theorem Arrow s Impossiility Theorem Leture 12 Arrow s Impossiility Theorem Leture 12, Slide 1 Rep Fun Gme Properties Arrow s Theorem Leture Overview 1 Rep 2 Fun Gme 3 Properties

More information

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.) CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

More information

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b CS 294-2 9/11/04 Quntum Ciruit Model, Solovy-Kitev Theorem, BQP Fll 2004 Leture 4 1 Quntum Ciruit Model 1.1 Clssil Ciruits - Universl Gte Sets A lssil iruit implements multi-output oolen funtion f : {0,1}

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

Proving the Pythagorean Theorem

Proving the Pythagorean Theorem Proving the Pythgoren Theorem W. Bline Dowler June 30, 2010 Astrt Most people re fmilir with the formul 2 + 2 = 2. However, in most ses, this ws presented in lssroom s n solute with no ttempt t proof or

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

2. VECTORS AND MATRICES IN 3 DIMENSIONS

2. VECTORS AND MATRICES IN 3 DIMENSIONS 2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

More information

CS241 Week 6 Tutorial Solutions

CS241 Week 6 Tutorial Solutions 241 Week 6 Tutoril olutions Lnguges: nning & ontext-free Grmmrs Winter 2018 1 nning Exerises 1. 0x0x0xd HEXINT 0x0 I x0xd 2. 0xend--- HEXINT 0xe I nd ER -- MINU - 3. 1234-120x INT 1234 INT -120 I x 4.

More information

4 VECTORS. 4.0 Introduction. Objectives. Activity 1

4 VECTORS. 4.0 Introduction. Objectives. Activity 1 4 VECTRS Chpter 4 Vectors jectives fter studying this chpter you should understnd the difference etween vectors nd sclrs; e le to find the mgnitude nd direction of vector; e le to dd vectors, nd multiply

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

Section 4.4. Green s Theorem

Section 4.4. Green s Theorem The Clulus of Funtions of Severl Vriles Setion 4.4 Green s Theorem Green s theorem is n exmple from fmily of theorems whih onnet line integrls (nd their higher-dimensionl nlogues) with the definite integrls

More information

Section 6.1 Definite Integral

Section 6.1 Definite Integral Section 6.1 Definite Integrl Suppose we wnt to find the re of region tht is not so nicely shped. For exmple, consider the function shown elow. The re elow the curve nd ove the x xis cnnot e determined

More information

ENGI 3424 Engineering Mathematics Five Tutorial Examples of Partial Fractions

ENGI 3424 Engineering Mathematics Five Tutorial Examples of Partial Fractions ENGI 44 Engineering Mthemtics Five Tutoril Exmples o Prtil Frctions 1. Express x in prtil rctions: x 4 x 4 x 4 b x x x x Both denomintors re liner non-repeted ctors. The cover-up rule my be used: 4 4 4

More information

Dense Coding, Teleportation, No Cloning

Dense Coding, Teleportation, No Cloning qitd352 Dense Coding, Teleporttion, No Cloning Roert B. Griffiths Version of 8 Ferury 2012 Referenes: NLQI = R. B. Griffiths, Nture nd lotion of quntum informtion Phys. Rev. A 66 (2002) 012311; http://rxiv.org/rhive/qunt-ph/0203058

More information

This enables us to also express rational numbers other than natural numbers, for example:

This enables us to also express rational numbers other than natural numbers, for example: Overview Study Mteril Business Mthemtis 05-06 Alger The Rel Numers The si numers re,,3,4, these numers re nturl numers nd lso lled positive integers. The positive integers, together with the negtive integers

More information

A Non-parametric Approach in Testing Higher Order Interactions

A Non-parametric Approach in Testing Higher Order Interactions A Non-prmetri Approh in Testing igher Order Intertions G. Bkeerthn Deprtment of Mthemtis, Fulty of Siene Estern University, Chenkldy, Sri Lnk nd S. Smit Deprtment of Crop Siene, Fulty of Agriulture University

More information

Line Integrals and Entire Functions

Line Integrals and Entire Functions Line Integrls nd Entire Funtions Defining n Integrl for omplex Vlued Funtions In the following setions, our min gol is to show tht every entire funtion n be represented s n everywhere onvergent power series

More information

10. AREAS BETWEEN CURVES

10. AREAS BETWEEN CURVES . AREAS BETWEEN CURVES.. Ares etween curves So res ove the x-xis re positive nd res elow re negtive, right? Wrong! We lied! Well, when you first lern out integrtion it s convenient fiction tht s true in

More information

Lesson 55 - Inverse of Matrices & Determinants

Lesson 55 - Inverse of Matrices & Determinants // () Review Lesson - nverse of Mtries & Determinnts Mth Honors - Sntowski - t this stge of stuying mtries, we know how to, subtrt n multiply mtries i.e. if Then evlute: () + B (b) - () B () B (e) B n

More information

Lecture 1 - Introduction and Basic Facts about PDEs

Lecture 1 - Introduction and Basic Facts about PDEs * 18.15 - Introdution to PDEs, Fll 004 Prof. Gigliol Stffilni Leture 1 - Introdution nd Bsi Fts bout PDEs The Content of the Course Definition of Prtil Differentil Eqution (PDE) Liner PDEs VVVVVVVVVVVVVVVVVVVV

More information

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272.

Geometry of the Circle - Chords and Angles. Geometry of the Circle. Chord and Angles. Curriculum Ready ACMMG: 272. Geometry of the irle - hords nd ngles Geometry of the irle hord nd ngles urriulum Redy MMG: 272 www.mthletis.om hords nd ngles HRS N NGLES The irle is si shpe nd so it n e found lmost nywhere. This setion

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

BEGINNING ALGEBRA (ALGEBRA I)

BEGINNING ALGEBRA (ALGEBRA I) /0 BEGINNING ALGEBRA (ALGEBRA I) SAMPLE TEST PLACEMENT EXAMINATION Downlod the omplete Study Pket: http://www.glendle.edu/studypkets Students who hve tken yer of high shool lger or its equivlent with grdes

More information

Similarity and Congruence

Similarity and Congruence Similrity nd ongruence urriculum Redy MMG: 201, 220, 221, 243, 244 www.mthletics.com SIMILRITY N ONGRUN If two shpes re congruent, it mens thy re equl in every wy ll their corresponding sides nd ngles

More information

More Properties of the Riemann Integral

More Properties of the Riemann Integral More Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologil Sienes nd Deprtment of Mthemtil Sienes Clemson University Februry 15, 2018 Outline More Riemnn Integrl Properties The Fundmentl

More information

Section 2.3. Matrix Inverses

Section 2.3. Matrix Inverses Mtri lger Mtri nverses Setion.. Mtri nverses hree si opertions on mtries, ition, multiplition, n sutrtion, re nlogues for mtries of the sme opertions for numers. n this setion we introue the mtri nlogue

More information

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year 1/1/21. Fill in the circles in the picture t right with the digits 1-8, one digit in ech circle with no digit repeted, so tht no two circles tht re connected by line segment contin consecutive digits.

More information

Håkan Lennerstad, Lars Lundberg

Håkan Lennerstad, Lars Lundberg GENERALIZATIONS OF THE FLOOR AND CEILING FUNCTIONS USING THE STERN-BROCOT TREE Håkn Lennerstd, Lrs Lunderg Blekinge Institute of Tehnology Reserh report No. 2006:02 Generliztions of the floor nd eiling

More information

ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups. Sang Keun Lee

ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups. Sang Keun Lee Kngweon-Kyungki Mth. Jour. 10 (2002), No. 2, pp. 117 122 ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups Sng Keun Lee Astrt. In this pper, we give some properties of left(right) semi-regulr nd g-regulr

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

More information

Functions. mjarrar Watch this lecture and download the slides

Functions. mjarrar Watch this lecture and download the slides 9/6/7 Mustf Jrrr: Leture Notes in Disrete Mthemtis. Birzeit University Plestine 05 Funtions 7.. Introdution to Funtions 7. One-to-One Onto Inverse funtions mjrrr 05 Wth this leture nd downlod the slides

More information

The Word Problem in Quandles

The Word Problem in Quandles The Word Prolem in Qundles Benjmin Fish Advisor: Ren Levitt April 5, 2013 1 1 Introdution A word over n lger A is finite sequene of elements of A, prentheses, nd opertions of A defined reursively: Given

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT SCHOOL OF ENGINEERING & BUIL ENVIRONMEN MARICES FOR ENGINEERING Dr Clum Mcdonld Contents Introduction Definitions Wht is mtri? Rows nd columns of mtri Order of mtri Element of mtri Equlity of mtrices Opertions

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral.

Improper Integrals. Introduction. Type 1: Improper Integrals on Infinite Intervals. When we defined the definite integral. Improper Integrls Introduction When we defined the definite integrl f d we ssumed tht f ws continuous on [, ] where [, ] ws finite, closed intervl There re t lest two wys this definition cn fil to e stisfied:

More information

Pythagoras theorem and surds

Pythagoras theorem and surds HPTER Mesurement nd Geometry Pythgors theorem nd surds In IE-EM Mthemtis Yer 8, you lernt out the remrkle reltionship etween the lengths of the sides of right-ngled tringle. This result is known s Pythgors

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

y = c 2 MULTIPLE CHOICE QUESTIONS (MCQ's) (Each question carries one mark) is...

y = c 2 MULTIPLE CHOICE QUESTIONS (MCQ's) (Each question carries one mark) is... . Liner Equtions in Two Vriles C h p t e r t G l n e. Generl form of liner eqution in two vriles is x + y + 0, where 0. When we onsier system of two liner equtions in two vriles, then suh equtions re lle

More information

Math 259 Winter Solutions to Homework #9

Math 259 Winter Solutions to Homework #9 Mth 59 Winter 9 Solutions to Homework #9 Prolems from Pges 658-659 (Section.8). Given f(, y, z) = + y + z nd the constrint g(, y, z) = + y + z =, the three equtions tht we get y setting up the Lgrnge multiplier

More information

Boolean Algebra. Boolean Algebra

Boolean Algebra. Boolean Algebra Boolen Alger Boolen Alger A Boolen lger is set B of vlues together with: - two inry opertions, commonly denoted y + nd, - unry opertion, usully denoted y ˉ or ~ or, - two elements usully clled zero nd

More information

expression simply by forming an OR of the ANDs of all input variables for which the output is

expression simply by forming an OR of the ANDs of all input variables for which the output is 2.4 Logic Minimiztion nd Krnugh Mps As we found ove, given truth tle, it is lwys possile to write down correct logic expression simply y forming n OR of the ANDs of ll input vriles for which the output

More information

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are:

Problem Set 9. Figure 1: Diagram. This picture is a rough sketch of the 4 parabolas that give us the area that we need to find. The equations are: (x + y ) = y + (x + y ) = x + Problem Set 9 Discussion: Nov., Nov. 8, Nov. (on probbility nd binomil coefficients) The nme fter the problem is the designted writer of the solution of tht problem. (No one

More information

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx Applitions of Integrtion Are of Region Between Two Curves Ojetive: Fin the re of region etween two urves using integrtion. Fin the re of region etween interseting urves using integrtion. Desrie integrtion

More information

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ).

2 b. , a. area is S= 2π xds. Again, understand where these formulas came from (pages ). AP Clculus BC Review Chpter 8 Prt nd Chpter 9 Things to Know nd Be Ale to Do Know everything from the first prt of Chpter 8 Given n integrnd figure out how to ntidifferentite it using ny of the following

More information

THE QUADRATIC RECIPROCITY LAW OF DUKE-HOPKINS. Circa 1870, G. Zolotarev observed that the Legendre symbol ( a p

THE QUADRATIC RECIPROCITY LAW OF DUKE-HOPKINS. Circa 1870, G. Zolotarev observed that the Legendre symbol ( a p THE QUADRATIC RECIPROCITY LAW OF DUKE-HOPKINS PETE L CLARK Circ 1870, Zolotrev observed tht the Legendre symbol ( p ) cn be interpreted s the sign of multipliction by viewed s permuttion of the set Z/pZ

More information

Reflection Property of a Hyperbola

Reflection Property of a Hyperbola Refletion Propert of Hperol Prefe The purpose of this pper is to prove nltill nd to illustrte geometrill the propert of hperol wherein r whih emntes outside the onvit of the hperol, tht is, etween the

More information

( ) as a fraction. Determine location of the highest

( ) as a fraction. Determine location of the highest AB/ Clulus Exm Review Sheet Solutions A Prelulus Type prolems A1 A A3 A4 A5 A6 A7 This is wht you think of doing Find the zeros of f( x) Set funtion equl to Ftor or use qudrti eqution if qudrti Grph to

More information

An introduction to groups

An introduction to groups n introdution to groups syllusref efereneene ore topi: Introdution to groups In this h hpter Groups The terminology of groups Properties of groups Further exmples of groups trnsformtions 66 Mths Quest

More information

1.3 SCALARS AND VECTORS

1.3 SCALARS AND VECTORS Bridge Course Phy I PUC 24 1.3 SCLRS ND VECTORS Introdution: Physis is the study of nturl phenomen. The study of ny nturl phenomenon involves mesurements. For exmple, the distne etween the plnet erth nd

More information

CIT 596 Theory of Computation 1. Graphs and Digraphs

CIT 596 Theory of Computation 1. Graphs and Digraphs CIT 596 Theory of Computtion 1 A grph G = (V (G), E(G)) onsists of two finite sets: V (G), the vertex set of the grph, often enote y just V, whih is nonempty set of elements lle verties, n E(G), the ege

More information

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers.

8. Complex Numbers. We can combine the real numbers with this new imaginary number to form the complex numbers. 8. Complex Numers The rel numer system is dequte for solving mny mthemticl prolems. But it is necessry to extend the rel numer system to solve numer of importnt prolems. Complex numers do not chnge the

More information

3.1 Review of Sine, Cosine and Tangent for Right Angles

3.1 Review of Sine, Cosine and Tangent for Right Angles Foundtions of Mth 11 Section 3.1 Review of Sine, osine nd Tngent for Right Tringles 125 3.1 Review of Sine, osine nd Tngent for Right ngles The word trigonometry is derived from the Greek words trigon,

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Lecture 27: Diffusion of Ions: Part 2: coupled diffusion of cations and

Lecture 27: Diffusion of Ions: Part 2: coupled diffusion of cations and Leture 7: iffusion of Ions: Prt : oupled diffusion of tions nd nions s desried y Nernst-Plnk Eqution Tody s topis Continue to understnd the fundmentl kinetis prmeters of diffusion of ions within n eletrilly

More information

FREE Download Study Package from website: &

FREE Download Study Package from website:  & FREE Dolod Study Pkge from esite:.tekolsses.om &.MthsBySuhg.om Get Solutio of These Pkges & Ler y Video Tutorils o.mthsbysuhg.om SHORT REVISION. Defiitio : Retgulr rry of m umers. Ulike determits it hs

More information

4.1. Probability Density Functions

4.1. Probability Density Functions STT 1 4.1-4. 4.1. Proility Density Functions Ojectives. Continuous rndom vrile - vers - discrete rndom vrile. Proility density function. Uniform distriution nd its properties. Expected vlue nd vrince of

More information

Vectors. Chapter14. Syllabus reference: 4.1, 4.2, 4.5 Contents:

Vectors. Chapter14. Syllabus reference: 4.1, 4.2, 4.5 Contents: hpter Vetors Syllus referene:.,.,.5 ontents: D E F G H I J K Vetors nd slrs Geometri opertions with vetors Vetors in the plne The mgnitude of vetor Opertions with plne vetors The vetor etween two points

More information

Chapter 2 Finite Automata

Chapter 2 Finite Automata Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

More information

Anti-derivatives/Indefinite Integrals of Basic Functions

Anti-derivatives/Indefinite Integrals of Basic Functions Anti-derivtives/Indefinite Integrls of Bsic Functions Power Rule: In prticulr, this mens tht x n+ x n n + + C, dx = ln x + C, if n if n = x 0 dx = dx = dx = x + C nd x (lthough you won t use the second

More information

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

z TRANSFORMS z Transform Basics z Transform Basics Transfer Functions Back to the Time Domain Transfer Function and Stability

z TRANSFORMS z Transform Basics z Transform Basics Transfer Functions Back to the Time Domain Transfer Function and Stability TRASFORS Trnsform Bsics Trnsfer Functions Bck to the Time Domin Trnsfer Function nd Stility DSP-G 6. Trnsform Bsics The definition of the trnsform for digitl signl is: -n X x[ n is complex vrile The trnsform

More information

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

More information

5: The Definite Integral

5: The Definite Integral 5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

More information

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES CHARLIE COLLIER UNIVERSITY OF BATH These notes hve been typeset by Chrlie Collier nd re bsed on the leture notes by Adrin Hill nd Thoms Cottrell. These

More information

LINEAR ALGEBRA APPLIED

LINEAR ALGEBRA APPLIED 5.5 Applictions of Inner Product Spces 5.5 Applictions of Inner Product Spces 7 Find the cross product of two vectors in R. Find the liner or qudrtic lest squres pproimtion of function. Find the nth-order

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Math 3B Final Review

Math 3B Final Review Mth 3B Finl Review Written by Victori Kl vtkl@mth.ucsb.edu SH 6432u Office Hours: R 9:45-10:45m SH 1607 Mth Lb Hours: TR 1-2pm Lst updted: 12/06/14 This is continution of the midterm review. Prctice problems

More information