FUZZY STOCHASTIC INTEGRAL EQUATIONS

Size: px
Start display at page:

Download "FUZZY STOCHASTIC INTEGRAL EQUATIONS"

Transcription

1 Dynamic Systems and Applications FUZZY STOCHASTIC INTEGRAL EQUATIONS MAREK T. MALINOWSKI AND MARIUSZ MICHTA Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra, Szafrana 4a, Zielona Góra, Poland, ABSTRACT. In this paper we propose a new approach to fuzzy stochastic integrals of Itô and Aumann type. Then a fuzzy equation with fuzzy stochastic integrals is investigated. The existence and uniqueness of solution is proven. Some typical properties of the solution are also obtained. Similar results to set-valued stochastic integral equations are stated. Keywords and phrases. Fuzzy set, fuzzy stochastic process, fuzzy stochastic integral, fuzzy stochastic differential equation, fuzzy stochastic integral equation, set-valued stochastic integral equation AMS MOS Subject Classification. 6H5, 6H2, 37H1, 3E72 1. INTRODUCTION The theory of fuzzy differential equations has focused much attention in the last decades since it provides good models for dynamic systems under uncertainty. In [18] this theory has been started with a concept of H-differentiability for fuzzy mappings introduced in [42]. Currently the literature on this topic is very rich. For a significant collection of the results and further references we refer the reader to the monographs [9, 27] and to the research articles e.g. [1, 2, 7, 8, 15, 26, 28, 37, 38, 39, 4]. Recently some results have been published concerning random fuzzy differential equations see [11, 12, 31]. The random approach can be adequate in modelling of the dynamics of real phenomena which are subjected to two kinds of uncertainty: randomness and fuzziness, simultaneously. Here fuzzy random variables and fuzzy stochastic processes play a crucial role. The next natural step in modelling of dynamic systems under uncertainty should be the theory of fuzzy stochastic differential equations understood in their integral form. Here, a main problem is the notion of stochastic fuzzy Itô integral. A first background for such a kind of research has been made in [19, 17, 3]. Although these papers differ from each other in the considered settings, the main idea is always the same: to define a stochastic set-valued Itô integral as a measurable set-valued mapping and then, by using the Stacking Theorem, to introduce a concept of stochastic Received March 1, $15. c Dynamic Publishers, Inc.

2 474 M. T. MALINOWSKI AND M. MICHTA fuzzy integral as a fuzzy stochastic process. The authors of [19, 3] emphasize their motivations to such studies as the beginning of fundations to the theory of fuzzy stochastic differential equations and inclusions. As far as we know there are two papers concerning this new area, i.e. [2] and [41]. However the approaches presented there are different. In [2] all the considerations are made in the setup of fuzzy sets space of a real line, and the main result on the existence and uniqueness of the solution is obtained under very particular conditions imposed on the structure of integrated fuzzy stochastic processes such that a maximal inequality for fuzzy stochastic Itô integrals holds. Unfortunately the paper [2] contains the gaps. In view of [44] we find out that the intersection property of a set-valued Itô integral defined as a measurable set-valued mapping may not hold true in general. Thus a definition of fuzzy stochastic integral, which is used in [2], seems to be incorrect. On the other hand, in [41] a proposed approach does not contain a notion of a fuzzy stochastic Itô integral. The method presented there is based on sets of appropriately chosen selections. In [32] we proposed a third approach to stochastic fuzzy differential equations. We gave a result of existence and uniqueness of the solution to stochastic fuzzy differential equation where the diffusion term appropriate fuzzy stochastic Itô integral was of some special form, i.e. it was the embedding of real d-dimensional Itô integral into fuzzy numbers space. In this paper we propose completely different approach to the notions of fuzzy stochastic integrals. We employ here the notion of set-valued stochastic integral which was widely used in the theory of stochastic inclusions and their applications see e.g. [3, 4, 5, 6, 22, 23, 24, 25, 33, 34, 35] and references therein. As distinct from the approaches in [19, 29, 3, 32, 41] we treat the fuzzy stochastic integrals as the fuzzy sets of the space of square-integrable random vectors. Then we consider the fuzzy integral equations in which these fuzzy stochastic integrals appear. The paper is organized as follows. In Section 2 we recall some facts from the set-valued stochastic analysis. We give also the definitions and some properties of set-valued trajectory stochastic integrals of Itô and Aumann type. The Section 3 is started with a short résumé about fuzzy sets and fuzzy stochastic processes. Next the results of preceding section are used to establish the notions of fuzzy trajectory stochastic integrals of Itô and Aumann type. Some properties of these fuzzy stochastic integrals are also stated. Finally a fuzzy stochastic integral equation, with fuzzy trajectory stochastic Itô integral and fuzzy trajectory stochastic Aumann integral, is investigated. We present the results on existence and uniqueness of the solution as well as on boundedness of the solution, on continuous dependence on initial conditions and on the stability of the solution. In Section 4 we formulate the parallel results which are established for set-valued stochastic integral equations.

3 FUZZY STOCHASTIC INTEGRAL EQUATIONS PRELIMINARIES Let X be a separable Banach space, K b X the family of all nonempty closed and bounded subsets of X. Similarly by K b cx we denote the family of all nonempty closed, bounded and convex subsets of X. The Hausdorff metric H X defined by { H X A, B = max sup a A } dist X a, B, sup dist X b, A, b B in K b X is where dist X a, B = inf a b X and X denotes a norm in X. b B It is known that K b X, H X is a complete metric space, Kc b X is its closed subspace. For nonempty subsets A 1, A 2, B 1, B 2 of X it holds see [14] H X A 1 + A 2, B 1 + B 2 H X A 1, B 1 + H X A 2, B 2, where A 1 + A 2 denotes the Minkowski sum of A 1 and A 2. Let U, U, µ be a measure space. Recall that a set-valued mapping F : U K b X is said to be measurable if it satisfies: {u U : Fu C } U for every closed set C X. A measurable multifunction F is said to be L p -integrably bounded p 1, if there exists h L p U, U, µ; R + such that the inequality F h holds µ-a.e., where A = H X A, {} = sup a X a A for A K b X, and R + = [,. Consequently, it is known see [13] that F is L p -integrably bounded if and only if F L p U, U, µ; R +. Let M be a set of U-measurable mappings f : U X. The set M is said to be decomposable if for every f 1, f 2 M and every A U it holds f 1 1 A + f 2 1 U\A M. Denote I = [, T], where T <. Let Ω, A, {A t }, P be a complete filtered probability space satisfying the usual hypotheses, i.e. {A t } is an increasing and right continuous family of sub-σ-algebras of A and A contains all P-null sets. Let {Bt} be an {A t }-adapted Wiener process. We put U = I Ω, U = N, where N denotes the σ-algebra of the nonanticipating elements in I Ω, i.e. N = {A β I A : A t A t for every t I}, where β I is the Borel σ-algebra of subsets of I and A t = {ω : t, ω A} for t I. Finally we set µ = λ P as a measure, where λ is the Lebesgue measure on I, β I. A d-dimensional stochastic process f : I Ω R d is called nonanticipating if f is N-measurable. Clearly N β I A. It is known that f is N-measurable if and only if f is β I A-measurable and {A t }-adapted. Consider the space L 2 N λ P := L2 I Ω, N, λ P; R d.

4 476 M. T. MALINOWSKI AND M. MICHTA Then for every f L 2 N λ P and, t I, < t the Itô stochastic integral fsdbs exists and one has fsdbs L2 Ω, A t, P; R d L 2 Ω, A, P; R d. Moreover E fsdbs 2 t = E fs 2 ds = [,t] Ω f 2 ds dp, where denotes usual Euclidean norm in R d see [16] for details. Let F : I Ω K b R d be a set-valued stochastic process, i.e. a family {Ft} of A-measurable set-valued mappings Ft: Ω K b R d, t I. We call F nonanticipating if it is N-measurable. Let us define the set S 2 NF, λ P := {f L 2 Nλ P : f F, λ P-a.e.}. If F is L 2 N λ P-integrably bounded, then by Kuratowski and Ryll-Nardzewski Selection Theorem see e.g. [21] it follows that SN 2 F, λ P. Hence for every, t I, < t we can define the set-valued trajectory Itô stochastic integral J t F := { fsdbs : f S 2 N F, λ P }. Remark 2.1. By the above definition we have J t F L2 Ω, A, P; R d. In the rest of the paper, for the sake of convenience, we will write L 2 instead of L 2 Ω, A, P; R d. Proposition 2.2. Let F : I Ω K b R d be a nonanticipating and L 2 N λ P- integrably bounded set-valued stochastic process. Then i SN 2 F, λ P is nonempty, bounded, closed, weakly compact and decomposable subset of L 2 N λ P, ii J tf is nonempty, bounded, closed and weakly compact subset of L2 Ω, A t, P; R d for every, t I, < t. Proof. The proof of part i follows immediately from the assumptions imposed on F. The decomposability of SN 2 F, λ P follows by Theorem 3.1 in [13]. For the proof of the part ii let us take u JF. t Then there exists f SN 2 F, λ P such that u = fsdbs. Thus by Doob s maximal inequality we have v E u 2 E sup fsdbs 2 2E v [,t] fsdbs 2 = [,t] Ω f 2 ds dp

5 FUZZY STOCHASTIC INTEGRAL EQUATIONS 477 I Ω F 2 ds dp. Thus we have that J t F is a bounded subset of L2 Ω, A t, P; R d for, t I, < t. Under the assumptions, the set SN 2 F, λ P is also norm-closed. Moreover, from the above estimations it follows that the sets SN 2 F, λ P and Jt F are bounded in reflexive spaces L 2 N λ P and L2 Ω, A t, P; R d, respectively. Thus the set J tf is conditionally weakly compact and SN 2 F, λ P is weakly compact see [1]. Let {u n } JF t and let us suppose u n u in L 2 Ω, A t, P; R d. Then there exist a sequence {f n } SN 2 F, λ P such that u n = f nsdbs for n N. Hence, by Itô λ P. Thus isometry for Itô integral, we infer that {f n } is a Cauchy sequence in L 2 N it has to be convergent to some element f L 2 N λ P. Since the set S2 N F, λ P is closed, we conclude that u = fsdbs. This proves the closedness of the set F and consequently its weak compactness. J t Remark 2.3. If F : I Ω Kc brd is a nonanticipating and L 2 N λ P-integrably bounded set-valued stochastic process, then SN 2 F, λ P and Jt F are convex sets. Theorem 2.4. For each n N, let F n : I Ω K b R d be a nonanticipating setvalued stochastic processes such that F 1 is L 2 N λ P-integrably bounded and where F := F n n=1 F 1 F 2... F λ P-a.e., λ P-a.e. Then for every, t I, < t it holds JF t = JF t n. n=1 Proof. Firstly, let us note that by Theorem 3.3 in [21] a set-valued mapping F is nonanticipating and L 2 N λ P-integrably bounded. Since SN 2 F 1, λ P SN 2 F 2, λ P... SN 2 F, λ P, we infer that S 2 N F, λ P f n=1 n=1 S 2 N F n, λ P. Let us suppose that there exists S 2 N F n, λ P \ S 2 N F, λ P. Then for every n N it holds f F n λ P-a.e., and consequently f F λ P-a.e. Since f L 2 N λ P, it has to belong to the set SN 2 F, λ P too. This leads to the contradiction. Hence SN 2 F, λ P = SN 2 F n, λ P. Thus for every fixed, t I, < t we have n=1 { { n=1 } fsdbs : f SNF, 2 λ P = } fsdbs : f SN 2 F n, λ P,

6 478 M. T. MALINOWSKI AND M. MICHTA what completes the proof. Theorem 2.5. Let F 1, F 2 : I Ω K b R d be the nonanticipating and L 2 N λ P- integrably bounded set-valued stochastic processes. Then for every, t I, < t it holds H 2 L 2 J t F 1, J t F 2 [,t] Ω H 2 R d F 1, F 2 ds dp. Proof. Let us fix, t I such that < t. Then, for a fixed selection f 1 S 2 N F 1, λ P let us define a function ϕ: I Ω R d R + by ϕt, ω, x := f 1 t, ω x 2. Then ϕ,, x is N-measurable for every fixed x R d and the mapping ϕt, ω, is continuous for every fixed t, ω I Ω. Hence by Theorem 2.2 in [13] we obtain dist 2 L f 2 1 sdbs, JF t 2 = inf f 2 S 2 N F 2,λ P = inf = f 2 SN 2 F 2,λ P [,t] Ω [,t] Ω [,t] Ω f 1 sdbs f 2 sdbs ϕs, ω, f 2 s, ωds dp inf ϕs, ω, xds dp x F 2 s,ω H 2 R d F 1, F 2 ds dp. 2 L 2 Therefore we claim that sup dist 2 L 2 j1, JF t 2 j 1 JF t 1 In a similar way one can show that sup dist 2 j 2 J tf L 2 j2, JF t 1 2 [,t] Ω [,t] Ω H 2 R d F 1, F 2 ds dp. H 2 R d F 1, F 2 ds dp. Lemma 2.6. Let F : I Ω K b R d be a nonanticipating and L 2 N λ P-integrably bounded set-valued stochastic process. Then for every, a, t I such that a t it holds 2.1 J t F = J a F + J t af.

7 FUZZY STOCHASTIC INTEGRAL EQUATIONS 479 Proof. It is clear that J tf Ja F + Jt a F. We want to show that the opposite inclusion holds. Let us fix the random variables j 1, j 2 that belong to J a F and JaF, t respectively. Then there exist f 1, f 2 SN 2 F, λ P such that j 1 = a f 1sdBs, j 2 = f a 2sdBs. Let us take any f 3 SN 2 F, λ P. Since S2 N F, λ P is decomposable with respect to σ-algebra N, we infer that fs, ω = f 1 s, ω1 [,a] Ω s, ω + f 2 s, ω1 a,t] Ω s, ω + f 3 s, ω1 t,t] Ω s, ω belongs to SN 2 F, λ P, too. Observe that j 1 + j 2 = fsdbs. This completes the proof. Application of 2.1 together with Theorem 2.5 yields the following result. Theorem 2.7. Let F : I Ω K b R d be a nonanticipating and L 2 N λ P-integrably bounded set-valued stochastic process. Then the mapping [, T] t J t F Kb L 2 is continuous with respect to the metric H L 2. Now we consider the set-valued trajectory Aumann stochastic integral. Similarly as in the preceding considerations, let F : I Ω K b R d be a nonanticipating and L 2 N λ P-integrably bounded set-valued stochastic process. Then for, t I, < t we define set-valued trajectory Aumann stochastic integral L t F as a subset of L 2 Ω, A t, P; R d and described by L t F := { Then for every f SN 2 F, λ P one has E fsds 2 t fsds : f S 2 N F, λ P }. [,t] Ω f 2 ds dp. Proposition 2.8. Let F : I Ω K b R d be a nonanticipating and L 2 N λ P- integrably bounded set-valued stochastic process. Then set-valued trajectory stochastic integral L t F is nonempty, bounded, closed and weakly compact subset of L2 Ω, A t, P; R d. Proof. The boundedness property follows by the inequality above. The conditional weak compactness follows as in the proof of Proposition 2.2. Let {u n } L t F and let u n u in L 2 Ω, A t, P; R d. Then there exists a sequence {f n } SN 2 F, λ dp such that u n = f nsds. Since the set SN 2 F, λ P is weakly compact, there exists a subsequence {f nk } of {f n } such that f nk f in L 2 N λ P, where denotes weak convergence. But SN 2 F, λ P is weakly closed, thus f S2 N F, λ P. For a fixed

8 48 M. T. MALINOWSKI AND M. MICHTA, t I, < t, let us consider a linear operator T t : L2 N λ P L2 Ω, A t, P; R d defined by T t g := gsds. By the inequality above, it follows that T t is normto-norm continuous. Hence by Dunford Schwartz Theorem see [1] it is equivalent to the fact that T t is continuous with respect to weak topologies. Therefore u n k = T t f nk T t f in L 2 Ω, A t, P; R d, and hence u = T t f. This proves the closedness of the set L t F in the norm topology of the space L2 Ω, A t, P; R d, and consequently also its weak compactness. Remark 2.9. If F : I Ω Kc brd is a nonanticipating and L 2 N λ P-integrably bounded set-valued stochastic process, then L t F is a convex set. Clearly we have also that for every, a, t I, a t it holds L t F = L a F + L t af. Moreover, if F 1, F 2 : I Ω K b R d are the nonanticipating and L 2 N λ P- integrably bounded set-valued stochastic processes, then for every, t I, < t, similarly as in the proof of Theorem 2.5, one can derive the following: for every f 1 SN 2 F 1, λ P we have dist 2 L f 2 1 sds, L t F 2 = inf E f 2 SN 2 F 2,λ P t = t t inf f 2 SN 2 F 2,λ P [,t] Ω [,t] Ω [,t] Ω f 1 s f 2 sds 2 f 1 s f 2 s 2 ds dp inf ϕs, ω, xds dp x F 2 s,ω H 2 R d F 1, F 2 ds dp, where ϕ: I Ω R d R + is defined as ϕs, ω, x := f 1 s, ω x 2. Hence we have the following result. Theorem 2.1. Let F 1, F 2 : I Ω K b R d be the nonanticipating and L 2 N λ P- integrably bounded set-valued stochastic processes. Then for every, t I, < t it holds H 2 L 2 L t F 1, L t F 2 t [,t] Ω H 2 R d F 1, F 2 ds dp. Remark Similarly as in Theorem 2.7 one obtains that the mapping is continuous with respect to H L 2. [, T] t L t F Kb L 2

9 FUZZY STOCHASTIC INTEGRAL EQUATIONS 481 Finally, using the same arguments as in the proof of Theorem 2.4 one can show the following result. Theorem For each n N, let F n : I Ω K b R d be a nonanticipating set-valued stochastic processes such that F 1 is L 2 N λ P-integrably bounded and where F := F n n=1 F 1 F 2 F λ P-a.e., λ P-a.e. Then for every, t I, < t it holds L t F = L t F n. n=1 3. FUZZY TRAJECTORY STOCHASTIC INTEGRALS AND FUZZY STOCHASTIC INTEGRAL EQUATION As it was announced in the Introduction, in this section we recall some fundamental facts concerning fuzzy sets and fuzzy stochastic processes. Then we formulate the results of existence of fuzzy trajectory stochastic integrals of Itô and Aumann type. Finally we consider the fuzzy stochastic integral equations with the fuzzy trajectory stochastic integrals. Let X be a given separable, reflexive Banach space. By a fuzzy set u of the space X we mean a function u: X [, 1]. We denote this fact as u FX. For α, 1] denote [u] α := {x X : ux α} and let [u] := cl X {x X : ux > }, where cl X denotes the closure in X, X. The sets [u] α are called the α-level sets of fuzzy set u, and -level set is called the support of u. We will use the following Representation Theorem of Negoita Ralescu [36]. Theorem 3.1. Let M X be a set and let {C α : α [, 1]} be a family of subsets of M such that i C = M, ii C C α C β for α β, iii if α n ր α then C α = C αn. n=1 Then there exists u FX such that [u] α = C α for every α [, 1]. Moreover sup{α : x C α }, if x M, ux =, if x M. In the sequel we will deal with fuzzy sets which have some additional properties. Therefore we introduce the notation F b X = {u FX : [u] α K b X for every α [, 1]},

10 482 M. T. MALINOWSKI AND M. MICHTA F b cx = {u F b X : [u] α K b cx for every α [, 1]}. The following metric D X in F b X is often used: D X u, v := sup H X [u] α, [v] α for u, v F b X. α [,1] This metric generalizes the Hausdorff metric H X, and has the property D X u 1 + u 2, v 1 + v 2 D X u 1, v 1 + D X u 2, v 2 for u 1, u 2, v 1, v 2 F b c X, where the addition of fuzzy sets is defined levelwise, i.e. [u 1 + u 2 ] α = [u 1 ] α + [u 2 ] α for α [, 1]. It is known see [43] that F b X, D X is a complete metric space. It is also easy to see that F b c X is a closed subset of Fb X. For our aims we will consider two cases of X. Namely we will take X = R d or X = L 2, where we assume from now on that σ-algebra A is separable with respect to probability measure P. By a fuzzy random variable we mean a function u: Ω F b X such that [u ] α : Ω K b X is an A-measurable set-valued mapping for every α, 1]. A fuzzy set-valued mapping f : I Ω F b X is called a fuzzy stochastic process if ft, : Ω F b X is a fuzzy random variable for every t I. The fuzzy stochastic process f : I Ω F b X is said to be nonanticipating if the set-valued mapping [f] α : I Ω K b X is N-measurable for every α, 1]. A fuzzy stochastic process f is called {A t }-adapted, if ft, is an A t -measurable fuzzy random variable for every t I. Let f : I Ω F b X be a nonanticipating fuzzy stochastic process. The process f is said to be L 2 N λ P-integrably bounded, if [f] L 2 N λ P. Consider now f : I Ω F b R d and assume that it is nonanticipating and L 2 N λ P-integrably bounded fuzzy stochastic process. For α-levels α [, 1] of such a fuzzy stochastic process f one can consider set-valued trajectory stochastic integrals J t [f] α and L t [f] α for every, t I, < t. Then by Theorem 2.4, Theorem 2.12 and Theorem 3.1 for every, t I, < t there exist fuzzy sets in F b L 2 denoted by F fsdbs and F such that for every α [, 1] [ ] α F fsdbs = J[f] t α, [ F fsds fsds ] α = L t [f] α.

11 Definition 3.2. The fuzzy sets F FUZZY STOCHASTIC INTEGRAL EQUATIONS 483 fsdbs F b L 2, F fsds F b L 2 described above are called the fuzzy trajectory stochastic Itô integral and fuzzy trajectory stochastic Aumann integral respectively of nonanticipating and L 2 N λ P- integrably bounded fuzzy stochastic process f : I Ω F b R d. Note that the sum of these integrals not necessarily is the fuzzy set from F b L 2. Remark 3.3. If we assume additionally that f has convex α-level sets, i.e. f : I Ω F b c Rd then F and as a consequence F fsdbs F b c L2, F fsds + F This fact we will use later in 3.3. fsds F b c L2, fsdbs F b cl 2. One can show that for every, a, t I, a t it holds 3.1 F 3.2 F fsdbs = F fsds = F a a fsdbs + F fsds + F a a fsdbs, fsds. Directly by Theorem 2.5 and Theorem 2.1 we have the following result. Corollary 3.4. Let f, g: I Ω F b R d be a nonanticipating and L 2 N λ P- integrably bounded fuzzy stochastic processes. Then for every, t I, < t D 2 L F fsdbs, F gsdbs D 2 2 R f, gds dp, d and D 2 L 2 F fsds, F Applying 3.1 and 3.2 we obtain: gsds t [,t] Ω [,t] Ω D 2 R d f, gds dp. Corollary 3.5. Let f : I Ω F b R d be a nonanticipating and L 2 N λ P-integrably bounded fuzzy stochastic process. Then the mappings [, T] t F fsdbs F b L 2,

12 484 M. T. MALINOWSKI AND M. MICHTA [, T] t F fsds F b L 2, are continuous with respect to the metric D L 2. In the sequel we want to consider some fuzzy equation in which the fuzzy trajectory stochastic integrals appear. Denote L 2 = L2 Ω, A, P; R d. Let f, g: I Ω Fc bl2 Fc brd and let X FcL b 2. By a fuzzy stochastic integral equation we mean the following relation in the space Fc bl2 : 3.3 Xt = X + F fs, Xsds + F gs, XsdBs for t I. Definition 3.6. By a solution to 3.3 we mean a continuous mapping X : I Fc bl2 that satisfies 3.3. A solution X : I Fc bl2 to 3.3 is unique if Xt = Y t for every t I, where Y : I Fc bl2 is any solution of 3.3. Below we write down the detailed conditions which will be imposed on the coefficients of the equation. Assume that f, g: I Ω FcL b 2 FcR b d satisfy: f1 for every u Fc bl2 the mappings f,, u, g,, u: I Ω Fc b Rd are the nonanticipating fuzzy stochastic processes, f2 there exists a constant K > such that D R d ft, u, ft, v + DR d gt, u, gt, v KDL 2u, v for every t, ω I Ω, and every u, v Fc bl2, f3 there exists a constant C > such that D R d ft, u, ˆθ + DR d gt, u, ˆθ C 1 + DL 2u, ˆΘ, for every t, ω I Ω, and every u FcL b 2. To describe the symbols ˆθ, ˆΘ let θ, Θ denote the zero elements in R d and L 2, respectively. Then the symbols ˆθ, ˆΘ are their fuzzy counterparts, i.e. [ˆθ] α = {θ} and [ˆΘ] α = {Θ} for every α [, 1]. Theorem 3.7. Let X Fc bl2, and f, g: I Ω Fb c L2 Fc brd satisfy the conditions f1-f3. Then the equation 3.3 has a unique solution.

13 FUZZY STOCHASTIC INTEGRAL EQUATIONS 485 Proof. Let us define a sequence X n : I F b c L2, n =, 1,... of successive approximations as follows: and for n = 1, 2,... for every t I. X n t = X + F X t = X, for every t I, fs, X n 1 sds + F Due to Corollary 3.5, the mappings X n are continuous. gs, X n 1 sdbs By Corollary 3.4 and assumptions f1, f3 one gets DL F 2 fs, X 2 ds, ˆΘ = D 2L F fs, X 2 ds, F ˆθds T D 2 R fs, d X, ˆθ ds dp ηt 2, I Ω where η = 2C D 2 L 2 X, ˆΘ. Similarly we have D 2 L 2 F Therefore for every t I gs, X dbs, ˆΘ = D 2L F 2 I Ω D 2 L 2 X1 t, X t 2D 2 L 2 F gs, X dbs, F ˆθds D 2 R d gs, X, ˆθ ds dp ηt. + 2D 2 L 2 F 2ηTT + 1. fs, X ds, ˆΘ gs, X dbs, ˆΘ Observe further that for n = 2, 3,..., using Corollary 3.4 and assumptions f1-f2, one has D 2 L 2 Xn t, X n 1 t 2D 2 L 2 F fs, X n 1 sds, F fs, X n 2 sds + 2D 2 L F gs, X 2 n 1 sdbs, F 2T D 2 R fs, d Xn 1 s, fs, X n 2 s ds dp gs, X n 2 sdbs I Ω + 2 D 2 R d gs, Xn 1 s, gs, X n 2 s ds dp I Ω

14 486 M. T. MALINOWSKI AND M. MICHTA T Thus we obtain 2K 2 T + 1 sup D 2 L 2 Xn 1 s, X n 2 s ds. D 2 L 2 Xn t, X n 1 t ηk 2[2K2 TT + 1] n. n! Let us consider the space CI, F b c L2 of continuous mappings X : I F b c L2 with a distance ρ defined by ρx, Y = sup D L 2Xt, Y t for X, Y CI, FcL b 2. It is clear that CI, F b c L2, ρ is a complete metric space. Since {X n } CI, F b c L2 and for m < n ρx n, X m = sup D L 2X n t, X m t ηk 1 n k=m+1 2K2 TT + 1 k, k! we infer that {X n } n= is a Cauchy sequence in CI, F b c L2, ρ. Thus there is X CI, F b cl 2 such that ρx n, X, as n. We shall show that X is a solution to 3.3. Let t I be fixed. We have D 2 L Xt, X 2 + F fs, Xsds + F gs, XsdBs 3D 2 L 2 Xn t, Xt + 3D 2 L 2 X n t, X + F + F + 6D 2 L 2 F + 6D 2 L 2 F gs, X n 1 sdbs fs, X n 1 sds fs, X n 1 sds, F gs, X n 1 sdbs, F fs, Xsds gs, XsdBs, The first term on the right-hand side of the inequality converges to zero, whereas the second is equal to zero. Since and D 2 L 2 F D 2 L 2 F fs, X n 1 sds, F T TK 2 DL 2 2 Xn 1 s, Xs ds, fs, Xsds T 2 K 2 sup D 2 L 2 Xn 1 t, Xt, as n, gs, X n 1 sdbs, F gs, XsdBs

15 we infer that Xt, X + F D L 2 for every t I. FUZZY STOCHASTIC INTEGRAL EQUATIONS 487 T K 2 D 2 L 2 Xn 1 s, Xs ds, TK 2 sup D 2 L 2 Xn 1 t, Xt, as n, fs, Xsds + F gs, XsdBs = For the uniqueness assume that X : I F b cl 2 and Y : I F b cl 2 are two solutions to 3.3. Then let us notice that D 2 L 2 Xt, Y t 2K 2 T + 1 Thus, by Gronwall s lemma, we obtain D 2 L 2 Xs, Y s ds. D 2 L 2 Xt, Y t for every t I. Therefore the uniqueness of the solution follows. The next result presents some estimation for the solution to 3.3. Theorem 3.8. Let X F b c L2 and f, g: I Ω Fb c L2 F b c Rd satisfy the assumptions of Theorem 3.7. Then the solution X of 3.3 satisfies sup D 2 L Xt, ˆΘ 3D 2 2 L 2 X, ˆΘ + 6C 2 TT + 1 e 6C2TT+1. Proof. Let us fix t I. Using Corollary 3.4 and assumption f3 we obtain D 2 L Xt, ˆΘ 3D 2 2 L 2X, ˆΘ t + 3D 2 L F fs, Xsds, ˆΘ 2 t + 3D 2 L F gs, Xsds, ˆΘ 2 3D 2 L 2X, ˆΘ + 3t D 2 R d fs, Xs, ˆθ ds dp + 3 [,t] Ω D 2 R d gs, Xs, ˆθ ds dp [,t] Ω 3D 2 L 2X, ˆΘ + 6C 2 tt C 2 t + 1 Now it is enough to apply the Gronwall lemma to get the result. D 2 L 2 Xs, ˆΘ ds Next we will show a continuous dependence on initial conditions of the solution to 3.3. Let X, Y denote the solutions of the equations 3.4 Xt = X + F fs, Xsds + F gs, XsdBs for t I,

16 488 M. T. MALINOWSKI AND M. MICHTA 3.5 Y t = Y + F fs, Y sds + F gs, Y sdbs for t I, respectively. Assume that X, Y and f, g satisfy the conditions as in Theorem 3.7. Theorem 3.9. For the solutions X, Y of the equations 3.4, 3.5 it holds sup D 2 L 2Xt, Y t 3D2 L 2X, Y e 3K2TT+1. Proof. It is enough to notice that for every t I one has D 2 L 2 Xt, Y t 3D 2 L 2X, Y + 3t D 2 R d fs, Xs, fs, Y s ds dp + 3 [,t] Ω D 2 R d gs, Xs, gs, Y s ds dp [,t] Ω 3D 2 L 2X, Y + 3K 2 t + 1 D 2 L 2 Xs, Y s ds. Now application of the Gronwall lemma gives the result. Finally we present the stability property of solutions to the system of fuzzy stochastic integral equations. Let us consider the following equations: Xt = X + F and for n = 1, 2,... for t I. X n t = X,n + F fs, Xsds + F gs, XsdBs for t I, f n s, X n sds + F g n s, X n sdbs Theorem 3.1. Let f, g, f n, g n : I Ω F b cl 2 F b cr d satisfy the conditions f1-f3 with the same constants K, C. Let also X, X,n F b cl 2 for every n N. Assume that i D L 2 X,n, X, ii D R d fn t, u, ft, u, for every t, ω, u I Ω F b c L2, iii D R d gn t, u, gt, u, for every t, ω, u I Ω F b c L2. Then sup D L 2 Xn t, Xt, as n.

17 FUZZY STOCHASTIC INTEGRAL EQUATIONS 489 Proof. By virtue of Corollary 3.4, assumptions f1-f3, let us note that for every t I one can show the following estimations: D 2 L 2 Xn t, Xt 3D 2 L 2 X,n, X + 3t D 2 R d fn s, X n s, fs, Xs ds dp + 3 [,t] Ω D 2 R d gn s, X n s, gs, Xs ds dp [,t] Ω 3D 2 L 2 X,n, X + 6t D 2 R d fn s, Xs, fs, Xs ds dp + 6 [,t] Ω D 2 R d gn s, Xs, gs, Xs ds dp [,t] Ω + 6K 2 t + 1 D 2 L 2 Xn s, Xs ds. Application of Gronwall s lemma yields D 2 L 2 Xn t, Xt 3D 2L 2 X,n, X + 6t D 2 R d fn s, Xs, fs, Xs ds dp + 6 [,t] Ω D 2 R d gn s, Xs, gs, Xs ds dp e 6K2 tt+1. [,t] Ω Using the assumptions and the Lebesgue Dominated Convergence Theorem we end the proof. 4. SET-VALUED STOCHASTIC INTEGRAL EQUATIONS In this section we consider set-valued stochastic integral equations. The motivation of the study of such equations comes from the deterministic case, where the study of them has been used as an alternative approach to the issue of fuzzy differential equations see e.g. [26, 28]. The idea used there was to repleace an original fuzzy differential equation by the system of set-valued differential equations generated from the original fuzzy setup. Such procedure avoided the main disadvantage of studying directly the fuzzy differential equation in the original formulation, i.e, the lack of a reflection of the rich behaviour of corresponding differential equations without fuzziness. As it was shown, it had been caused by the fact that the diameter of any solution of a fuzzy differential equation increases as time increases because of the necessity of the fuzzification of the derivative involved. Taking these remarks into consideration, let F, G: I Ω Kc bl2 Kc brd and let X Kc bl2. By a

18 49 M. T. MALINOWSKI AND M. MICHTA set-valued stochastic integral equation we mean the following relation in the space K b cl 2 : 4.1 Xt = X + L t FX + Jt GX for t I, where FX, GX: I Ω K b c Rd are defined by FXt, ω = Ft, ω, Xt, GXt, ω = Gt, ω, Xt for t, ω I Ω. Definition 4.1. By a solution to 4.1 we mean a continuous mapping X : I K b c L2 that satisfies 4.1. A solution X : I K b c L2 to 4.1 is unique if Xt = Y t for every t I, where Y : I K b c L2 is any solution of 4.1. Now we formulate the conditions required from the equation coefficients. Assume that F, G: I Ω K b cl 2 K b cr d satisfy: s1 for every u K b cl 2 the mappings F,, u, G,, u: I Ω K b cr d are the nonanticipating set-valued stochastic processes, s2 there exists a constant K > such that H R d Ft, u, Ft, v + HR d Gt, u, Gt, v KHL 2u, v for every t, ω I, and every u, v K b c L2, s3 there exists a constant C > such that H R d Ft, u, θ + HR d Gt, u, θ C 1 + HL 2u, Θ, for every t, ω I Ω, and every u K b c L2. Using arguments which are similar to those from Section 3, we obtain the results for set-valued stochastic integral equations. Theorem 4.2. X K b cl 2, and F, G: I Ω K b cl 2 K b cr d satisfy the conditions s1-s3. Then equation 4.1 has a unique solution. Theorem 4.3. Let X K b cl 2 and F, G: I Ω K b cl 2 K b cr d satisfy the assumptions of Theorem 4.2. Then the solution X of 4.1 satisfies sup H 2 L Xt, Θ 3H 2 2 L 2 X, Θ + 6C 2 TT + 1 e 6C2TT+1. Also a continuous dependence on initial conditions of solution to 4.1 holds: let X, Y denote the solutions of the equations 4.2 Xt = X + L t FX + Jt GX for t I, 4.3 Y t = Y + L t FY + Jt GY for t I,

19 FUZZY STOCHASTIC INTEGRAL EQUATIONS 491 respectively. Assume that X, Y and f, g satisfy the conditions as in Theorem 4.2. Theorem 4.4. For the solutions X, Y of the equations 4.2, 4.3 it holds sup H 2 L 2Xt, Y t 3H2 L 2X, Y e 3K2TT+1. Notice that a stability property of solutions to the system of set-valued stochastic integral equations holds. Indeed, let us consider the following equations: and for n = 1, 2,... Xt = X + L t FX + Jt GX for t I, X n t = X,n + L t F nx n ds + J t G nx n for t I, Theorem 4.5. Let F, G, F n, G n : I Ω K b cl 2 K b cr d satisfy the the conditions s1-s3 with the same constants K, C. Let also X, X,n Kc bl2 for every n N. Assume that i H L 2 X,n, X, ii H R d Fn t, u, Ft, u, for every t, ω, u I Ω K b c L2, iii H R d Fn t, u, Ft, u, for every t, ω, u I Ω K b cl 2. Then sup H L 2 Xn t, Xt, as n. REFERENCES [1] R.P. Agarwal, D. O Regan and V. Lakshmikantham, A stacking theorem approach for fuzzy differential equations, Nonlinear Anal., 55: , 23. [2] R.P. Agarwal, D. O Regan and V. Lakshmikantham, Viability theory and fuzzy differential equations, Fuzzy Sets and Systems, 151:536 58, 25. [3] N.U. Ahmed, Nonlinear stochastic differential inclusions on Banach spaces, Stoch. Anal. Appl., 12:1 1, [4] N.U. Ahmed, Impulsive perturbation of C semigroups and stochastic evolution inclusions, Discuss. Math. DICO, 22: , 22. [5] N.U. Ahmed, Optimal relaxed controls for nonlinear infinite dimensional stochastic differential inclusions, Optimal Control of Differential Equations, M. Dekker Lect. Notes, 16:1 19, [6] N.U. Ahmed, Differential inclusions operator valued measures and optimal control, Dynamic Syst. Appl., 16:13 36, 27. [7] B. Bede and S. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets and Systems, 151: , 27. [8] T.G. Bhaskar, V. Lakshmikantham and V. Devi, Revisiting fuzzy differential equations, Nonlinear Anal., 58: , 24. [9] P. Diamond and P. Kloeden, Metric Spaces of Fuzzy Sets: Theory and Applications, World Scientific, Singapore, [1] N. Dunford and J.T. Schwartz, Linear Operators I, Int. Publ., INC, New York, 1967.

20 492 M. T. MALINOWSKI AND M. MICHTA [11] W. Fei, Existence and uniqueness of solution for fuzzy random differential equations with non-lipschitz coefficients, Inform. Sci., 177: , 27. [12] Y. Feng, Fuzzy stochastic differential systems, Fuzzy Sets and Systems, 115: , 2. [13] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales for multivalued functions, J. Multivar. Anal., 7: , [14] S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol.1, Theory, Kluwer Acad. Publ., Boston, [15] E. Hüllermeier, An approach to modelling and simulation of uncertain dynamical systems, Int. J. Uncertainty Fuzziness Knowledge-Based Syst., 5: , [16] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland Publ., Amsterdam, [17] E.J. Jung and J.H. Kim, On set-valued stochastic integrals, Stoch. Anal. Appl., 21:41 418, 23. [18] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24:31 317, [19] B.K. Kim and J.H. Kim, Stochastic integrals of set-valued processes and fuzzy processes, J. Math. Anal. Appl., 236:48 52, [2] J.H. Kim, On fuzzy stochastic differential equations, J. Korean Math. Soc., 42: , 25. [21] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ., Dordrecht, [22] M. Kisielewicz, Backward stochastic differential inclusions, Dynamic Syst. Appl., 16:121 14, 27. [23] M. Kisielewicz, Weak compactness of weak solutions to backward stochastic differential inclusions, Dynamic Syst. Appl., 17:351 37, 28. [24] M. Kisielewicz, M. Michta and J. Motyl, Set-valued approach to stochastic control. Part I. Existence and regularity properties, Dynamic Syst. Appl., 12:45 431, 23. [25] M. Kisielewicz, M. Michta and J. Motyl, Set-valued approach to stochastic control. Part II. Viability and semimartingale issue, Dynamic Syst. Appl., 12: , 23. [26] V. Lakshmikantham, S. Lela and A. Vatsala, Interconnection between set and fuzzy differential equations, Nonlinear Anal., 54:351 36, 23. [27] V. Lakshmikantham and R.N. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Taylor and Francis Publishers, London, 23. [28] V. Lakshmikantham and A.A. Tolstonogov, Existence and interrelation between set and fuzzy differential equations, Nonlinear Anal., 55: , 23. [29] J. Li and S. Li, Set-valued stochastic Lebesgue integral and representation theorems, Int. J. Comp. Intelligence Syst., 1: , 28. [3] S. Li and A. Ren, Representation theorems, set-valued and fuzzy set-valued Ito integral, Fuzzy Sets and Systems, 158: , 27. [31] M.T. Malinowski, On random fuzzy differential equations, Fuzzy Sets and Systems, 16: , 29. [32] M.T. Malinowski and M. Michta, Stochastic fuzzy differential equations with an application, submitted. [33] M. Michta and J. Motyl, Weak solutions to a stochastic inclusion with multivalued integrator, Dynamic Syst. Appl., 14: , 25. [34] M. Michta and J. Motyl, Second order stochastic inclusions and equations, Dynamic Syst. Appl., 15:31 315, 26.

21 FUZZY STOCHASTIC INTEGRAL EQUATIONS 493 [35] M. Michta and J. Motyl, Set valued Stratonovich integral and Stratonovich type stochastic inclusion, Dynamic Syst. Appl., 16: , 27. [36] C.V. Negoita and D.A. Ralescu, Applications of Fuzzy Sets to System Analysis, Wiley, New York, [37] J.J. Nieto and R. Rodríguez-López, Bounded solutions for fuzzy differential and integral equations, Chaos Solitons & Fractals, 27: , 26. [38] J.J. Nieto and R. Rodríguez-López, Analysis of a logistic differential model with uncertainty, Int. J. Dynamical Systems and Differential Equations, 1: , 28. [39] J.J. Nieto, R. Rodríguez-López and D. Franco, Linear first-order fuzzy differential equations, Int. J. Uncertainty Fuzziness Knowledge-Based Syst., 14:687 79, 26. [4] J.J. Nieto, R. Rodríguez-López and D.N. Georgiou, Fuzzy differential systems under generalized metric spaces, Dynamic Syst. Appl., 17:1 24, 28. [41] Y. Ogura, On stochastic differential equations with fuzzy set coefficients. In: Soft Methods for Handling Variability and Imprecision, pp , Springer, Berlin, 28. [42] M.L. Puri and D.A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91: , [43] D. Qiu and L. Shu, Supremum metric on the space of fuzzy sets and common fixed point theorems for fuzzy mappings, Inform. Sci., 178: , 28. [44] J. Zhang, Set-valued stochastic integrals with respect to a real valued martingale. In: Soft Methods for Handling Variability and Imprecision, pp , Springer, Berlin, 28.

BOUNDEDNESS OF SET-VALUED STOCHASTIC INTEGRALS

BOUNDEDNESS OF SET-VALUED STOCHASTIC INTEGRALS Discussiones Mathematicae Differential Inclusions, Control and Optimization 35 (2015) 197 207 doi:10.7151/dmdico.1173 BOUNDEDNESS OF SET-VALUED STOCHASTIC INTEGRALS Micha l Kisielewicz Faculty of Mathematics,

More information

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS APPLICATIONES MATHEMATICAE 29,4 (22), pp. 387 398 Mariusz Michta (Zielona Góra) OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS Abstract. A martingale problem approach is used first to analyze

More information

FUZZY SOLUTIONS FOR BOUNDARY VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS. 1. Introduction

FUZZY SOLUTIONS FOR BOUNDARY VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXV 1(26 pp. 119 126 119 FUZZY SOLUTIONS FOR BOUNDARY VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS A. ARARA and M. BENCHOHRA Abstract. The Banach fixed point theorem

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Tiziana Cardinali Francesco Portigiani Paola Rubbioni. 1. Introduction

Tiziana Cardinali Francesco Portigiani Paola Rubbioni. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 32, 2008, 247 259 LOCAL MILD SOLUTIONS AND IMPULSIVE MILD SOLUTIONS FOR SEMILINEAR CAUCHY PROBLEMS INVOLVING LOWER

More information

Existence Results for Multivalued Semilinear Functional Differential Equations

Existence Results for Multivalued Semilinear Functional Differential Equations E extracta mathematicae Vol. 18, Núm. 1, 1 12 (23) Existence Results for Multivalued Semilinear Functional Differential Equations M. Benchohra, S.K. Ntouyas Department of Mathematics, University of Sidi

More information

M.S.N. Murty* and G. Suresh Kumar**

M.S.N. Murty* and G. Suresh Kumar** JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 19, No.1, March 6 THREE POINT BOUNDARY VALUE PROBLEMS FOR THIRD ORDER FUZZY DIFFERENTIAL EQUATIONS M.S.N. Murty* and G. Suresh Kumar** Abstract. In

More information

Initial value problems for singular and nonsmooth second order differential inclusions

Initial value problems for singular and nonsmooth second order differential inclusions Initial value problems for singular and nonsmooth second order differential inclusions Daniel C. Biles, J. Ángel Cid, and Rodrigo López Pouso Department of Mathematics, Western Kentucky University, Bowling

More information

Partial Averaging of Fuzzy Differential Equations with Maxima

Partial Averaging of Fuzzy Differential Equations with Maxima Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 6, Number 2, pp. 199 27 211 http://campus.mst.edu/adsa Partial Averaging o Fuzzy Dierential Equations with Maxima Olga Kichmarenko and

More information

Existence of Solutions to Boundary Value Problems for a Class of Nonlinear Fuzzy Fractional Differential Equations

Existence of Solutions to Boundary Value Problems for a Class of Nonlinear Fuzzy Fractional Differential Equations 232 Advances in Analysis, Vol. 2, No. 4, October 217 https://dx.doi.org/1.2266/aan.217.242 Existence of Solutions to Boundary Value Problems for a Class of Nonlinear Fuzzy Fractional Differential Equations

More information

EXISTENCE OF PURE EQUILIBRIA IN GAMES WITH NONATOMIC SPACE OF PLAYERS. Agnieszka Wiszniewska Matyszkiel. 1. Introduction

EXISTENCE OF PURE EQUILIBRIA IN GAMES WITH NONATOMIC SPACE OF PLAYERS. Agnieszka Wiszniewska Matyszkiel. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 16, 2000, 339 349 EXISTENCE OF PURE EQUILIBRIA IN GAMES WITH NONATOMIC SPACE OF PLAYERS Agnieszka Wiszniewska Matyszkiel

More information

16 1 Basic Facts from Functional Analysis and Banach Lattices

16 1 Basic Facts from Functional Analysis and Banach Lattices 16 1 Basic Facts from Functional Analysis and Banach Lattices 1.2.3 Banach Steinhaus Theorem Another fundamental theorem of functional analysis is the Banach Steinhaus theorem, or the Uniform Boundedness

More information

INITIAL AND BOUNDARY VALUE PROBLEMS FOR NONCONVEX VALUED MULTIVALUED FUNCTIONAL DIFFERENTIAL EQUATIONS

INITIAL AND BOUNDARY VALUE PROBLEMS FOR NONCONVEX VALUED MULTIVALUED FUNCTIONAL DIFFERENTIAL EQUATIONS Applied Mathematics and Stochastic Analysis, 6:2 23, 9-2. Printed in the USA c 23 by North Atlantic Science Publishing Company INITIAL AND BOUNDARY VALUE PROBLEMS FOR NONCONVEX VALUED MULTIVALUED FUNCTIONAL

More information

COMPARISON RESULTS OF LINEAR DIFFERENTIAL EQUATIONS WITH FUZZY BOUNDARY VALUES

COMPARISON RESULTS OF LINEAR DIFFERENTIAL EQUATIONS WITH FUZZY BOUNDARY VALUES Journal of Science and Arts Year 8, No. (4), pp. 33-48, 08 ORIGINAL PAPER COMPARISON RESULTS OF LINEAR DIFFERENTIAL EQUATIONS WITH FUZZY BOUNDARY VALUES HULYA GULTEKIN CITIL Manuscript received: 08.06.07;

More information

Exponential stability of families of linear delay systems

Exponential stability of families of linear delay systems Exponential stability of families of linear delay systems F. Wirth Zentrum für Technomathematik Universität Bremen 28334 Bremen, Germany fabian@math.uni-bremen.de Keywords: Abstract Stability, delay systems,

More information

On the effect of α-admissibility and θ-contractivity to the existence of fixed points of multivalued mappings

On the effect of α-admissibility and θ-contractivity to the existence of fixed points of multivalued mappings Nonlinear Analysis: Modelling and Control, Vol. 21, No. 5, 673 686 ISSN 1392-5113 http://dx.doi.org/10.15388/na.2016.5.7 On the effect of α-admissibility and θ-contractivity to the existence of fixed points

More information

Functional Differential Equations with Causal Operators

Functional Differential Equations with Causal Operators ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.11(211) No.4,pp.499-55 Functional Differential Equations with Causal Operators Vasile Lupulescu Constantin Brancusi

More information

ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN MODULAR FUNCTION SPACES ABSTRACT

ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN MODULAR FUNCTION SPACES ABSTRACT ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN MODULAR FUNCTION SPACES T. DOMINGUEZ-BENAVIDES, M.A. KHAMSI AND S. SAMADI ABSTRACT In this paper, we prove that if ρ is a convex, σ-finite modular function satisfying

More information

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES. Jong Soo Jung. 1. Introduction

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES. Jong Soo Jung. 1. Introduction Korean J. Math. 16 (2008), No. 2, pp. 215 231 CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES Jong Soo Jung Abstract. Let E be a uniformly convex Banach space

More information

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi Opuscula Math. 37, no. 2 27), 265 28 http://dx.doi.org/.7494/opmath.27.37.2.265 Opuscula Mathematica FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

More information

ON PERIODIC BOUNDARY VALUE PROBLEMS OF FIRST-ORDER PERTURBED IMPULSIVE DIFFERENTIAL INCLUSIONS

ON PERIODIC BOUNDARY VALUE PROBLEMS OF FIRST-ORDER PERTURBED IMPULSIVE DIFFERENTIAL INCLUSIONS Electronic Journal of Differential Equations, Vol. 24(24), No. 84, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) ON PERIODIC

More information

EXISTENCE OF SOLUTIONS TO A BOUNDARY-VALUE PROBLEM FOR AN INFINITE SYSTEM OF DIFFERENTIAL EQUATIONS

EXISTENCE OF SOLUTIONS TO A BOUNDARY-VALUE PROBLEM FOR AN INFINITE SYSTEM OF DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 217 (217, No. 262, pp. 1 12. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS TO A BOUNDARY-VALUE

More information

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS

ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS PORTUGALIAE MATHEMATICA Vol. 55 Fasc. 4 1998 ON THE PATHWISE UNIQUENESS OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS C. Sonoc Abstract: A sufficient condition for uniqueness of solutions of ordinary

More information

CONVERGENCE OF SET VALUED SUB- AND SUPERMARTINGALES IN THE KURATOWSKI MOSCO SENSE 1. By Shoumei Li and Yukio Ogura Saga University

CONVERGENCE OF SET VALUED SUB- AND SUPERMARTINGALES IN THE KURATOWSKI MOSCO SENSE 1. By Shoumei Li and Yukio Ogura Saga University The nnals of Probability 1998, Vol. 26, No. 3, 1384 1402 CONVERGENCE OF SET VLUED SUB- ND SUPERMRTINGLES IN THE KURTOWSKI MOSCO SENSE 1 By Shoumei Li and Yukio Ogura Saga University The purpose of this

More information

Bounded Generalized Random Linear Operators

Bounded Generalized Random Linear Operators VNU Journal of Science: Mathematics Physics Vol. 33 No. 3 (27) 95-4 Bounded Generalized Random Linear Operators Nguyen Thinh * Department of Mathematics VNU University of Science 334 Nguyen Trai Hanoi

More information

AW -Convergence and Well-Posedness of Non Convex Functions

AW -Convergence and Well-Posedness of Non Convex Functions Journal of Convex Analysis Volume 10 (2003), No. 2, 351 364 AW -Convergence Well-Posedness of Non Convex Functions Silvia Villa DIMA, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy villa@dima.unige.it

More information

Dynamic Systems and Applications xx (200x) xx-xx ON TWO POINT BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENTIAL INCLUSIONS

Dynamic Systems and Applications xx (200x) xx-xx ON TWO POINT BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENTIAL INCLUSIONS Dynamic Systems and Applications xx (2x) xx-xx ON WO POIN BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENIAL INCLUSIONS LYNN ERBE 1, RUYUN MA 2, AND CHRISOPHER C. ISDELL 3 1 Department of Mathematics,

More information

On boundary value problems for fractional integro-differential equations in Banach spaces

On boundary value problems for fractional integro-differential equations in Banach spaces Malaya J. Mat. 3425 54 553 On boundary value problems for fractional integro-differential equations in Banach spaces Sabri T. M. Thabet a, and Machindra B. Dhakne b a,b Department of Mathematics, Dr. Babasaheb

More information

FEEDBACK DIFFERENTIAL SYSTEMS: APPROXIMATE AND LIMITING TRAJECTORIES

FEEDBACK DIFFERENTIAL SYSTEMS: APPROXIMATE AND LIMITING TRAJECTORIES STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume XLIX, Number 3, September 2004 FEEDBACK DIFFERENTIAL SYSTEMS: APPROXIMATE AND LIMITING TRAJECTORIES Abstract. A feedback differential system is defined as

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 1. Yong Zhou. Abstract

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 1. Yong Zhou. Abstract EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS 1 Yong Zhou Abstract In this paper, the initial value problem is discussed for a system of fractional differential

More information

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM OLEG ZUBELEVICH DEPARTMENT OF MATHEMATICS THE BUDGET AND TREASURY ACADEMY OF THE MINISTRY OF FINANCE OF THE RUSSIAN FEDERATION 7, ZLATOUSTINSKY MALIY PER.,

More information

Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings

Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings Mathematica Moravica Vol. 20:1 (2016), 125 144 Weak and strong convergence theorems of modified SP-iterations for generalized asymptotically quasi-nonexpansive mappings G.S. Saluja Abstract. The aim of

More information

Existence And Uniqueness Of Mild Solutions Of Second Order Volterra Integrodifferential Equations With Nonlocal Conditions

Existence And Uniqueness Of Mild Solutions Of Second Order Volterra Integrodifferential Equations With Nonlocal Conditions Applied Mathematics E-Notes, 9(29), 11-18 c ISSN 167-251 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Existence And Uniqueness Of Mild Solutions Of Second Order Volterra Integrodifferential

More information

x(t)), 0 < t < 1, 1 < q 2, 0 < p < 1 x(1). x(0) = 0, x (1) = αi p 0

x(t)), 0 < t < 1, 1 < q 2, 0 < p < 1 x(1). x(0) = 0, x (1) = αi p 0 Journal of Fractional Calculus and Applications, Vol. 3. July 22, No. 9, pp. 4. ISSN: 29-5858. http://www.fcaj.webs.com/ EXISTENCE RESULTS FOR FIRST ORDER BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL

More information

Approximate controllability of impulsive neutral functional differential equations with state-dependent delay via fractional operators

Approximate controllability of impulsive neutral functional differential equations with state-dependent delay via fractional operators International Journal of Computer Applications (975 8887) Volume 69 - No. 2, May 23 Approximate controllability of impulsive neutral functional differential equations with state-dependent delay via fractional

More information

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings Int. J. Nonlinear Anal. Appl. 7 (2016) No. 1, 295-300 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2015.341 On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous

More information

Non-linear wave equations. Hans Ringström. Department of Mathematics, KTH, Stockholm, Sweden

Non-linear wave equations. Hans Ringström. Department of Mathematics, KTH, Stockholm, Sweden Non-linear wave equations Hans Ringström Department of Mathematics, KTH, 144 Stockholm, Sweden Contents Chapter 1. Introduction 5 Chapter 2. Local existence and uniqueness for ODE:s 9 1. Background material

More information

LOCAL FIXED POINT THEORY INVOLVING THREE OPERATORS IN BANACH ALGEBRAS. B. C. Dhage. 1. Introduction

LOCAL FIXED POINT THEORY INVOLVING THREE OPERATORS IN BANACH ALGEBRAS. B. C. Dhage. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 24, 24, 377 386 LOCAL FIXED POINT THEORY INVOLVING THREE OPERATORS IN BANACH ALGEBRAS B. C. Dhage Abstract. The present

More information

FIXED POINT THEORY FOR MULTIVALUED OPERATORS ON A SET WITH TWO METRICS

FIXED POINT THEORY FOR MULTIVALUED OPERATORS ON A SET WITH TWO METRICS Fixed Point Theory, Volume 8, No. 1, 2007, 97-104 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.html FIXED POINT THEORY FOR MULTIVALUED OPERATORS ON A SET WITH TWO METRICS ADRIAN PETRUŞEL AND IOAN A. RUS

More information

Document downloaded from: This paper must be cited as:

Document downloaded from:  This paper must be cited as: Document downloaded from: http://hdl.handle.net/10251/50602 This paper must be cited as: Pedraza Aguilera, T.; Rodríguez López, J.; Romaguera Bonilla, S. (2014). Convergence of fuzzy sets with respect

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Randall R. Holmes Auburn University Typeset by AMS-TEX Chapter 1. Metric Spaces 1. Definition and Examples. As the course progresses we will need to review some basic notions about

More information

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis Real Analysis, 2nd Edition, G.B.Folland Chapter 5 Elements of Functional Analysis Yung-Hsiang Huang 5.1 Normed Vector Spaces 1. Note for any x, y X and a, b K, x+y x + y and by ax b y x + b a x. 2. It

More information

POINTWISE PRODUCTS OF UNIFORMLY CONTINUOUS FUNCTIONS

POINTWISE PRODUCTS OF UNIFORMLY CONTINUOUS FUNCTIONS SARAJEVO JOURNAL OF MATHEMATICS Vol.1 (13) (2005), 117 127 POINTWISE PRODUCTS OF UNIFORMLY CONTINUOUS FUNCTIONS SAM B. NADLER, JR. Abstract. The problem of characterizing the metric spaces on which the

More information

SPACES ENDOWED WITH A GRAPH AND APPLICATIONS. Mina Dinarvand. 1. Introduction

SPACES ENDOWED WITH A GRAPH AND APPLICATIONS. Mina Dinarvand. 1. Introduction MATEMATIČKI VESNIK MATEMATIQKI VESNIK 69, 1 (2017), 23 38 March 2017 research paper originalni nauqni rad FIXED POINT RESULTS FOR (ϕ, ψ)-contractions IN METRIC SPACES ENDOWED WITH A GRAPH AND APPLICATIONS

More information

An introduction to Mathematical Theory of Control

An introduction to Mathematical Theory of Control An introduction to Mathematical Theory of Control Vasile Staicu University of Aveiro UNICA, May 2018 Vasile Staicu (University of Aveiro) An introduction to Mathematical Theory of Control UNICA, May 2018

More information

ITERATED FUNCTION SYSTEMS WITH CONTINUOUS PLACE DEPENDENT PROBABILITIES

ITERATED FUNCTION SYSTEMS WITH CONTINUOUS PLACE DEPENDENT PROBABILITIES UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XL 2002 ITERATED FUNCTION SYSTEMS WITH CONTINUOUS PLACE DEPENDENT PROBABILITIES by Joanna Jaroszewska Abstract. We study the asymptotic behaviour

More information

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University

Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University Lecture Notes in Advanced Calculus 1 (80315) Raz Kupferman Institute of Mathematics The Hebrew University February 7, 2007 2 Contents 1 Metric Spaces 1 1.1 Basic definitions...........................

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACES

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN BANACH SPACES Electronic Journal of Differential Equations, Vol. 29(29), No. 129, pp. 1 8. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE AND UNIQUENESS

More information

MA651 Topology. Lecture 10. Metric Spaces.

MA651 Topology. Lecture 10. Metric Spaces. MA65 Topology. Lecture 0. Metric Spaces. This text is based on the following books: Topology by James Dugundgji Fundamental concepts of topology by Peter O Neil Linear Algebra and Analysis by Marc Zamansky

More information

Generalized Monotonicities and Its Applications to the System of General Variational Inequalities

Generalized Monotonicities and Its Applications to the System of General Variational Inequalities Generalized Monotonicities and Its Applications to the System of General Variational Inequalities Khushbu 1, Zubair Khan 2 Research Scholar, Department of Mathematics, Integral University, Lucknow, Uttar

More information

Introduction and Preliminaries

Introduction and Preliminaries Chapter 1 Introduction and Preliminaries This chapter serves two purposes. The first purpose is to prepare the readers for the more systematic development in later chapters of methods of real analysis

More information

Totally supra b continuous and slightly supra b continuous functions

Totally supra b continuous and slightly supra b continuous functions Stud. Univ. Babeş-Bolyai Math. 57(2012), No. 1, 135 144 Totally supra b continuous and slightly supra b continuous functions Jamal M. Mustafa Abstract. In this paper, totally supra b-continuity and slightly

More information

On Semicontinuity of Convex-valued Multifunctions and Cesari s Property (Q)

On Semicontinuity of Convex-valued Multifunctions and Cesari s Property (Q) On Semicontinuity of Convex-valued Multifunctions and Cesari s Property (Q) Andreas Löhne May 2, 2005 (last update: November 22, 2005) Abstract We investigate two types of semicontinuity for set-valued

More information

Solution of the Fuzzy Boundary Value Differential Equations Under Generalized Differentiability By Shooting Method

Solution of the Fuzzy Boundary Value Differential Equations Under Generalized Differentiability By Shooting Method Available online at www.ispacs.com/jfsva Volume 212, Year 212 Article ID jfsva-136, 19 pages doi:1.5899/212/jfsva-136 Research Article Solution of the Fuzzy Boundary Value Differential Equations Under

More information

A CLASS OF ABSOLUTE RETRACTS IN SPACES OF INTEGRABLE FUNCTIONS

A CLASS OF ABSOLUTE RETRACTS IN SPACES OF INTEGRABLE FUNCTIONS proceedings of the american mathematical society Volume 112, Number 2, June 1991 A CLASS OF ABSOLUTE RETRACTS IN SPACES OF INTEGRABLE FUNCTIONS ALBERTO BRESSAN, ARRIGO CELLINA, AND ANDRZEJ FRYSZKOWSKI

More information

On Systems of Boundary Value Problems for Differential Inclusions

On Systems of Boundary Value Problems for Differential Inclusions On Systems of Boundary Value Problems for Differential Inclusions Lynn Erbe 1, Christopher C. Tisdell 2 and Patricia J. Y. Wong 3 1 Department of Mathematics The University of Nebraska - Lincoln Lincoln,

More information

CONTINUATION METHODS FOR CONTRACTIVE AND NON EXPANSIVE MAPPING (FUNCTION)

CONTINUATION METHODS FOR CONTRACTIVE AND NON EXPANSIVE MAPPING (FUNCTION) CONTINUATION METHODS FOR CONTRACTIVE AND NON EXPANSIVE MAPPING (FUNCTION) Dr.Yogesh Kumar 1, Mr. Shaikh Mohammed Sirajuddin Mohammed Salimuddin 2 1 Associated Professor, Dept.of Mathematics,OPJS University,Churu,

More information

EXISTENCE AND UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH LINEAR PROGRAMS EMBEDDED

EXISTENCE AND UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH LINEAR PROGRAMS EMBEDDED EXISTENCE AND UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH LINEAR PROGRAMS EMBEDDED STUART M. HARWOOD AND PAUL I. BARTON Key words. linear programs, ordinary differential equations, embedded

More information

Math 209B Homework 2

Math 209B Homework 2 Math 29B Homework 2 Edward Burkard Note: All vector spaces are over the field F = R or C 4.6. Two Compactness Theorems. 4. Point Set Topology Exercise 6 The product of countably many sequentally compact

More information

Mircea Balaj. Comment.Math.Univ.Carolinae 42,4 (2001)

Mircea Balaj. Comment.Math.Univ.Carolinae 42,4 (2001) Comment.Math.Univ.Carolinae 42,4 (2001)753 762 753 Admissible maps, intersection results, coincidence theorems Mircea Balaj Abstract. We obtain generalizations of the Fan s matching theorem for an open

More information

Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle

Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle Malaya J. Mat. 4(1)(216) 8-18 Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle B. C. Dhage a,, S. B. Dhage a and S. K. Ntouyas b,c, a Kasubai,

More information

Epiconvergence and ε-subgradients of Convex Functions

Epiconvergence and ε-subgradients of Convex Functions Journal of Convex Analysis Volume 1 (1994), No.1, 87 100 Epiconvergence and ε-subgradients of Convex Functions Andrei Verona Department of Mathematics, California State University Los Angeles, CA 90032,

More information

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011 Section 2.6 (cont.) Properties of Real Functions Here we first study properties of functions from R to R, making use of the additional structure

More information

Yuqing Chen, Yeol Je Cho, and Li Yang

Yuqing Chen, Yeol Je Cho, and Li Yang Bull. Korean Math. Soc. 39 (2002), No. 4, pp. 535 541 NOTE ON THE RESULTS WITH LOWER SEMI-CONTINUITY Yuqing Chen, Yeol Je Cho, and Li Yang Abstract. In this paper, we introduce the concept of lower semicontinuous

More information

Some notes on a second-order random boundary value problem

Some notes on a second-order random boundary value problem ISSN 1392-5113 Nonlinear Analysis: Modelling and Control, 217, Vol. 22, No. 6, 88 82 https://doi.org/1.15388/na.217.6.6 Some notes on a second-order random boundary value problem Fairouz Tchier a, Calogero

More information

1.2 Fundamental Theorems of Functional Analysis

1.2 Fundamental Theorems of Functional Analysis 1.2 Fundamental Theorems of Functional Analysis 15 Indeed, h = ω ψ ωdx is continuous compactly supported with R hdx = 0 R and thus it has a unique compactly supported primitive. Hence fφ dx = f(ω ψ ωdy)dx

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (2010), 275 284 UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Iuliana Carmen Bărbăcioru Abstract.

More information

A PROOF OF A CONVEX-VALUED SELECTION THEOREM WITH THE CODOMAIN OF A FRÉCHET SPACE. Myung-Hyun Cho and Jun-Hui Kim. 1. Introduction

A PROOF OF A CONVEX-VALUED SELECTION THEOREM WITH THE CODOMAIN OF A FRÉCHET SPACE. Myung-Hyun Cho and Jun-Hui Kim. 1. Introduction Comm. Korean Math. Soc. 16 (2001), No. 2, pp. 277 285 A PROOF OF A CONVEX-VALUED SELECTION THEOREM WITH THE CODOMAIN OF A FRÉCHET SPACE Myung-Hyun Cho and Jun-Hui Kim Abstract. The purpose of this paper

More information

A FIXED POINT THEOREM FOR GENERALIZED NONEXPANSIVE MULTIVALUED MAPPINGS

A FIXED POINT THEOREM FOR GENERALIZED NONEXPANSIVE MULTIVALUED MAPPINGS Fixed Point Theory, (0), No., 4-46 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.html A FIXED POINT THEOREM FOR GENERALIZED NONEXPANSIVE MULTIVALUED MAPPINGS A. ABKAR AND M. ESLAMIAN Department of Mathematics,

More information

Stability of efficient solutions for semi-infinite vector optimization problems

Stability of efficient solutions for semi-infinite vector optimization problems Stability of efficient solutions for semi-infinite vector optimization problems Z. Y. Peng, J. T. Zhou February 6, 2016 Abstract This paper is devoted to the study of the stability of efficient solutions

More information

Extremal Solutions of Differential Inclusions via Baire Category: a Dual Approach

Extremal Solutions of Differential Inclusions via Baire Category: a Dual Approach Extremal Solutions of Differential Inclusions via Baire Category: a Dual Approach Alberto Bressan Department of Mathematics, Penn State University University Park, Pa 1682, USA e-mail: bressan@mathpsuedu

More information

SHADOWING PROPERTY FOR INDUCED SET-VALUED DYNAMICAL SYSTEMS OF SOME EXPANSIVE MAPS

SHADOWING PROPERTY FOR INDUCED SET-VALUED DYNAMICAL SYSTEMS OF SOME EXPANSIVE MAPS Dynamic Systems and Applications 19 (2010) 405-414 SHADOWING PROPERTY FOR INDUCED SET-VALUED DYNAMICAL SYSTEMS OF SOME EXPANSIVE MAPS YUHU WU 1,2 AND XIAOPING XUE 1 1 Department of Mathematics, Harbin

More information

Fuzzy histograms and fuzzy probability distributions

Fuzzy histograms and fuzzy probability distributions Fuzzy histograms and fuzzy probability distributions R. Viertl Wiedner Hauptstraße 8 / 7-4 Vienna R.Viertl@tuwien.ac.at W. Trutschnig Wiedner Hauptstraße 8 / 7-4 Vienna trutschnig@statistik.tuwien.ac.at

More information

THEOREMS, ETC., FOR MATH 515

THEOREMS, ETC., FOR MATH 515 THEOREMS, ETC., FOR MATH 515 Proposition 1 (=comment on page 17). If A is an algebra, then any finite union or finite intersection of sets in A is also in A. Proposition 2 (=Proposition 1.1). For every

More information

Existence and Uniqueness Results for Nonlinear Implicit Fractional Differential Equations with Boundary Conditions

Existence and Uniqueness Results for Nonlinear Implicit Fractional Differential Equations with Boundary Conditions Existence and Uniqueness Results for Nonlinear Implicit Fractional Differential Equations with Boundary Conditions Mouffak Benchohra a,b 1 and Jamal E. Lazreg a, a Laboratory of Mathematics, University

More information

SOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES

SOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES Iranian Journal of Fuzzy Systems Vol. 4, No. 3, 207 pp. 6-77 6 SOME FIXED POINT RESULTS FOR ADMISSIBLE GERAGHTY CONTRACTION TYPE MAPPINGS IN FUZZY METRIC SPACES M. DINARVAND Abstract. In this paper, we

More information

EXISTENCE THEOREM FOR A FRACTIONAL MULTI-POINT BOUNDARY VALUE PROBLEM

EXISTENCE THEOREM FOR A FRACTIONAL MULTI-POINT BOUNDARY VALUE PROBLEM Fixed Point Theory, 5(, No., 3-58 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.html EXISTENCE THEOREM FOR A FRACTIONAL MULTI-POINT BOUNDARY VALUE PROBLEM FULAI CHEN AND YONG ZHOU Department of Mathematics,

More information

Maths 212: Homework Solutions

Maths 212: Homework Solutions Maths 212: Homework Solutions 1. The definition of A ensures that x π for all x A, so π is an upper bound of A. To show it is the least upper bound, suppose x < π and consider two cases. If x < 1, then

More information

arxiv: v1 [math.ca] 7 Jul 2013

arxiv: v1 [math.ca] 7 Jul 2013 Existence of Solutions for Nonconvex Differential Inclusions of Monotone Type Elza Farkhi Tzanko Donchev Robert Baier arxiv:1307.1871v1 [math.ca] 7 Jul 2013 September 21, 2018 Abstract Differential inclusions

More information

EXISTENCE RESULTS FOR QUASILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE. Leszek Gasiński

EXISTENCE RESULTS FOR QUASILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE. Leszek Gasiński DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp. 409 418 EXISTENCE RESULTS FOR QUASILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE Leszek Gasiński Jagiellonian

More information

OPERATOR SEMIGROUPS. Lecture 3. Stéphane ATTAL

OPERATOR SEMIGROUPS. Lecture 3. Stéphane ATTAL Lecture 3 OPRATOR SMIGROUPS Stéphane ATTAL Abstract This lecture is an introduction to the theory of Operator Semigroups and its main ingredients: different types of continuity, associated generator, dual

More information

Polishness of Weak Topologies Generated by Gap and Excess Functionals

Polishness of Weak Topologies Generated by Gap and Excess Functionals Journal of Convex Analysis Volume 3 (996), No. 2, 283 294 Polishness of Weak Topologies Generated by Gap and Excess Functionals Ľubica Holá Mathematical Institute, Slovak Academy of Sciences, Štefánikovà

More information

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO HIGHER-ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 212 (212), No. 234, pp. 1 11. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE AND UNIQUENESS

More information

(convex combination!). Use convexity of f and multiply by the common denominator to get. Interchanging the role of x and y, we obtain that f is ( 2M ε

(convex combination!). Use convexity of f and multiply by the common denominator to get. Interchanging the role of x and y, we obtain that f is ( 2M ε 1. Continuity of convex functions in normed spaces In this chapter, we consider continuity properties of real-valued convex functions defined on open convex sets in normed spaces. Recall that every infinitedimensional

More information

Zeqing Liu, Jeong Sheok Ume and Shin Min Kang

Zeqing Liu, Jeong Sheok Ume and Shin Min Kang Bull. Korean Math. Soc. 41 (2004), No. 2, pp. 241 256 GENERAL VARIATIONAL INCLUSIONS AND GENERAL RESOLVENT EQUATIONS Zeqing Liu, Jeong Sheok Ume and Shin Min Kang Abstract. In this paper, we introduce

More information

CONVERGENCE OF HYBRID FIXED POINT FOR A PAIR OF NONLINEAR MAPPINGS IN BANACH SPACES

CONVERGENCE OF HYBRID FIXED POINT FOR A PAIR OF NONLINEAR MAPPINGS IN BANACH SPACES International Journal of Analysis and Applications ISSN 2291-8639 Volume 8, Number 1 2015), 69-78 http://www.etamaths.com CONVERGENCE OF HYBRID FIXED POINT FOR A PAIR OF NONLINEAR MAPPINGS IN BANACH SPACES

More information

WHY SATURATED PROBABILITY SPACES ARE NECESSARY

WHY SATURATED PROBABILITY SPACES ARE NECESSARY WHY SATURATED PROBABILITY SPACES ARE NECESSARY H. JEROME KEISLER AND YENENG SUN Abstract. An atomless probability space (Ω, A, P ) is said to have the saturation property for a probability measure µ on

More information

Stochastic Processes II/ Wahrscheinlichkeitstheorie III. Lecture Notes

Stochastic Processes II/ Wahrscheinlichkeitstheorie III. Lecture Notes BMS Basic Course Stochastic Processes II/ Wahrscheinlichkeitstheorie III Michael Scheutzow Lecture Notes Technische Universität Berlin Sommersemester 218 preliminary version October 12th 218 Contents

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

L -uniqueness of Schrödinger operators on a Riemannian manifold

L -uniqueness of Schrödinger operators on a Riemannian manifold L -uniqueness of Schrödinger operators on a Riemannian manifold Ludovic Dan Lemle Abstract. The main purpose of this paper is to study L -uniqueness of Schrödinger operators and generalized Schrödinger

More information

Countably condensing multimaps and fixed points

Countably condensing multimaps and fixed points Electronic Journal of Qualitative Theory of Differential Equations 2012, No. 83, 1-9; http://www.math.u-szeged.hu/ejqtde/ Countably condensing multimaps and fixed points Tiziana Cardinali - Paola Rubbioni

More information

The Wiener Itô Chaos Expansion

The Wiener Itô Chaos Expansion 1 The Wiener Itô Chaos Expansion The celebrated Wiener Itô chaos expansion is fundamental in stochastic analysis. In particular, it plays a crucial role in the Malliavin calculus as it is presented in

More information

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define

(1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define Homework, Real Analysis I, Fall, 2010. (1) Consider the space S consisting of all continuous real-valued functions on the closed interval [0, 1]. For f, g S, define ρ(f, g) = 1 0 f(x) g(x) dx. Show that

More information

APPROXIMATING SOLUTIONS FOR THE SYSTEM OF REFLEXIVE BANACH SPACE

APPROXIMATING SOLUTIONS FOR THE SYSTEM OF REFLEXIVE BANACH SPACE Bulletin of Mathematical Analysis and Applications ISSN: 1821-1291, URL: http://www.bmathaa.org Volume 2 Issue 3(2010), Pages 32-39. APPROXIMATING SOLUTIONS FOR THE SYSTEM OF φ-strongly ACCRETIVE OPERATOR

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER NONLINEAR HYPERBOLIC SYSTEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SECOND-ORDER NONLINEAR HYPERBOLIC SYSTEM Electronic Journal of Differential Equations, Vol. 211 (211), No. 78, pp. 1 11. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE AND UNIQUENESS

More information

On duality theory of conic linear problems

On duality theory of conic linear problems On duality theory of conic linear problems Alexander Shapiro School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 3332-25, USA e-mail: ashapiro@isye.gatech.edu

More information

Viscosity approximation methods for the implicit midpoint rule of asymptotically nonexpansive mappings in Hilbert spaces

Viscosity approximation methods for the implicit midpoint rule of asymptotically nonexpansive mappings in Hilbert spaces Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 016, 4478 4488 Research Article Viscosity approximation methods for the implicit midpoint rule of asymptotically nonexpansive mappings in Hilbert

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR FOURTH-ORDER BOUNDARY-VALUE PROBLEMS IN BANACH SPACES Electronic Journal of Differential Equations, Vol. 9(9), No. 33, pp. 1 8. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE AND UNIQUENESS

More information

A Strong Law of Large Numbers for Set-Valued Negatively Dependent Random Variables

A Strong Law of Large Numbers for Set-Valued Negatively Dependent Random Variables International Journal of Statistics and Probability; Vol. 5, No. 3; May 216 ISSN 1927-732 E-ISSN 1927-74 Published by Canadian Center of Science and Education A Strong Law of Large Numbers for Set-Valued

More information