Introduction to Quantum Physics. Early Atomic Physics

Size: px
Start display at page:

Download "Introduction to Quantum Physics. Early Atomic Physics"

Transcription

1 Introduction to Quantum Physics Early Atomic Physics

2 What is Quantum Physics Quantum Physics is a collection of laws which explain observations of the tiny building blocks of all matter. The world of the quantum must be able to explain the classical world that we live in. To understand the quantum world we need to understand one of the major building blocks ---- the atom

3 History of Atomic Structure The model of atomic structure has changed as observations have altered our perceptions Democrictus Dalton Thomson Rutherford. (The model is not complete)

4 Democritus Atoms (Greek for indivisible) are the smallest unit of matter Atoms share all of the properties of the macroscopic object Atoms are the smallest pieces of matter which still act as the material from which they come from

5 John Dalton First truly scientific theory of the atom (results discovered through experiments with marsh gases) Proof of early Greek model --- the atom is indivisible but with no internal structure Properties of matter come from the properties of the atom

6 But what about electricity?

7 J.J. Thomson Discoverer of the electron The atom consists of a positively charged substance (like pudding) containing negative charges (like the raisins in a plum pudding)

8 Rutherford 1909 Rutherford performs an experiment in which alpha particles (He nucleus) are fired towards a thin foil of gold

9 Rutherford Experimental observations indicated that the majority of the alpha particles passed straight through, with few being deflected at small angles and even fewer retro reflecting from the gold foil

10 Rutherford Observations indicate that the atom is mostly empty space with a dense, central, positively-charged structure at its center The electrons (discovered by Thomson) must therefore exist outside of this central nucleus. Orbiting around the nucleus as planets do the Sun.

11 Classical Model The Rutherford model of the atom became known as the classical model of the atom

12 Problem with the classical Model The Theory The electron has a negative charge and orbits about the central nucleus The central nucleus has a charge and therefore must also have a magnetic field Charged particles lose energy as they pass through a magnetic field According to classical electro-magnetic theory the electron should lose energy in its orbit.

13 Observations The atom is a stable structure consisting of sub atomic particles that do not normally decay in our life time. Because the observation does not match the theory. either classical physics is wrong OR the Rutherford model is wrong / incomplete

14 Which is easier to believe? Hundreds of years of Physics laws and theories are wrong. A relatively new model of our atom is wrong. Answer : Both classical physics and the Rutherford model have some minor problems.

15 Enter Niels Bohr Bohr succeeded in solving the problem with the classical model by uniting two disparate ideas : Planck s quanta and the hydrogen emission spectra

16 Max Planck Observed the temperatures of cannons as they were bored out The colour of the emitted radiation is related to the temperature of the cannon The expected peak intensity follow the Rayleigh-Jean law

17 Rayleigh-Jean Law

18 Ultraviolet Catastrophe The classical (Rayleigh-Jeans) model predicted a steady increase in Intensity well into the ultraviolet If the theory worked with the cannons then enough ultraviolet radiation would be emitted to destroy life.

19 Energy is not continuous Planck solved the catastrophe by reimagining Energy Energy is not a continuous stream but consists of chunks or discrete packets Energy is quantized (flows as quanta)

20 Planck did not initially believe in his findings Why would energy be quantized it is neither simple or beautiful Planck s findings were instrumental in the work for which Einstein won the Noble Prize in Physics Photoelectric Effect

21 Quanta of Energy Vibrating molecules can only vibrate with certain discrete amounts of energy Each quanta of energy can be determined by E = hf E is the energy of the Quanta (J or ev) f is the frequency of the vibration h is Planck s constant (6.626 x Js)

22 Hydrogen emission spectra Bohr also received a clue from the emission spectra of the Hydrogen atom Again the classical model predicts that the atom should be able to radiate in an infinite range of wavelengths but observations indicate otherwise

23

24 Energy is quantized If the electron in the atom can only absorb or emit discrete quantities of energy (quanta) then the emission spectra makes sense By using Planck s hypothesis and the clues from the emission spectra of Hydrogen Bohr was able to mathematically explain the nature of the atom

25 Hydrogen emission spectra

26 Bohr s theory Bohr s theory was the first step in the Quantum revolution Postulate of Stationary States : the Hydrogen atom can exist, without radiating energy, in any one of a discrete set of orbits of fixed energy Frequency Postulate : the Hydrogen atom can emit or absorb a quantity of energy only when the electron changes from one stationary state into another. This amount can be calculated by E=hf

27 Question How does the concept of the quantization of energy circumvent the problem with the classical model?

28 The Atom so far. A central nucleus (of positive charge) is surrounded by negatively charged particles called electrons Electrons can only orbit in fixed distances from the nucleus because they can only gain / lose a quanta of energy This prevents the electron from falling into the nucleus

29 Problems with the Bohr model 1. The two postulates only work with the Hydrogen atom. When the model is applied to other atoms extra dimensions of space is required.

30 2. The works of Grimaldi have shown that electrons are capable of displaying an interference pattern. How could a particle do this? Both of these problems can be solved to create a new theory by applying the works of debroglie and Schrodinger.

31 Louis de Broglie First degree in History but applied for graduate work in Physics Doctoral thesis Recherches sur la théorie des quanta Work beyond the intellect of his professors Sent to Einstein who endorsed it fully

32 Matter Waves De Broglie proposed that all matter have both matter properties and wave properties. Start with the Einstein energy-matter equality E = mc 2 This energy is quantized according to Planck So E = hf = mc 2

33 hf = mc 2 hf = (mc)c mc is the momentum of the wave = p hf = pc v = fl hf = p(fl) h = pl So p = h / l

34 In short any piece of matter travelling at any speed can exhibit wave properties The effects for classical particles are too small to observe The electron is not only a particle but also displays wave nature Therefore the electron can diffract Light also displays both particle and wave nature

35 Bohr model revision #1 The atom consists of A massive positively charged central nucleus Negatively charged electrons which create standing waves of energy. These waves of energy can only vibrate / resonate at specific frequencies These frequencies determine the orbitals around the nucleus de Broglie matter waves do not solve the multi-dimensionality problem!

36 Enter Schrodinger Einstein given the task to apply the Bohr/de Broglie model to atoms other than Hydrogen Was too busy working on GUT so he passed the task on to his friend Erwin Schrodinger Schrodinger was an unpopular choice in that he was considered a failed Physicist!

37 Christmas holidays and New Years Schrodinger takes his mistress into the Alps on vacation It is here that he comes up with his wave equation for all matter This set of equations works for all atoms --- not just Hydrogen

38 The Schrodinger wave model

39 de Broglie s matter waves do not describe the physical location of the electrons around the nucleus The mathematics describes the probability of finding the electron in a given location of space Loss of determinism?!?!? All life is based on probability there are no definite knowns!

40 God does not play dice with the Universe

41 Implications of a Probabilistic Universe Quantum tunneling HUP Schrödinger's cat BEC Separation of classical world and quantum world

42 Quantum Tunneling Imagine that you have a single electron that you place into an electrical potential well. The electron requires an infinite amount of energy to climb out of the box. Where is the electron?

43 Now imagine that you leave the electron and return to it a few weeks later. Where is the electron now?

44 Classical Physics would tell us that the electron must always be in the electropotential well since it doesn t have enough energy to climb out Experimental evidence indicates that the electron will leak out over time!!! This is the process through which semiconductors work

45 The Schrodinger equation defining the position of the electron is both energy, and time dependent As time proceeds the probability of finding the electron in a set location begins to smear out over space. There is a probability that the electron can climb out of the electropotential well.

46 Heisenberg s Uncertainty Principle Two versions of HUP Uncertainty between knowing the momentum of an object and the exact position of an object Uncertainty between knowing the amount of energy a substance contains within a time interval of measurment

47 Momentum and position Imagine that we have a small sub atomic particle that we want to observe and record all possible data for. We start to attempt to measure the momentum of the object To measure the velocity (and therefore the momentum) we need to set up a set of timing gates

48 We can use low energy x-rays to record the passage of the sub atomic particle from one gate to the other This will allow us to measure the velocity and therefore the momentum The wavelength of the x-ray is too long at low energies so even though we can use it to measure the momentum we can not use it to determine the exact position.

49 We can increase the energy of the x-ray which results in a tighter wavelength This will allow us to know the exact location of our subatomic particle But the increase in energy imparts energy to our sub atomic particle changing it s motion direction. And therefore changing the momentum

50 So By measuring the momentum the exact position remains unknown By measuring the exact position we change the momentum We can not know the exact position and momentum at the same time. A similar uncertainty exists between energy and time

51 Schrodinger s Cat The macroscopic / classical physicists rebuttal to HUP Classical physicists refuse to believe that It is impossible to know everything about a system The act of observing a system changes the system... The act of experimentation destroys determinism

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( ) Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron Modern physics special relativity quantum theory J. J. Thomson (1856-1940) measured e/m directly set-up was similar to mass spectrometer

More information

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012 Atomic Structure Discovered Ancient Greeks Democritus (460-362 BC) - indivisible particles called atoms Prevailing argument (Plato and Aristotle) - matter is continuously and infinitely divisible John

More information

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18 Atomic Theory Developing the Nuclear Model of the Atom Democritus Theory: Atom, the indivisible particle c. 300 BC Democritus Problem: No scientific evidence c. 300 BC Dalton Theory: The solid sphere model

More information

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics Atomic Physics Section 1 Preview Section 1 Quantization of Energy Section 2 Models of the Atom Section 3 Quantum Mechanics Atomic Physics Section 1 TEKS The student is expected to: 8A describe the photoelectric

More information

Models of the Atom. Spencer Clelland & Katelyn Mason

Models of the Atom. Spencer Clelland & Katelyn Mason Models of the Atom Spencer Clelland & Katelyn Mason First Things First Electrons were accepted to be part of the atom structure by scientists in the1900 s. The first model of the atom was visualized as

More information

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E.

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E. Constants & Atomic Data The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Look inside back cover of book! Speed of Light (): c = 3.00 x 10 8 m/s Elementary Charge: e - = p + =

More information

CHEMISTRY. Chapter 6 Electronic Structure of Atoms

CHEMISTRY. Chapter 6 Electronic Structure of Atoms CHEMISTRY The Central Science 8 th Edition Chapter 6 Electronic Structure of Atoms Kozet YAPSAKLI Who are these men? Ancient Philosophy Who: Aristotle, Democritus When: More than 2000 years ago Where:

More information

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine The birth of atomic physics and quantum mechanics Honors Physics Don Rhine Constants & Atomic Data Look inside back cover of book! Speed of Light (vacuum): c = 3.00 x 10 8 m/s Elementary Charge: e - =

More information

Planck s Quantum Hypothesis Blackbody Radiation

Planck s Quantum Hypothesis Blackbody Radiation Planck s Quantum Hypothesis Blackbody Radiation The spectrum of blackbody radiation has been measured(next slide); it is found that the frequency of peak intensity increases linearly with temperature.

More information

Atomic Theories Chapter 4.1. How do we know about atoms when no one has ever seen inside an atom?

Atomic Theories Chapter 4.1. How do we know about atoms when no one has ever seen inside an atom? Atomic Theories Chapter 4.1 How do we know about atoms when no one has ever seen inside an atom? Greek Philosopher Democritus Lived 460 370 BCE Believed it is IMPOSSIBLE to divide matter ad infinitum.

More information

Get out your diagram from your research paper. Get out a sheet of paper to take some notes on.

Get out your diagram from your research paper. Get out a sheet of paper to take some notes on. Bellwork: Get out your diagram from your research paper. Get out a sheet of paper to take some notes on. Fill in the Following Table in your notes (assume an atom unless otherwise stated: Symbol Protons

More information

Honors Ch3 and Ch4. Atomic History and the Atom

Honors Ch3 and Ch4. Atomic History and the Atom Honors Ch3 and Ch4 Atomic History and the Atom Ch. 3.1 The Atom is Defined 400 B.C. the Greek philosopher Democritus said that the world was made of two things: Empty space and tiny particles called atoms

More information

Bellwork: 2/6/2013. atom is the. atom below. in an atom is found in the. mostly. 2. The smallest part of an. 1. Label the parts of the

Bellwork: 2/6/2013. atom is the. atom below. in an atom is found in the. mostly. 2. The smallest part of an. 1. Label the parts of the Bellwork: 2/6/2013 1. Label the parts of the atom below. B 2. The smallest part of an atom is the. 3. The majority of the mass in an atom is found in the. A C 4. An atom is made up of mostly. Bellwork:

More information

democritus (~440 bc) who was he? theorized: A Greek philosopher

democritus (~440 bc) who was he? theorized: A Greek philosopher democritus (~440 bc) who was he? A Greek philosopher theorized: Everything in the world is made up small particles that we cannot see The shape of these particles determine the properties of a substance

More information

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( )

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Quantum Physics versus Classical Physics The Thirty-Year War (1900-1930) Interactions between Matter and Radiation Models of the Atom Bohr s Model of the Atom Planck s Blackbody Radiation Models of the

More information

Particle Theory of Matter. By the late 1700s, scientists had adopted the Particle Theory of Matter. This theory states that:

Particle Theory of Matter. By the late 1700s, scientists had adopted the Particle Theory of Matter. This theory states that: Particle Theory of Matter By the late 1700s, scientists had adopted the Particle Theory of Matter. This theory states that: all matter is made up of very tiny particles each pure substance has its own

More information

The Development of Atomic Theory

The Development of Atomic Theory The Development of Atomic Theory Ideas & Theories in Science Change Our theory about the atom has changed over time as new studies are done. Even though no one has ever seen an atom up close we are still

More information

In many ways, Dalton's ideas are still useful today. For example, they help us to understand elements, compounds, and molecules.

In many ways, Dalton's ideas are still useful today. For example, they help us to understand elements, compounds, and molecules. History of the Atom Name: Reading excerpt from Absorb Chemistry for GCSE by Lawrie Ryan http://www.absorblearning.com/chemistry/demo/units/lr301.html Introduction Our understanding of the physical world

More information

Atomic Theory Development

Atomic Theory Development Atomic Theory Development Born as early as 400 BC, it took more than 2000 years before Science was ready to accept the idea of atomic structure of matter and another 150 years to develop a good model!

More information

Greek Philosophers (cont.)

Greek Philosophers (cont.) Greek Philosophers (cont.) Many ancient scholars believed matter was composed of such things as earth, water, air, and fire. Many believed matter could be endlessly divided into smaller and smaller pieces.

More information

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler UNIT 4 Electrons in Atoms Advanced Chemistry 235 Lanphier High School Mr. David Peeler Section 4.1 Models of the Atom OBJECTIVES: Identify the inadequacies in the Rutherford atomic model. Section 4.1 Models

More information

Review Models of the Atom

Review Models of the Atom Review Models of the Atom Copyright 2007 Pearson Benjamin Cummings. All rights reserved. Dalton proposes the indivisible unit of an element is the atom. Thomson discovers electrons, believed to reside

More information

Atomic Theory. Early models

Atomic Theory. Early models Atomic Theory Early models Ancient Greece Late 18 th century 4 elements Earth, Water, Wind, Fire: Matter is made up in different combinations of these 4 elements. First atom proposed by Democritus (Greek)

More information

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 7: The Quantum-Mechanical Model of the Atom C h e m i s t r y 1 A : C h a p t e r 7 P a g e 1 Chapter 7: The Quantum-Mechanical Model of the Atom Homework: Read Chapter 7. Work out sample/practice exercises Check for the MasteringChemistry.com assignment

More information

Alan Mortimer PhD. Ideas of Modern Physics

Alan Mortimer PhD. Ideas of Modern Physics Alan Mortimer PhD Ideas of Modern Physics Electromagnetic Waves Last Week Special Relativity General Relativity The Quantum World Index Planck s Law Atomic Structure and emission lines Matter waves Uncertainty

More information

Chapter 5: Electrons in Atoms

Chapter 5: Electrons in Atoms Chapter 5: Electrons in Atoms Models of the Atom Rutherford used existing ideas about the atom and proposed an atomic model in which the electrons move around the nucleus, like the planets move around

More information

CHAPTER 27 Quantum Physics

CHAPTER 27 Quantum Physics CHAPTER 27 Quantum Physics Units Discovery and Properties of the Electron Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum

More information

Lecture 6 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6. Lecture 6 - Introduction

Lecture 6 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6. Lecture 6 - Introduction Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6 Light and other forms of electromagnetic radiation Light interacting with matter The properties of light and matter Lecture

More information

Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element. Greek Idea

Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element. Greek Idea Electrons in Atoms Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element Greek Idea Thomson s Model Discovered electrons Atoms were made of positive

More information

Historical Background of Quantum Mechanics

Historical Background of Quantum Mechanics Historical Background of Quantum Mechanics The Nature of Light The Structure of Matter Dr. Sabry El-Taher 1 The Nature of Light Dr. Sabry El-Taher 2 In 1801 Thomas Young: gave experimental evidence for

More information

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge?

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge? Quantum Physics and Atomic Models Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently

More information

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1 Early Atomic Theories and the Origins of Quantum Theory Chapter 3.1 What is Matter Made of? People have wondered about the answer to this question for thousands of years Philosophers Matter is composed

More information

Atomic Theory Timeline

Atomic Theory Timeline Atomic Theory Timeline Democritus 450 B.C. Democritus was a Greek philosopher who came to the conclusion that everything was made up of tiny particles. He used the term atomos. Unfortunately, since Democritus

More information

Atomic Theory. Democritus to the Planetary Model

Atomic Theory. Democritus to the Planetary Model Atomic Theory Democritus to the Planetary Model Democritus Greek philosopher (460-370 BCE) Believed in the philosophy of materialism With Leucippus, they though that matter can not be divided infinitely.

More information

1. Based on Dalton s evidence, circle the drawing that demonstrates Dalton s model.

1. Based on Dalton s evidence, circle the drawing that demonstrates Dalton s model. Various models of the ATOM Dalton Model John Dalton developed the first atomic model in 1808. Before him people, mostly philosophers, had speculated about the smallest unit of matter and two theories prevailed.

More information

The Hydrogen Atom According to Bohr

The Hydrogen Atom According to Bohr The Hydrogen Atom According to Bohr The atom We ve already talked about how tiny systems behave in strange ways. Now let s s talk about how a more complicated system behaves. The atom! Physics 9 4 Early

More information

The History of the Atom. How did we learn about the atom?

The History of the Atom. How did we learn about the atom? The History of the Atom How did we learn about the atom? The Atomic Theory of Matter All matter is made up of fundamental particles. What does fundamental mean? The Greek Philosophers, 400 B.C. Democritus

More information

Chapter #1 - Atomic Structure

Chapter #1 - Atomic Structure Chapter #1 - Atomic Structure Atomic Theories Democritus (460-340 BC) Democritus believed that all matter consisted of extremely small particles that could not be divided. He called them atoms from the

More information

Energy levels and atomic structures lectures chapter one

Energy levels and atomic structures lectures chapter one Structure of Atom An atom is the smallest constituent unit of ordinary matter that has the properties of a element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are

More information

Dalton Thompson Rutherford Bohr Modern Model ("Wave. Models of the Atom

Dalton Thompson Rutherford Bohr Modern Model (Wave. Models of the Atom Dalton Thompson Rutherford Bohr Modern Model ("Wave Models of the Atom Mechanical" Model) Aim: To discuss the scientists and their contributions to the current atomic model. Focus: Rutherford's Gold Foil

More information

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus Conceptual Physics 11 th Edition Chapter 32: THE ATOM AND THE QUANTUM Discovery of the Atomic Nucleus These alpha particles must have hit something relatively massive but what? Rutherford reasoned that

More information

Physical Electronics. First class (1)

Physical Electronics. First class (1) Physical Electronics First class (1) Bohr s Model Why don t the electrons fall into the nucleus? Move like planets around the sun. In circular orbits at different levels. Amounts of energy separate one

More information

Atomic Models. 1) Students will be able to describe the evolution of atomic models.

Atomic Models. 1) Students will be able to describe the evolution of atomic models. Atomic Models 1) Students will be able to describe the evolution of atomic models. 2) Students will be able to describe the role of experimental evidence in changing models of the atom. 3) Students will

More information

Atomic Theory. The History of Atomic Theory

Atomic Theory. The History of Atomic Theory Atomic Theory The History of Atomic Theory This model of the atom may look familiar to you. This is the Bohr model. In this model, the nucleus is orbited by electrons, which are in different energy levels.

More information

H CHEM - WED, 9/7/16. Do Now Be ready for notes. Sigfig review problem. Agenda Atomic Theory. Homework. Error Analysis

H CHEM - WED, 9/7/16. Do Now Be ready for notes. Sigfig review problem. Agenda Atomic Theory. Homework. Error Analysis H CHEM - WED, 9/7/16 Do Now Be ready for notes. Sigfig review problem Agenda Atomic Theory Error Analysis Homework Possibly atomic theory paragraph THE ATOM DEFINITION TO START Atom smallest particle

More information

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta Chapter 7 Atomic Structure -1 Quantum Model of Atom Dr. Sapna Gupta The Electromagnetic Spectrum The electromagnetic spectrum includes many different types of radiation which travel in waves. Visible light

More information

The Atom and Quantum Mechanics

The Atom and Quantum Mechanics The Atom and Quantum Mechanics Last time... In a spherical geometry the sum of the angles of a triangle > 180 What is the principle of equivalence? What three observations confirmed Einstein s Theory of

More information

Atomic Theory Timeline Project

Atomic Theory Timeline Project Atomic Theory Timeline Project MAKE AN ATOMIC THEORY TIMELINE! Directions: 1) Read the information about the scientists and theories that have developed over time about matter and the atom in the Atomic

More information

Atomic Models. A model uses familiar ideas to explain unfamiliar facts observed in nature. A model can be changed as new information is collected.

Atomic Models. A model uses familiar ideas to explain unfamiliar facts observed in nature. A model can be changed as new information is collected. This model of the atom may look familiar to you. This is the Bohr model. In this model, the nucleus is orbited by electrons, which are in different energy levels. Atomic Models A model uses familiar ideas

More information

Properties of Light. Arrangement of Electrons in Atoms. The Development of a New Atomic Model. Electromagnetic Radiation CHAPTER 4

Properties of Light. Arrangement of Electrons in Atoms. The Development of a New Atomic Model. Electromagnetic Radiation CHAPTER 4 CHAPTER 4 Arrangement of Electrons in Atoms The Development of a New Atomic Model The Rutherford model was a great improvement over the Thomson model of the atom. But, there was one major question that

More information

9/23/2012. Democritus 400 B.C. Greek philosopher Proposed that all materials are made from atoms. Coined Greek word atmos, meaning indivisible.

9/23/2012. Democritus 400 B.C. Greek philosopher Proposed that all materials are made from atoms. Coined Greek word atmos, meaning indivisible. Mr. Sudbury Atoms are too small to see with your eyes. Atoms are too small to see with the most powerful microscopes. Scientist use models to explain atoms. A scientific model is an representation containing

More information

Chapter 9: Electrons and the Periodic Table

Chapter 9: Electrons and the Periodic Table C h e m i s t r y 1 2 C h 9 : E l e c t r o n s a n d P e r i o d i c T a b l e P a g e 1 Chapter 9: Electrons and the Periodic Table Work on MasteringChemistry assignments What we have learned: Dalton

More information

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

PSI AP Physics How was it determined that cathode rays possessed a negative charge? PSI AP Physics 2 Name Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named

More information

EARLY VIEWS: The Ancient Greeks

EARLY VIEWS: The Ancient Greeks Feb 7 11:59 AM EARLY VIEWS: The Ancient Greeks Empedocles (c. 450 B.C.) proposed Four Element theory he thought that matter was composed of four elements: AIR, EARTH, FIRE and WATER elements mixed together

More information

JJ Thomson Group 2 1. What are cathode rays? Cathode rays are a stream of electrons following through vacuum tube. Electrons

JJ Thomson Group 2 1. What are cathode rays? Cathode rays are a stream of electrons following through vacuum tube. Electrons Dalton Group 1 1. What did Democritus say about the atom? Democritus asked whether it is possible to divide a sample of matter forever into smaller and smaller pieces. After much thought, he concluded

More information

SCH4C Unit 1 Practice Quiz 2

SCH4C Unit 1 Practice Quiz 2 Name: Class: Date: 2009-2010 SCH4C Unit 1 Practice Quiz 2 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The smallest particle of an element

More information

UNIT 4 NOTES: ATOMIC THEORY & STRUCTURE

UNIT 4 NOTES: ATOMIC THEORY & STRUCTURE S T U D E N T N O T E S P r e - A P C h e m i s t r y U N I T 4 Page 1 NAME PERIOD UNIT 4 NOTES: ATOMIC THEORY & STRUCTURE STUDENT OBJECTIVES: Your fascinating teachers would like you amazing learners

More information

Physics 1C. Lecture 28D

Physics 1C. Lecture 28D Physics 1C Lecture 28D "I ask you to look both ways. For the road to a knowledge of the stars leads through the atom; and important knowledge of the atom has been reached through the stars." --Sir Arthur

More information

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons Outline Chapter 9 The Atom 9-1. Photoelectric Effect 9-3. What Is Light? 9-4. X-rays 9-5. De Broglie Waves 9-6. Waves of What? 9-7. Uncertainty Principle 9-8. Atomic Spectra 9-9. The Bohr Model 9-10. Electron

More information

Quantum and Atomic Physics - Multiple Choice

Quantum and Atomic Physics - Multiple Choice PSI AP Physics 2 Name 1. The Cathode Ray Tube experiment is associated with: (A) J. J. Thomson (B) J. S. Townsend (C) M. Plank (D) A. H. Compton 2. The electron charge was measured the first time in: (A)

More information

Development of Atomic Theory Elements of chemistry- Atoms, the building blocks of matter Video

Development of Atomic Theory Elements of chemistry- Atoms, the building blocks of matter Video Development of Atomic Theory Elements of chemistry- Atoms, the building blocks of matter Video 2 CH 4- Atoms 1 Discovering the Atom In this lesson we will take a look at the scientists who explored the

More information

4/14/2015. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Classical Model of Atom

4/14/2015. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Classical Model of Atom Quantum Physics versus Classical Physics The Thirty-Year War (1900-1930) Models of the Atom Interactions between Matter and Radiation Models of the Atom Bohr s Model of the Atom Planck s Blackbody Radiation

More information

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1 Chapter 29 Atomic Physics Looking Ahead Slide 29-1 Atomic Spectra and the Bohr Model In the mid 1800s it became apparent that the spectra of atomic gases is comprised of individual emission lines. Slide

More information

Chapter 5. Page 266, Quick Check

Chapter 5. Page 266, Quick Check Chapter 5 Page 261, Quick Check 1. Robert Boyle is credited with introducing the scientific method and with insisting on experimentation as a criterion to gather true knowledge about the world around us.

More information

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron Chapter 27 Early Quantum Theory and Models of the Atom 27-1 Discovery and Properties of the electron Measure charge to mass ratio e/m (J. J. Thomson, 1897) When apply magnetic field only, the rays are

More information

Quantum Theory of the Atom

Quantum Theory of the Atom The Wave Nature of Light Quantum Theory of the Atom Electromagnetic radiation carries energy = radiant energy some forms are visible light, x rays, and radio waves Wavelength ( λ) is the distance between

More information

7.1 Development of a Modern Atomic Theory

7.1 Development of a Modern Atomic Theory 7.1 Development of a Modern Atomic Theory Development of the Atomic Theory Many scientists in different countries have contributed to the understanding of matter - atoms John Dalton Credited with developing

More information

Early Quantum Theory and Models of the Atom

Early Quantum Theory and Models of the Atom Early Quantum Theory and Models of the Atom Electron Discharge tube (circa 1900 s) There is something ( cathode rays ) which is emitted by the cathode and causes glowing Unlike light, these rays are deflected

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 5: Electrons in Atoms 5 Section 5.1 Section Section 5.3 Table Of Contents Light and Quantized Energy Electron Configuration Compare the wave and particle natures of

More information

The Development of Atomic Theory

The Development of Atomic Theory The Development of Atomic Theory Democritus (400 BC) John Dalton (1803) J.J. Thomson (1897) Ernest Rutherford (1911) James Chadwick (1932) - suggested that matter is composed of indivisible particles called

More information

Surprise, surprise, surprise

Surprise, surprise, surprise Experiment Rutherford had two grad students, Marsden and Geiger. It was decided that Geiger would gain some practice by conducting a series of experiments with gold and alpha particles. The positively

More information

DEMOCRITUS - A philosopher in the year 400 B.C. - He didn t do experiments and he wondered if atoms kept on being divided, that there would only be

DEMOCRITUS - A philosopher in the year 400 B.C. - He didn t do experiments and he wondered if atoms kept on being divided, that there would only be DEMOCRITUS A philosopher in the year 400 B.C. He didn t do experiments and he wondered if atoms kept on being divided, that there would only be one undividable particle left. He discovered that this was

More information

An Introduction to Atomic Theory. VCE Chemistry Unit 1: The Big Ideas of Chemistry Area of Study 1 The Periodic Table

An Introduction to Atomic Theory. VCE Chemistry Unit 1: The Big Ideas of Chemistry Area of Study 1 The Periodic Table An Introduction to Atomic Theory VCE Chemistry Unit 1: The Big Ideas of Chemistry Area of Study 1 The Periodic Table From Democritus to Dalton Two thousand years ago, Democritus proposed that matter consisted

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

Atomic Theory. Past and Present: pieces of a puzzle

Atomic Theory. Past and Present: pieces of a puzzle Atomic Theory Past and Present: pieces of a puzzle The First Atomic Hypothesis Democritus (460 370 BC): Greek philosopher Speculated that matter is composed of atoms which move through empty space Atoms

More information

Physics. Light Quanta

Physics. Light Quanta Physics Light Quanta Quantum Theory Is light a WAVE or a PARTICLE? Particle tiny object like a bullet, has mass and travels in straight lines unless a force acts upon it Waves phenomena that extend in

More information

Atomic Spectra. What does this have to do with atomic models?

Atomic Spectra. What does this have to do with atomic models? Atomic Physics -2 Atomic Spectra Fill a glass tube with pure atomic gas Apply a high voltage between electrodes Current flows through gas & tube glows Color depends on type of gas Light emitted is composed

More information

Chapter 6 Electronic structure of atoms

Chapter 6 Electronic structure of atoms Chapter 6 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 6.1 The wave nature of light Visible light is

More information

Make sure this is handed in!

Make sure this is handed in! Make sure this is handed in! Based on the 3 groups in early atomic history, pick one of the groups and explain how they progressed the current knowledge of atoms and elements at their time. OR Explain

More information

SNC1D CHEMISTRY 2/8/2013. ATOMS, ELEMENTS, & COMPOUNDS L Atomic Theory (P ) Atomic Theory. Atomic Theory

SNC1D CHEMISTRY 2/8/2013. ATOMS, ELEMENTS, & COMPOUNDS L Atomic Theory (P ) Atomic Theory. Atomic Theory SNC1D CHEMISTRY ATOMS, ELEMENTS, & COMPOUNDS L Atomic Theory (P.168-175) Atomic Theory Thousands of years ago Greek philosophers were asking themselves questions like, If you take a gold bar and cut it

More information

Chapter 7 Atomic Structure and Orbitals

Chapter 7 Atomic Structure and Orbitals Chapter 7 Atomic Structure and Orbitals Alpha Scattering Experiment: Rutherford s observations Light as Waves or Particles Wavelength (λ) is the distance between any two identical points in consecutive

More information

From a visible light perspective, a body is black if it absorbs all light that strikes it in the visible part of the spectrum.

From a visible light perspective, a body is black if it absorbs all light that strikes it in the visible part of the spectrum. 4/28 Black Body Radiation From a visible light perspective, a body is black if it absorbs all light that strikes it in the visible part of the spectrum. A white body is white because it reflects all of

More information

The origins of atomic theory

The origins of atomic theory Models of the atom It is important to realise that a lot of what we know about the structure of atoms has been developed over a long period of time. This is often how scientific knowledge develops, with

More information

The History of Atomic Theory Chapter 3--Chemistry

The History of Atomic Theory Chapter 3--Chemistry The History of Atomic Theory Chapter 3--Chemistry In this lesson, we ll learn about the men whose quests for knowledge about the fundamental nature of the universe helped define our views. The atomic model

More information

CHAPTER 5 Electrons in Atoms

CHAPTER 5 Electrons in Atoms CHAPTER 5 Electrons in Atoms 5.1 Light & Quantized Energy Was the Nuclear Atomic model incomplete? To most scientists, the answer was yes. The arrangement of electrons was not determined > Remember...the

More information

PROGRESSION OF THE ATOMIC MODEL

PROGRESSION OF THE ATOMIC MODEL PROGRESSION OF THE ATOMIC MODEL By 1808, it was widely accepted that matter was made up of ELEMENTS, which consisted of tiny PARTICLES called ATOMS. After 2000 years - DEMOCRITUS was right all along John

More information

Physics: Quanta to Quarks Option (99.95 ATAR)

Physics: Quanta to Quarks Option (99.95 ATAR) HSC Physics Year 2016 Mark 95.00 Pages 22 Published Jan 15, 2017 Physics: Quanta to Quarks Option (99.95 ATAR) By Edward (99.95 ATAR) Powered by TCPDF (www.tcpdf.org) Your notes author, Edward. Edward

More information

CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS

CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS Atoms Atoms have protons and neutrons located in the nucleus of the atom. Electrons orbit around the nucleus in well-defined paths. Protons have

More information

SNC1D1 History of the Atom

SNC1D1 History of the Atom SNC1D1 History of the Atom What is the atom? Atoms are the building block for all matter: Atoms make up elements! Elements combine to make compounds!2 ATOMIC MODEL TIMELINE 400 B.C PRESENT DAY ATOMIC MODEL

More information

Electronic structure of atoms

Electronic structure of atoms Chapter 1 Electronic structure of atoms light photons spectra Heisenberg s uncertainty principle atomic orbitals electron configurations the periodic table 1.1 The wave nature of light Much of our understanding

More information

THE NATURE OF THE ATOM. alpha particle source

THE NATURE OF THE ATOM. alpha particle source chapter THE NATURE OF THE ATOM www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 30.1 Rutherford Scattering and the Nuclear Atom 1. Which model of atomic structure

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Atomic theory. Atoms: The Building Blocks of Matter

Atomic theory. Atoms: The Building Blocks of Matter Atomic theory Atoms: The Building Blocks of Matter First, there was Democritus Democritus was a Greek philosopher atomos He came up with the idea of the atom around 400BCE He had no evidence, he just thought

More information

Atomic Structure. History of Atomic Theory

Atomic Structure. History of Atomic Theory Atomic Structure History of Atomic Theory Democritus (460-370 BC) Was the to come up with the idea of atom Believed that all matter was composed of Which is derived from the Greek word Atomos meaning He

More information

History of the Atomic Model

History of the Atomic Model Chapter 5 Lecture Chapter 5 Electronic Structure and Periodic Trends 5.1 Electromagnetic Radiation Learning Goal Compare the wavelength, frequency, and energy of electromagnetic radiation. Fifth Edition

More information

CHEMISTRY. Matter and Change. Table Of Contents. Section 4.1 Early Ideas About Matter. Unstable Nuclei and Radioactive Decay

CHEMISTRY. Matter and Change. Table Of Contents. Section 4.1 Early Ideas About Matter. Unstable Nuclei and Radioactive Decay CHEMISTRY 4 Table Of Contents Matter and Change Section 4.1 Early Ideas About Matter Chapter 4: The Structure of the Atom Section 4.2 Section 4.3 Section 4.4 Defining the Atom How Atoms Differ Unstable

More information

The following is a quote by Democritus (c. 460 c. 370 bce). Paraphrase this quote in your own words in your science journal.

The following is a quote by Democritus (c. 460 c. 370 bce). Paraphrase this quote in your own words in your science journal. Section 1 Development of the Atomic Theory Bellringer The following is a quote by Democritus (c. 460 c. 370 bce). Paraphrase this quote in your own words in your science journal. Color exists by convention,

More information

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29 Physics 1C Lecture 29A Finish off Ch. 28 Start Ch. 29 Particle in a Box Let s consider a particle confined to a one-dimensional region in space. Following the quantum mechanics approach, we need to find

More information

Quantum Mechanics. Physics April 2002 Lecture 9. Planck Bohr Schroedinger Heisenberg

Quantum Mechanics. Physics April 2002 Lecture 9. Planck Bohr Schroedinger Heisenberg Quantum Mechanics Physics 102 18 April 2002 Lecture 9 Planck Bohr Schroedinger Heisenberg From: http://www.th.physik.uni-frankfurt.de/~jr/portraits.html 18 Apr 2002 Physics 102 Lecture 9 1 Blackbody radiation

More information

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons?

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons? Name Chemistry Atomic Structure Essential Question: How was the structure of the atom determined? Vocabulary: bright-line spectrum electron configuration excited state ground state orbital wave-mechanical

More information