COMP Parallel Computing SMM (3) OpenMP Case Study: The Barnes-Hut N-body Algorithm

Size: px
Start display at page:

Download "COMP Parallel Computing SMM (3) OpenMP Case Study: The Barnes-Hut N-body Algorithm"

Transcription

1 COMP Paallel Computing Lectue 8 Septembe 14, 2017 SMM (3) OpenMP Case Study: The Banes-Hut N-body Algoithm

2 Topics Case study: the Banes-Hut algoithm Study an impotant algoithm in scientific computing» n-body simulation with long ange foces Investigate paallelization and implementation in a shaed memoy multipocesso» expession and management of paallelism» memoy hieachy tuning 2

3 N-body simulations: self-gavitating systems 3

4 The n-body simulation poblem Simulate the evolution of a system of n bodies ove time Paiwise inteaction of bodies» foce f(i,j) on body i due to body j» total foce f(i) on body i due to all bodies» acceleation of body i via f = ma Numeical integation of body velocities and positions» timestep t Non-negligible long-ange foces fo unifomly distibuted bodies in 3D, total foce due to all bodies at a given distance is constant» cannot ignoe contibution of distant bodies Examples astophysics (gavity) molecula dynamics (electostatics) Ex: Gavitation ij = p i p j f ( i, mi m j) G 2 f ( i) ji f ( i, p the basic simulation algoithm: p while (t < t Final ) do foall 1 i n do compute foce f(i) on body i end update velocity and position of all bodies t = t + t end Diect appoach: O(n²) inteactions pe time-step ij j) j i ij j 4

5 Reducing the numbe of inteactions Exploit combined effect of distant bodies Fomally Eath d Cente of mass c Total mass M Andomeda Monopole appoximation of the foce on the eath due to inteaction with all masses in the Andomeda galaxy f ( b eath m ) G eath M ( peath c) 3 Vulcan Monopole appoximation saves wok if it can be eused with multiple bodies d apply this idea ecusively: detemines contol-stuctue equies hieachical decomposition of space Accuacy of appoximation impoves with inceasing deceasing d ode of the appoximation» Monopole, dipole, quadopole, unifomity of body distibution 5

6 Hieachical decomposition of space a quadtee an octee decomposition an adaptive quadtee 6

7 The Banes-Hut algoithm stepsystem(): // P(i) is coodinates and mass of body i T := maketee(p(1:n)) foall 1 i n do f(i) = gavcalc(p(i),t) update velocities and positions inteaction in the case of gavitation: m F G x m p 2 pq p pq q x q, y p y pq q, z p z pq q function gavcalc(body p,teenode q) if ( q is a leaf ) then etun body-body inteaction (p,q) else if ( p is distant enough fom q ) then etun body-cell inteaction (p,q) else foall q nonemptychilden(q) do accumulate gavcalc(p,q ) etun accumulated inteaction end if end if pq ( x p x q ) 2 ( y body-body inteaction: use masses of bodies and distance between them. body-cell inteaction: use mass of body and mass of cell and distance between body and cente of mass of cell. foce is additive; individual contibutions can be accumulated. p y q ) 2 ( z p z q ) 2 7

8 The Banes-Hut algoithm - Pefomance issues stepsystem(p(1:n)) -- P(1:n) is sequence of bodies T := maketee(p(1:n)) foall 1 i n do f(i) := gavcalc(p(i),t) update velocities and positions function gavcalc(p,q) if ( q is a leaf ) then etun body-body inteaction else if ( p is distant enough fom q ) then etun body-cell inteaction else foall q nonemptychilden(q) do accumulate gavcalc(p,q ) etun accumulated inteaction end if end if Paallelism nested paallelism ove bodies ove ecusively divided cells load balance diffeent numbe of inteactions fo diffeent bodies Locality neaby bodies inteact with simila set of nodes in tee 8

9 Constucting the tee Small faction f of the total wok but sequential tee constuction can limit oveall speedup» Amdahl s law: SP < 1/f function maketee( P(1:n) ) fo i := 1 to n do T := inset(p(i),t) compute monopole appoximation at each node Computing monopole appoximation fo each cell Post-ode tavesal of tee» At leaves, monopole coincides with single body» At inteio nodes, monopole is weighted sum of all childen s monopoles function inset(p,t) if empty(t) then etun p as singleton tee else detemine child S of T in which p belongs S := inset(p,s) etun T with S eplaced by S endif 9

10 The acceptance citeion when is a cell distant enough? oiginal citeion used by Banes-Hut: Eath d Cente of mass d d Andomeda whee usually poblem: detonating galaxy anomaly d seconday galaxy (one) solution: add distance between cente of mass (cm) and geometic cente of cell (c) Cente of mass ~ d ~ d 2 (2D) 3 (3D) d d d cm c pimay galaxy 10

11 Effects of acceptance citeion on untime Souce: L. Henquist. Pefomance chaacteistics of tee codes. Astophysical Jounal Supplement Seies, Vol. 64, Pages ,

12 Effects of acceptance citeion on accuacy Souce: L. Henquist. Pefomance chaacteistics of tee codes. Astophysical Jounal Supplement Seies, Vol. 64, Pages , % accuacy sufficient fo most astophysical simulations. Diffeent techniques with bette eo contol necessay fo othe systems (fast multipole methods). 12

13 Effect of body distibution on total wok Unifom distibution Plumme distibution Fo fixed n unifom distibutions geneate high inteaction wok (shallow tees) non-unifom distibutions geneate highe tee constuction and lowe inteaction wok 13

14 Complexity of Banes-Hut Tee building cost of tee constuction depends on paticle distibution» cost of body insetion distance to oot» fo a unifom distibution of n paticles, sequential constuction of the tee is O(n log n) time In a simulation, tee could be maintained athe than econstucted each time step Foce calculation (unifom distibution of bodies in 2D) conside computing the foce acting on a body in the lowe ight cone if = 1.0 the 3 undivided top-level squaes will satisfy the acceptance citeion The emaining squae does not satisfy the citeion, hence we descend into the next level each level of the tee incus a constant amount of wok while descending along the path to the lowe ight cone fo a unifom distibution of n bodies, the length of the path is O(log 4 n) computing the foces on n bodies is O(n log n) wok non-unifom distibution moe difficult to analyze Accuacy and complexity ae difficult to contol 14

15 sec Implementation issues - paallelization paallelization of the foce computation loop: SUBROUTINE stepsystem() CALL maketee()!$omp PARALLEL DO SCHEDULE(GUIDED,4) DO i = 1, n CALL gavcalc(i,oot) END DO!$OMP END PARALLEL DO!$OMP PARALLEL DO integate velocities and positions!$omp END PARALLEL DO END SUBROUTINE stepsystem obsevations: foce computation scales easonably up to 16 pocessos dynamic scheduling impotant single pocesso pefomance not impessive Results on O2000 (evans) fo 1M paticles tee constuction foce computation speedup Pocessos 15

16 Implementation issues - tuning of gavcalc (1) pefomance analysis of gavcalc shows poo cache euse (90% L1 and 88% L2) poo use of floating point units poo euse of subexpessions compile can t geneate good code? manual tuning of gavcalc inline computation of acceptance citeion inline computation of inteaction euse distance vecto (body-cell) fuse loops significant pefomance impovement! obsevations: 2.5 times faste good scaling bette use of FPUs and bette pediction cache euse (93% L1 and 94% L2) still bad RECURSIVE SUBROUTINE gavcalc(p,q) IF ( q is a body ) THEN compute body-body inteaction; accumulate ELSE IF ( p is distant enough fom q ) THEN compute body-cell inteaction; accumulate ELSE DO q nonemptychilden(q) CALL gavcalc(p,q ) END DO END IF END IF END SUBROUTINE gavcalc Results on O2000 (evans) fo 1M paticles sec tee constuction foce computation speedup Pocessos 16

17 Implementation issues - tuning of gavcalc (2a) how can we impove cache euse? neighboing bodies in space will most likely inteact with the same cells and bodies! sot bodies accoding to some spatial ode: pecompute spatial ode such as Moton ode o Peano-Hilbet ode o simply ode bodies as they ae encounteed duing a depth-fist teewalk of T Soted bodies may also speed up subsequent tee ebuilding Moton ode Peano-Hilbet ode Tee ode 17

18 Implementation issues - tuning of gavcalc (2b) obsevations: 30-40% incease in pefomance vey good scaling L2 euse now up at 99.8% L1 still at 93% stepsystem(p(1:n)) T := maketee(p(1:n)) e-ode P(1:n) accoding to T foall 1 i n do f(i) := gavcalc(p(i),t) update velocities and positions Results on O2000 (evans) fo 1M paticles sec tee constuction foce computation speedup Pocessos 18

19 Implementation issues - tuning of gavcalc (3) How can we impove L1 euse? inteact a goup of bodies with a cell o body! walk the tee and compute foces fo a set of neighboing bodies RECURSIVE SUBROUTINE gavcalc(set P,node q) IF ( q is a body ) THEN DO p P compute body-body inteaction; accumulate END DO ELSE P = DO p P IF ( p is distant enough fom q ) THEN compute body-cell inteaction; accumulate ELSE P = P {p} END IF END DO IF (P.NE. ) THEN DO q nonemptychilden(q) CALL gavcalc(p,q ) END DO END IF END IF END SUBROUTINE gavcalc Results on O2000 (evans) fo 1M paticles sec tee constuction foce computation speedup obsevations: Pocessos 20-40% incease in pefomance L1 euse now at 99.7% (32 bodies pe goup) L2 down slightly at 96% odeed paticles essential 19

20 Implementation issues - tuning of gavcalc (4) Anothe technique to impove L1 euse allow leaf-cells to contain moe than 1 body compute the body-body inteactions in a doubly nested loop. RECURSIVE SUBROUTINE gavcalc(set P, node q) P = DO p P IF ( p is distant enough fom q ) THEN compute body-cell inteaction; accumulate ELSE IF ( q is a leaf ) THEN DO p P, q q compute body-body inteaction; accumulate END DO ELSE P = P {p} END IF END IF END DO IF (P.NE.) THEN DO q nonemptychilden(q) CALL gavcalc(p,q ) END DO END IF END SUBROUTINE gavcalc Results on O2000 (evans) fo 1M paticles sec tee constuction foce computation speedup obsevations: Pocessos 10% incease in pefomance this algoithm will pefom stictly moe wok than the pevious vesions! Moe paticles pe leaf potentially causes moe body-body inteactions and fewe bodycell inteactions to be computed. 20

21 Implementation issues - summay Shaed memoy model enables elatively simple paallelization of basic algoithm using OpenMP shaed memoy model citical in dynamic load balancing Pefomance tuning oveall these optimizations lead to 4-5 times faste single-pocesso pefomance Linea o supelinea paallel speedup to 16 pocessos optimizing seial pefomance is essential fo obtaining good paallel pefomance last two optimization ae instances of exposing paallelism to impove seial pefomance Obsevations the bette the pefomance of gavcalc the moe seiously the seial teeconstuction affects the oveall speedup» when maketee time is included in speedup speedup dops fom to 10.8 fo p = 16 in fist vesion speedup dops fom to fo p = 16 on last vesion paallel tee constuction algoithms! 21

ASTR415: Problem Set #6

ASTR415: Problem Set #6 ASTR45: Poblem Set #6 Cuan D. Muhlbege Univesity of Mayland (Dated: May 7, 27) Using existing implementations of the leapfog and Runge-Kutta methods fo solving coupled odinay diffeential equations, seveal

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

Stanford University CS259Q: Quantum Computing Handout 8 Luca Trevisan October 18, 2012

Stanford University CS259Q: Quantum Computing Handout 8 Luca Trevisan October 18, 2012 Stanfod Univesity CS59Q: Quantum Computing Handout 8 Luca Tevisan Octobe 8, 0 Lectue 8 In which we use the quantum Fouie tansfom to solve the peiod-finding poblem. The Peiod Finding Poblem Let f : {0,...,

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G-type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this investigation

More information

Inseting this into the left hand side of the equation of motion above gives the most commonly used algoithm in classical molecula dynamics simulations

Inseting this into the left hand side of the equation of motion above gives the most commonly used algoithm in classical molecula dynamics simulations Chem465 in 2000 Univesity of Washington Lectue notes Hannes Jonsson Classical dynamics When we ae dealing with heavy atoms and high enough enegy o tempeatue, it is often suciently accuate to neglect quantum

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

Light Time Delay and Apparent Position

Light Time Delay and Apparent Position Light Time Delay and ppaent Position nalytical Gaphics, Inc. www.agi.com info@agi.com 610.981.8000 800.220.4785 Contents Intoduction... 3 Computing Light Time Delay... 3 Tansmission fom to... 4 Reception

More information

Aaa Hal ARC 103 Haq Mou Hill 114 Mug Seh PHY LH Sen Zzz SEC 111

Aaa Hal ARC 103 Haq Mou Hill 114 Mug Seh PHY LH Sen Zzz SEC 111 The Fist Midtem!!! The fist common hou midtem exam will be held on Thusday Octobe 5, 9:50 to 11:10 PM (at night) on the Busch campus. You should go to the oom coesponding to the fist 3 lettes of you last

More information

Multifrontal sparse QR factorization on the GPU

Multifrontal sparse QR factorization on the GPU Multifontal spase QR factoization on the GPU Tim Davis, Sanjay Ranka, Shaanyan Chetlu, Nui Yealan Univesity of Floida Feb 2012 GPU-based Multifontal QR factoization why spase QR? multifontal spase QR in

More information

Charges, Coulomb s Law, and Electric Fields

Charges, Coulomb s Law, and Electric Fields Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and (). An atom consists of a heavy (+) chaged nucleus suounded

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

Central Force Motion

Central Force Motion Cental Foce Motion Cental Foce Poblem Find the motion of two bodies inteacting via a cental foce. Examples: Gavitational foce (Keple poblem): m1m F 1, ( ) =! G ˆ Linea estoing foce: F 1, ( ) =! k ˆ Two

More information

Circular Orbits. and g =

Circular Orbits. and g = using analyse planetay and satellite motion modelled as unifom cicula motion in a univesal gavitation field, a = v = 4π and g = T GM1 GM and F = 1M SATELLITES IN OBIT A satellite is any object that is

More information

Central Coverage Bayes Prediction Intervals for the Generalized Pareto Distribution

Central Coverage Bayes Prediction Intervals for the Generalized Pareto Distribution Statistics Reseach Lettes Vol. Iss., Novembe Cental Coveage Bayes Pediction Intevals fo the Genealized Paeto Distibution Gyan Pakash Depatment of Community Medicine S. N. Medical College, Aga, U. P., India

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

The Millikan Experiment: Determining the Elementary Charge

The Millikan Experiment: Determining the Elementary Charge LAB EXERCISE 7.5.1 7.5 The Elementay Chage (p. 374) Can you think of a method that could be used to suggest that an elementay chage exists? Figue 1 Robet Millikan (1868 1953) m + q V b The Millikan Expeiment:

More information

A Bijective Approach to the Permutational Power of a Priority Queue

A Bijective Approach to the Permutational Power of a Priority Queue A Bijective Appoach to the Pemutational Powe of a Pioity Queue Ia M. Gessel Kuang-Yeh Wang Depatment of Mathematics Bandeis Univesity Waltham, MA 02254-9110 Abstact A pioity queue tansfoms an input pemutation

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Numerical Integration

Numerical Integration MCEN 473/573 Chapte 0 Numeical Integation Fall, 2006 Textbook, 0.4 and 0.5 Isopaametic Fomula Numeical Integation [] e [ ] T k = h B [ D][ B] e B Jdsdt In pactice, the element stiffness is calculated numeically.

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Do Managers Do Good With Other People s Money? Online Appendix

Do Managers Do Good With Other People s Money? Online Appendix Do Manages Do Good With Othe People s Money? Online Appendix Ing-Haw Cheng Haison Hong Kelly Shue Abstact This is the Online Appendix fo Cheng, Hong and Shue 2013) containing details of the model. Datmouth

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

Physics 221 Lecture 41 Nonlinear Absorption and Refraction Physics 221 Lectue 41 Nonlinea Absoption and Refaction Refeences Meye-Aendt, pp. 97-98. Boyd, Nonlinea Optics, 1.4 Yaiv, Optical Waves in Cystals, p. 22 (Table of cystal symmeties) 1. Intoductoy Remaks.

More information

LINEAR AND NONLINEAR ANALYSES OF A WIND-TUNNEL BALANCE

LINEAR AND NONLINEAR ANALYSES OF A WIND-TUNNEL BALANCE LINEAR AND NONLINEAR ANALYSES O A WIND-TUNNEL INTRODUCTION BALANCE R. Kakehabadi and R. D. Rhew NASA LaRC, Hampton, VA The NASA Langley Reseach Cente (LaRC) has been designing stain-gauge balances fo utilization

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012

763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 763620SS STATISTICAL PHYSICS Solutions 2 Autumn 2012 1. Continuous Random Walk Conside a continuous one-dimensional andom walk. Let w(s i ds i be the pobability that the length of the i th displacement

More information

Lecture 8 - Gauss s Law

Lecture 8 - Gauss s Law Lectue 8 - Gauss s Law A Puzzle... Example Calculate the potential enegy, pe ion, fo an infinite 1D ionic cystal with sepaation a; that is, a ow of equally spaced chages of magnitude e and altenating sign.

More information

Conjugate Gradient Methods. Michael Bader. Summer term 2012

Conjugate Gradient Methods. Michael Bader. Summer term 2012 Gadient Methods Outlines Pat I: Quadatic Foms and Steepest Descent Pat II: Gadients Pat III: Summe tem 2012 Pat I: Quadatic Foms and Steepest Descent Outlines Pat I: Quadatic Foms and Steepest Descent

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

ITI Introduction to Computing II

ITI Introduction to Computing II ITI 1121. Intoduction to Computing II Macel Tucotte School of Electical Engineeing and Compute Science Abstact data type: Stack Stack-based algoithms Vesion of Febuay 2, 2013 Abstact These lectue notes

More information

PHYS 172: Modern Mechanics. Fall Lecture 6 Fundamental Forces, Reciprocity Read

PHYS 172: Modern Mechanics. Fall Lecture 6 Fundamental Forces, Reciprocity Read PHYS 172: Moden Mechanics Fall 2009 Lectue 6 Fundamental Foces, Recipocity Read 3.9 3.14 Exam 1 - Tuesday Septembe 15, 8:00-10:00 PM Elliott Hall of Music 1. The exam will be witten as a standad 1 hou

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

SIO 229 Gravity and Geomagnetism. Lecture 6. J 2 for Earth. J 2 in the solar system. A first look at the geoid.

SIO 229 Gravity and Geomagnetism. Lecture 6. J 2 for Earth. J 2 in the solar system. A first look at the geoid. SIO 229 Gavity and Geomagnetism Lectue 6. J 2 fo Eath. J 2 in the sola system. A fist look at the geoid. The Thee Big Themes of the Gavity Lectues 1.) An ellipsoidal otating Eath Refeence body (mass +

More information

Rydberg-Rydberg Interactions

Rydberg-Rydberg Interactions Rydbeg-Rydbeg Inteactions F. Robicheaux Aubun Univesity Rydbeg gas goes to plasma Dipole blockade Coheent pocesses in fozen Rydbeg gases (expts) Theoetical investigation of an excitation hopping though

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

Physics 11 Chapter 4: Forces and Newton s Laws of Motion. Problem Solving

Physics 11 Chapter 4: Forces and Newton s Laws of Motion. Problem Solving Physics 11 Chapte 4: Foces and Newton s Laws of Motion Thee is nothing eithe good o bad, but thinking makes it so. William Shakespeae It s not what happens to you that detemines how fa you will go in life;

More information

General Railgun Function

General Railgun Function Geneal ailgun Function An electomagnetic ail gun uses a lage Loentz foce to fie a pojectile. The classic configuation uses two conducting ails with amatue that fits between and closes the cicuit between

More information

Quantum Fourier Transform

Quantum Fourier Transform Chapte 5 Quantum Fouie Tansfom Many poblems in physics and mathematics ae solved by tansfoming a poblem into some othe poblem with a known solution. Some notable examples ae Laplace tansfom, Legende tansfom,

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

AQI: Advanced Quantum Information Lecture 2 (Module 4): Order finding and factoring algorithms February 20, 2013

AQI: Advanced Quantum Information Lecture 2 (Module 4): Order finding and factoring algorithms February 20, 2013 AQI: Advanced Quantum Infomation Lectue 2 (Module 4): Ode finding and factoing algoithms Febuay 20, 203 Lectue: D. Mak Tame (email: m.tame@impeial.ac.uk) Intoduction In the last lectue we looked at the

More information

Particle Systems. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Particle Systems. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Paticle Systems Univesity of Texas at Austin CS384G - Compute Gaphics Fall 2010 Don Fussell Reading Requied: Witkin, Paticle System Dynamics, SIGGRAPH 97 couse notes on Physically Based Modeling. Witkin

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

Lecture 7 Topic 5: Multiple Comparisons (means separation)

Lecture 7 Topic 5: Multiple Comparisons (means separation) Lectue 7 Topic 5: Multiple Compaisons (means sepaation) ANOVA: H 0 : µ 1 = µ =... = µ t H 1 : The mean of at least one teatment goup is diffeent If thee ae moe than two teatments in the expeiment, futhe

More information

Coarse Mesh Radiation Transport Code COMET Radiation Therapy Application*

Coarse Mesh Radiation Transport Code COMET Radiation Therapy Application* Coase Mesh Radiation Tanspot Code COMT Radiation Theapy Application* Fazad Rahnema Nuclea & Radiological ngineeing and Medical Physics Pogams Geogia Institute of Technology Computational Medical Physics

More information

MATH 415, WEEK 3: Parameter-Dependence and Bifurcations

MATH 415, WEEK 3: Parameter-Dependence and Bifurcations MATH 415, WEEK 3: Paamete-Dependence and Bifucations 1 A Note on Paamete Dependence We should pause to make a bief note about the ole played in the study of dynamical systems by the system s paametes.

More information

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source Multipole Radiation Febuay 29, 26 The electomagnetic field of an isolated, oscillating souce Conside a localized, oscillating souce, located in othewise empty space. We know that the solution fo the vecto

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

CSCE 478/878 Lecture 4: Experimental Design and Analysis. Stephen Scott. 3 Building a tree on the training set Introduction. Outline.

CSCE 478/878 Lecture 4: Experimental Design and Analysis. Stephen Scott. 3 Building a tree on the training set Introduction. Outline. In Homewok, you ae (supposedly) Choosing a data set 2 Extacting a test set of size > 3 3 Building a tee on the taining set 4 Testing on the test set 5 Repoting the accuacy (Adapted fom Ethem Alpaydin and

More information

Research Design - - Topic 17 Multiple Regression & Multiple Correlation: Two Predictors 2009 R.C. Gardner, Ph.D.

Research Design - - Topic 17 Multiple Regression & Multiple Correlation: Two Predictors 2009 R.C. Gardner, Ph.D. Reseach Design - - Topic 7 Multiple Regession & Multiple Coelation: Two Pedictos 009 R.C. Gadne, Ph.D. Geneal Rationale and Basic Aithmetic fo two pedictos Patial and semipatial coelation Regession coefficients

More information

Δt The textbook chooses to say that the average velocity is

Δt The textbook chooses to say that the average velocity is 1-D Motion Basic I Definitions: One dimensional motion (staight line) is a special case of motion whee all but one vecto component is zeo We will aange ou coodinate axis so that the x-axis lies along the

More information

When a mass moves because of a force, we can define several types of problem.

When a mass moves because of a force, we can define several types of problem. Mechanics Lectue 4 3D Foces, gadient opeato, momentum 3D Foces When a mass moves because of a foce, we can define seveal types of poblem. ) When we know the foce F as a function of time t, F=F(t). ) When

More information

On the Sun s Electric-Field

On the Sun s Electric-Field On the Sun s Electic-Field D. E. Scott, Ph.D. (EE) Intoduction Most investigatos who ae sympathetic to the Electic Sun Model have come to agee that the Sun is a body that acts much like a esisto with a

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I Febuay 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best o most nealy coect answe Fo questions 6-9, solutions must begin

More information

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook Solutions to Poblems Chapte 9 Poblems appeae on the en of chapte 9 of the Textbook 8. Pictue the Poblem Two point chages exet an electostatic foce on each othe. Stategy Solve Coulomb s law (equation 9-5)

More information

Phys101 Lectures 30, 31. Wave Motion

Phys101 Lectures 30, 31. Wave Motion Phys0 Lectues 30, 3 Wave Motion Key points: Types of Waves: Tansvese and Longitudinal Mathematical Repesentation of a Taveling Wave The Pinciple of Supeposition Standing Waves; Resonance Ref: -7,8,9,0,,6,,3,6.

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

Splay Trees Handout. Last time we discussed amortized analysis of data structures

Splay Trees Handout. Last time we discussed amortized analysis of data structures Spla Tees Handout Amotied Analsis Last time we discussed amotied analsis of data stuctues A wa of epessing that even though the wost-case pefomance of an opeation can be bad, the total pefomance of a sequence

More information

Fresnel Diffraction. monchromatic light source

Fresnel Diffraction. monchromatic light source Fesnel Diffaction Equipment Helium-Neon lase (632.8 nm) on 2 axis tanslation stage, Concave lens (focal length 3.80 cm) mounted on slide holde, iis mounted on slide holde, m optical bench, micoscope slide

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

Plug-and-Play Dual-Tree Algorithm Runtime Analysis

Plug-and-Play Dual-Tree Algorithm Runtime Analysis Jounal of Machine Leaning Reseach 16 (2015) 3269-3297 Submitted 1/15; Published 12/15 Plug-and-Play Dual-Tee Algoithm Runtime Analysis Ryan R. Cutin School of Computational Science and Engineeing Geogia

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Math 2263 Solutions for Spring 2003 Final Exam

Math 2263 Solutions for Spring 2003 Final Exam Math 6 Solutions fo Sping Final Exam ) A staightfowad appoach to finding the tangent plane to a suface at a point ( x, y, z ) would be to expess the cuve as an explicit function z = f ( x, y ), calculate

More information

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11.

10. Force is inversely proportional to distance between the centers squared. R 4 = F 16 E 11. NSWRS - P Physics Multiple hoice Pactice Gavitation Solution nswe 1. m mv Obital speed is found fom setting which gives v whee M is the object being obited. Notice that satellite mass does not affect obital

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

Hypothesis of dark matter and dark energy with minus mass

Hypothesis of dark matter and dark energy with minus mass Hypothesis of dak matte and dak enegy with minus mass Hyoyoung Choi In 1998 yea, obsevation by The High-z Supenova Seach team, if the cosmological constant is 0, Ω M = 0.38(±0.). The quantity of the matte

More information

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS

DOING PHYSICS WITH MATLAB COMPUTATIONAL OPTICS DOING PHYIC WITH MTLB COMPUTTIONL OPTIC FOUNDTION OF CLR DIFFRCTION THEORY Ian Coope chool of Physics, Univesity of ydney ian.coope@sydney.edu.au DOWNLOD DIRECTORY FOR MTLB CRIPT View document: Numeical

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

Section 11. Timescales Radiation transport in stars

Section 11. Timescales Radiation transport in stars Section 11 Timescales 11.1 Radiation tanspot in stas Deep inside stas the adiation eld is vey close to black body. Fo a black-body distibution the photon numbe density at tempeatue T is given by n = 2

More information

3.2 Centripetal Acceleration

3.2 Centripetal Acceleration unifom cicula motion the motion of an object with onstant speed along a cicula path of constant adius 3.2 Centipetal Acceleation The hamme thow is a tack-and-field event in which an athlete thows a hamme

More information

High precision computer simulation of cyclotrons KARAMYSHEVA T., AMIRKHANOV I. MALININ V., POPOV D.

High precision computer simulation of cyclotrons KARAMYSHEVA T., AMIRKHANOV I. MALININ V., POPOV D. High pecision compute simulation of cyclotons KARAMYSHEVA T., AMIRKHANOV I. MALININ V., POPOV D. Abstact Effective and accuate compute simulations ae highly impotant in acceleatos design and poduction.

More information

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session. - 5 - TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

C/CS/Phys C191 Shor s order (period) finding algorithm and factoring 11/12/14 Fall 2014 Lecture 22

C/CS/Phys C191 Shor s order (period) finding algorithm and factoring 11/12/14 Fall 2014 Lecture 22 C/CS/Phys C9 Sho s ode (peiod) finding algoithm and factoing /2/4 Fall 204 Lectue 22 With a fast algoithm fo the uantum Fouie Tansfom in hand, it is clea that many useful applications should be possible.

More information

Lecture 24 Stability of Molecular Clouds

Lecture 24 Stability of Molecular Clouds Lectue 4 Stability of Molecula Clouds 1. Stability of Cloud Coes. Collapse and Fagmentation of Clouds 3. Applying the iial Theoem Refeences Oigins of Stas & Planetay Systems eds. Lada & Kylafis http://cfa-www.havad.edu/cete

More information

TAMPINES JUNIOR COLLEGE 2009 JC1 H2 PHYSICS GRAVITATIONAL FIELD

TAMPINES JUNIOR COLLEGE 2009 JC1 H2 PHYSICS GRAVITATIONAL FIELD TAMPINES JUNIOR COLLEGE 009 JC1 H PHYSICS GRAVITATIONAL FIELD OBJECTIVES Candidates should be able to: (a) show an undestanding of the concept of a gavitational field as an example of field of foce and

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

LET a random variable x follows the two - parameter

LET a random variable x follows the two - parameter INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING ISSN: 2231-5330, VOL. 5, NO. 1, 2015 19 Shinkage Bayesian Appoach in Item - Failue Gamma Data In Pesence of Pio Point Guess Value Gyan Pakash

More information

Name. Date. Period. Engage Examine the pictures on the left. 1. What is going on in these pictures?

Name. Date. Period. Engage Examine the pictures on the left. 1. What is going on in these pictures? AP Physics 1 Lesson 9.a Unifom Cicula Motion Outcomes 1. Define unifom cicula motion. 2. Detemine the tangential velocity of an object moving with unifom cicula motion. 3. Detemine the centipetal acceleation

More information

Force can be exerted by direct contact between bodies: Contact Force.

Force can be exerted by direct contact between bodies: Contact Force. Chapte 4, Newton s Laws of Motion Chapte IV NEWTON S LAWS OF MOTION Study of Dynamics: cause of motion (foces) and the esistance of objects to motion (mass), also called inetia. The fundamental Pinciples

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

AP Physics Electric Potential Energy

AP Physics Electric Potential Energy AP Physics lectic Potential negy Review of some vital peviously coveed mateial. The impotance of the ealie concepts will be made clea as we poceed. Wok takes place when a foce acts ove a distance. W F

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Have you eve idden on the amusement pak ide shown below? As it spins you feel as though you ae being pessed tightly against the wall. The ide then begins to tilt but you emain glued

More information

PHYSICS 151 Notes for Online Lecture #20

PHYSICS 151 Notes for Online Lecture #20 PHYSICS 151 Notes fo Online Lectue #20 Toque: The whole eason that we want to woy about centes of mass is that we ae limited to looking at point masses unless we know how to deal with otations. Let s evisit

More information

Introduction to Arrays

Introduction to Arrays Intoduction to Aays Page 1 Intoduction to Aays The antennas we have studied so fa have vey low diectivity / gain. While this is good fo boadcast applications (whee we want unifom coveage), thee ae cases

More information

Centripetal Force OBJECTIVE INTRODUCTION APPARATUS THEORY

Centripetal Force OBJECTIVE INTRODUCTION APPARATUS THEORY Centipetal Foce OBJECTIVE To veify that a mass moving in cicula motion expeiences a foce diected towad the cente of its cicula path. To detemine how the mass, velocity, and adius affect a paticle's centipetal

More information

Chapter 4. Newton s Laws of Motion

Chapter 4. Newton s Laws of Motion Chapte 4 Newton s Laws of Motion 4.1 Foces and Inteactions A foce is a push o a pull. It is that which causes an object to acceleate. The unit of foce in the metic system is the Newton. Foce is a vecto

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

15 Solving the Laplace equation by Fourier method

15 Solving the Laplace equation by Fourier method 5 Solving the Laplace equation by Fouie method I aleady intoduced two o thee dimensional heat equation, when I deived it, ecall that it taes the fom u t = α 2 u + F, (5.) whee u: [0, ) D R, D R is the

More information