A class of probability distributions for application to non-negative annual maxima

Size: px
Start display at page:

Download "A class of probability distributions for application to non-negative annual maxima"

Transcription

1 Hydrol. Earth Syst. Sci. Discuss., doi:.94/hess-7-98, 7 A class of probability distributions for application to non-negative annual maxima Earl Bardsley School of Science, University of Waikato, Hamilton 3240, New Zealand Correspondence to: Earl Bardsley (earl.bardsley@waikato.ac.nz) Abstract. Many environmental variables of interest as potential hazards take on only positive values, such a wind speed or river discharge. While recognising that primary interest is for largest extremes, it is desirable that distributions of maxima for design purposes should be subject to similar bounds as the physical variable concerned. A modified univariate extreme value argument defines a set of distributions, all bounded below at zero, with potential for application to annual maxima. Let f(x) be a probability distribution over the range, 0 x ω, where 0 < ω. Define X = max (X, X 2,.. X N) to be the maximum value of a random sample of size N drawn from f(x). Also, define the transformation Y i = g(x i) where g(x) is any positive monotonically decreasing function of X. This would include, for example, Y = X - but not Y = -X. Because the Y i are independent random variables bounded from below at some non-negative value, it follows from extreme value theory for minima that for sufficiently large N the random variable Y = min (Y, Y 2,.. Y N) will follow a Weibull distribution with cumulative distribution function: c F( y) pr( Y y) exp{ [( y ) / ] } 0, 0, c 0 2 where = g(ω) and,, and c are respectively location, scale, and shape parameters. The distribution F(y) holds generally as an extreme value expression for sufficiently large N, irrespective of which of the three possible asymptotic extreme value distributions of sample maxima holds for X. Therefore, the limit Weibull distribution for, say, Y = X has no less validity as a single expression for obtaining exceedance probabilities than the generalized extreme value distribution applied directly to X. If follows that a class of probability distributions for possible use with positive-valued annual maxima can be defined from the application of the inverse function g - to Weibull random variables for 0. All distributions so obtained are defined over the range 0 x ω, which actually excludes all of the asymptotic extreme value distributions of maxima except for the special case of the Type 2 extreme value distribution with location parameter at zero. It is to be expected, however, that the asymptotic distributions will sometimes hold to a high level of approximation within the 0, ω interval. No specific distribution is advocated for annual maxima application because concern here is only with drawing attention to the existence of the distribution class. The transformation approach is illustrated with respect the distribution of reciprocals of random variables generated from a 3-parameter Weibull distribution with 0.

2 Hydrol. Earth Syst. Sci. Discuss., doi:.94/hess-7-98, 7 Introduction Jenkinson (9) introduced the univariate generalized extreme value distribution (GEV) to analysis of environmental maxima or minima, subsequent to its original mathematical formulation by von Mises (936). The GEV distribution for largest extremes is a single expression which incorporates the three asymptotic extreme value distributions of sample maxima derived by early workers in the field (Fisher and Tippett, 928; Gnedenko, 943). An historical overview is given by Kotz and Nadarajah (00). Because of its natural linkage to maxima, the GEV distribution has been applied for design purposes in numerous instances with respect to annual maxima such as flood discharges, wave heights, and wind speeds (Coles, 0). Focus for maxima is of course on distribution upper tails but it is more reflective of reality if probability distributions for design purposes are defined within the same bounds as the physical variable concerned, noting that many environmental variables with hazard potential such as wind speed and river discharge are bounded below at zero. In this regard the Type 3 and Gumbel asymptotic distributions of maxima both extend into the negative domain, albeit with very small probability in practical applications. This brief communication makes an alternative extreme value argument leading to a class of distributions, all bounded below at zero, which could have potential application to annual maxima and with no less theoretical justification than the GEV. There is no data-based argument made for any one distribution but the approach is illustrated for the particular case of reciprocals of 3-parameter Weibull random variables. 2. Alternative distribution class 2 Let f(x) be an unknown probability distribution defined over the range, 0 x ω, where 0 < ω. Define X = max (X, X 2,.. X N) to be the maximum value of a random sample of size N drawn from f(x). Also, define the transformation Y i = g(x i) where g(x) is any positive monotonically decreasing function of X. This would include, for example, Y = X - but not Y = -X. Because the Y i are independent random variables bounded from below at some non-negative value, it follows from extreme value theory for minima that for sufficiently large N the random variable Y = min (Y, Y 2,.. Y N) will follow a Weibull distribution with cumulative distribution function: c F( y) pr( Y y) exp{ [( y ) / ] } 0, 0, c 0 () where = g(ω) and,, and c are respectively location, scale, and shape parameters. 30 The distribution F(y) holds generally as a single extreme value expression for sufficiently large N, irrespective of which of the three possible asymptotic extreme value distributions of largest extremes holds for X. Therefore, the limit Weibull distribution for, say, Y = X has no less validity as a general expression for obtaining exceedance probabilities than the generalized extreme value distribution applied to X. 2

3 Hydrol. Earth Syst. Sci. Discuss., doi:.94/hess-7-98, 7 If follows that a class of probability distributions for possible use with positive-valued annual maxima (taking a year as a random sample) can be defined from the application of the inverse function g - to random variables generated from a threeparameter Weibull distribution with 0. All the distributions so obtained are defined over the range 0 x ω, which excludes all of the asymptotic extreme value distributions of maxima except for the special case of the Type 2 extreme value distribution with location parameter at zero. It is to be expected, however, that the asymptotic distributions will sometimes hold to a high level of approximation within the 0, ω interval. Each permissible inverse function transformation of Weibull random variables will define a different distribution in the class. The transformation approach is illustrated in the next section, with respect to the particular case of the distribution of reciprocals of random variables generated from a 3-parameter Weibull distribution with Illustration (Weibull reciprocal transformation) For N sufficiently large Y = X will follow a Weibull distribution as defined by Eq. () and the inverse transformation of the Weibull random variable W is given by Z = W -. The resulting distribution of Z is referenced here for convenience as the H distribution, with cumulative distribution function and probability density function respectively given by: H x pr Z x x (2) c c ( ) ( ) exp[ ( ) ] 2 2 h( x) exp[ c ( x ) c ] c ( x ) c ( x ) c (3) 0, 0, c 0, 0 x where is the upper bound to the distribution range and and c are scale and shape parameters, respectively. For the H distribution tends toward a Type 2 distribution of largest extremes with location parameter at zero Otherwise the distribution is bounded above at some finite value, which corresponds to - in Eq. (). Bounded H distributions can be plotted in standard form by setting = (Fig. ). As expected, there can be similarity between bounded H distributions and extreme value distributions. In particular, plot b in Fig. is almost identical to a Gumbel probability density function with location parameter 0. and scale parameter 0.0. However, there is a difference in that the H distribution here is bounded both above and below while Gumbel distributions are always unbounded in both directions. 3

4 Hydrol. Earth Syst. Sci. Discuss., doi:.94/hess-7-98, 7 The H distribution can also have some forms different to any of the three asymptotic extreme value distributions. A convenient illustration is to plot the H distribution on a Gumbel plot (x on the vertical axis with Gumbel y on the horizontal axis, where y = -ln{-ln[h(x)]} ). In terms of the symbolism for the H distribution used here, this relation of x as a function of y is given by: x (4) [ exp( y / c)] Unlike the corresponding extreme value expressions on Gumbel plots, Eq. (4) can include an inflection point (Fig. 2). From the purely pragmatic viewpoint it is therefore possible that the H distribution will sometimes give a better match to annual maxima than the generalized extreme value distribution. 3. Discussion The H distribution may or may not find use in the analysis of annual maxima for design purposes. The distribution does have the attraction of permitting both upper and lower bounds, consistent with presence the physical upper bounds which must apply to all environmental variables. However, as noted earlier, there are any number of g - Weibull transformations which might be envisaged and no particular member of the resulting distribution class is advocated here. 2 With respect to extreme value theory, no argument that can be made for some g(.) transformation being superior in the sense that increasing N will in general result in the distribution of Y converging more quickly to the Weibull limit distribution of smallest extremes, as compared to the rate at which the distribution of X converges to the GEV distribution of maxima. It will always be possible to find situations of faster and slower convergence rates. For example, the distribution of sample maxima from an exponential distribution converges quickly to the limit Gumbel distribution (Bury, 97). This can be compared with the distribution of reciprocals of the same sample maxima converging more slowly to the limit Weibull distribution of minima. On the other hand, if the X i are absolute values of standard normal random variables then the distribution of Y exp( X ) converges to the Weibull limit more quickly than the distribution of X converges to its 3/2 Gumbel limit as N increases. In reality the distribution of the X i values is always unknown so comparisons of convergence rates for specified distributions for X i are not very helpful. 30 One obvious restriction is that the choice of transformation must be independent of any given X data set, because optimising to achieve the best Weibull data fit to Y becomes simply an exercise in fitting a flexible distribution. 4

5 Hydrol. Earth Syst. Sci. Discuss., doi:.94/hess-7-98, 7 Application of any of the distributions derived from Weibull transformations will need to consider the usual issues of estimation error. In particular, any upper bound obtained from data fitting is best regarded more as an artefact of the distribution concerned than an estimate of a physical limit. Examples of fitting to annual maxima are deliberately avoided here because fitting to a few data sets will not establish the general utility of any distribution. Superiority of any one annual maxima distribution can never be established by comparison with data histograms, but it could be useful nonetheless to demonstrate via extensive data application that one or more members of the new distribution class are at least no less applicable for data description than existing distributions for annual maxima like the GEV. It is hoped that this brief communication may encourage some investigations of this type. 4 Conclusion An argument has been made for the existence of a set of distributions applicable to annual maxima defined over the same physical range as the environmental variable under consideration. While these distributions are not extreme value distributions in themselves they have support from extreme value theory through their linkage to the Weibull distribution, which is the asymptotic distribution of minima of transformed values of the variable concerned. 2 References Bury, K.V.: 97. Statistical models in applied Science, Wiley, London, 97. Coles, S.G.: An introduction to statistical modeling of extreme values, Springer, London, 0. Fisher, R.A., and Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample, Proc. Cambridge Phil. Soc. 24, 80 90, 928. Gnedenko, B.V.: Sur la distribution limite du terme maximum d une serie aleatoire, Ann. Math. 44, 423 3, 943. Jenkinson, A.F.: The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quart. J. Roy. Meteorol. Soc. 8, 8 7, 9. Kotz, S., and Nadarajah, S.: Extreme value distributions: theory and applications. Imperial College Press, London, 00. von Mises, R.: La distribution de la plus grande de n valeurs. [Reprinted in Selected Papers II, , Amer. Math. Soc., Providence, RI., 94], 936.

6 Hydrol. Earth Syst. Sci. Discuss., doi:.94/hess-7-98, 7 8 Probability density 6 4 (a) = 0. c =.2 (b) = c = = 3 c = 2 (c) x Figure : Selected bounded H distributions in standard form for various parameter combinations. Plots (a), (b), and (c) respectively have similarities with Type 2, Gumbel, and Type 3 extreme value distributions X Gumbel y Figure 2: Gumbel plot corresponding to the H distribution of plot (a) in Fig., extending over the range H(0.0) to H(0.99), corresponding to Gumbel y = -.3 to 4.60, respectively. 6

EXTREMAL QUANTILES OF MAXIMUMS FOR STATIONARY SEQUENCES WITH PSEUDO-STATIONARY TREND WITH APPLICATIONS IN ELECTRICITY CONSUMPTION ALEXANDR V.

EXTREMAL QUANTILES OF MAXIMUMS FOR STATIONARY SEQUENCES WITH PSEUDO-STATIONARY TREND WITH APPLICATIONS IN ELECTRICITY CONSUMPTION ALEXANDR V. MONTENEGRIN STATIONARY JOURNAL TREND WITH OF ECONOMICS, APPLICATIONS Vol. IN 9, ELECTRICITY No. 4 (December CONSUMPTION 2013), 53-63 53 EXTREMAL QUANTILES OF MAXIMUMS FOR STATIONARY SEQUENCES WITH PSEUDO-STATIONARY

More information

Estimation of Gutenberg-Richter seismicity parameters for the Bundaberg region using piecewise extended Gumbel analysis

Estimation of Gutenberg-Richter seismicity parameters for the Bundaberg region using piecewise extended Gumbel analysis Estimation of Gutenberg-Richter seismicity parameters for the Bundaberg region using piecewise extended Gumbel analysis Abstract Mike Turnbull Central Queensland University The Gumbel statistics of extreme

More information

PENULTIMATE APPROXIMATIONS FOR WEATHER AND CLIMATE EXTREMES. Rick Katz

PENULTIMATE APPROXIMATIONS FOR WEATHER AND CLIMATE EXTREMES. Rick Katz PENULTIMATE APPROXIMATIONS FOR WEATHER AND CLIMATE EXTREMES Rick Katz Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO USA Email: rwk@ucar.edu Web site:

More information

The Goodness-of-fit Test for Gumbel Distribution: A Comparative Study

The Goodness-of-fit Test for Gumbel Distribution: A Comparative Study MATEMATIKA, 2012, Volume 28, Number 1, 35 48 c Department of Mathematics, UTM. The Goodness-of-fit Test for Gumbel Distribution: A Comparative Study 1 Nahdiya Zainal Abidin, 2 Mohd Bakri Adam and 3 Habshah

More information

Abstract: In this short note, I comment on the research of Pisarenko et al. (2014) regarding the

Abstract: In this short note, I comment on the research of Pisarenko et al. (2014) regarding the Comment on Pisarenko et al. Characterization of the Tail of the Distribution of Earthquake Magnitudes by Combining the GEV and GPD Descriptions of Extreme Value Theory Mathias Raschke Institution: freelancer

More information

A Note on Tail Behaviour of Distributions. the max domain of attraction of the Frechét / Weibull law under power normalization

A Note on Tail Behaviour of Distributions. the max domain of attraction of the Frechét / Weibull law under power normalization ProbStat Forum, Volume 03, January 2010, Pages 01-10 ISSN 0974-3235 A Note on Tail Behaviour of Distributions in the Max Domain of Attraction of the Frechét/ Weibull Law under Power Normalization S.Ravi

More information

Extreme Precipitation: An Application Modeling N-Year Return Levels at the Station Level

Extreme Precipitation: An Application Modeling N-Year Return Levels at the Station Level Extreme Precipitation: An Application Modeling N-Year Return Levels at the Station Level Presented by: Elizabeth Shamseldin Joint work with: Richard Smith, Doug Nychka, Steve Sain, Dan Cooley Statistics

More information

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes Limits at Infinity If a function f has a domain that is unbounded, that is, one of the endpoints of its domain is ±, we can determine the long term behavior of the function using a it at infinity. Definition

More information

EXTREMAL MODELS AND ENVIRONMENTAL APPLICATIONS. Rick Katz

EXTREMAL MODELS AND ENVIRONMENTAL APPLICATIONS. Rick Katz 1 EXTREMAL MODELS AND ENVIRONMENTAL APPLICATIONS Rick Katz Institute for Study of Society and Environment National Center for Atmospheric Research Boulder, CO USA email: rwk@ucar.edu Home page: www.isse.ucar.edu/hp_rick/

More information

Modelação de valores extremos e sua importância na

Modelação de valores extremos e sua importância na Modelação de valores extremos e sua importância na segurança e saúde Margarida Brito Departamento de Matemática FCUP (FCUP) Valores Extremos - DemSSO 1 / 12 Motivation Consider the following events Occurance

More information

Modified Kolmogorov-Smirnov Test of Goodness of Fit. Catalonia-BarcelonaTECH, Spain

Modified Kolmogorov-Smirnov Test of Goodness of Fit. Catalonia-BarcelonaTECH, Spain 152/304 CoDaWork 2017 Abbadia San Salvatore (IT) Modified Kolmogorov-Smirnov Test of Goodness of Fit G.S. Monti 1, G. Mateu-Figueras 2, M. I. Ortego 3, V. Pawlowsky-Glahn 2 and J. J. Egozcue 3 1 Department

More information

Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC

Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC EXTREME VALUE THEORY Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260 rls@email.unc.edu AMS Committee on Probability and Statistics

More information

Extreme Value Analysis and Spatial Extremes

Extreme Value Analysis and Spatial Extremes Extreme Value Analysis and Department of Statistics Purdue University 11/07/2013 Outline Motivation 1 Motivation 2 Extreme Value Theorem and 3 Bayesian Hierarchical Models Copula Models Max-stable Models

More information

R.Garçon, F.Garavaglia, J.Gailhard, E.Paquet, F.Gottardi EDF-DTG

R.Garçon, F.Garavaglia, J.Gailhard, E.Paquet, F.Gottardi EDF-DTG Homogeneous samples and reliability of probabilistic models : using an atmospheric circulation patterns sampling for a better estimation of extreme rainfall probability R.Garçon, F.Garavaglia, J.Gailhard,

More information

Extreme value statistics

Extreme value statistics Extreme value statistics Density of near-extreme events Sanjib Sabhapandit Laboratoire de Physique Théorique et Modèles Statistiques CNRS UMR 8626 Université Paris-Sud 91405 Orsay cedex, France Collaborator

More information

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4)

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4) Advanced College Prep Pre-Calculus Midyear Exam Review Name Date Per List the intercepts for the graph of the equation. 1) x2 + y - 81 = 0 1) Graph the equation by plotting points. 2) y = -x2 + 9 2) List

More information

Bayesian Inference for Clustered Extremes

Bayesian Inference for Clustered Extremes Newcastle University, Newcastle-upon-Tyne, U.K. lee.fawcett@ncl.ac.uk 20th TIES Conference: Bologna, Italy, July 2009 Structure of this talk 1. Motivation and background 2. Review of existing methods Limitations/difficulties

More information

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015

MFM Practitioner Module: Quantitiative Risk Management. John Dodson. October 14, 2015 MFM Practitioner Module: Quantitiative Risk Management October 14, 2015 The n-block maxima 1 is a random variable defined as M n max (X 1,..., X n ) for i.i.d. random variables X i with distribution function

More information

Classical Extreme Value Theory - An Introduction

Classical Extreme Value Theory - An Introduction Chapter 1 Classical Extreme Value Theory - An Introduction 1.1 Introduction Asymptotic theory of functions of random variables plays a very important role in modern statistics. The objective of the asymptotic

More information

Journal of Environmental Statistics

Journal of Environmental Statistics jes Journal of Environmental Statistics February 2010, Volume 1, Issue 3. http://www.jenvstat.org Exponentiated Gumbel Distribution for Estimation of Return Levels of Significant Wave Height Klara Persson

More information

Section 6.1: Composite Functions

Section 6.1: Composite Functions Section 6.1: Composite Functions Def: Given two function f and g, the composite function, which we denote by f g and read as f composed with g, is defined by (f g)(x) = f(g(x)). In other words, the function

More information

Calculus 221 worksheet

Calculus 221 worksheet Calculus 221 worksheet Graphing A function has a global maximum at some a in its domain if f(x) f(a) for all other x in the domain of f. Global maxima are sometimes also called absolute maxima. A function

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture No. # 33 Probability Models using Gamma and Extreme Value

More information

The battle of extreme value distributions: A global survey on the extreme

The battle of extreme value distributions: A global survey on the extreme 1 2 The battle of extreme value distributions: A global survey on the extreme daily rainfall 3 Simon Michael Papalexiou and Demetris Koutsoyiannis 4 5 Department of Water Resources, Faculty of Civil Engineering,

More information

HIERARCHICAL MODELS IN EXTREME VALUE THEORY

HIERARCHICAL MODELS IN EXTREME VALUE THEORY HIERARCHICAL MODELS IN EXTREME VALUE THEORY Richard L. Smith Department of Statistics and Operations Research, University of North Carolina, Chapel Hill and Statistical and Applied Mathematical Sciences

More information

Modeling Extremal Events Is Not Easy: Why the Extreme Value Theorem Cannot Be As General As the Central Limit Theorem

Modeling Extremal Events Is Not Easy: Why the Extreme Value Theorem Cannot Be As General As the Central Limit Theorem University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS) Department of Computer Science 5-2015 Modeling Extremal Events Is Not Easy: Why the Extreme Value Theorem Cannot Be

More information

Chapter 2 Asymptotics

Chapter 2 Asymptotics Chapter Asymptotics.1 Asymptotic Behavior of Student s Pdf Proposition.1 For each x R d,asν, f ν,,a x g a, x..1 Proof Let a = 0. Using the well-known formula that Ɣz = π z e z z z 1 + O 1, as z,. z we

More information

NEW METHOD FOR ESTIMATING DIRECTIONAL EXTREME WIND SPEED BY CONSIDERING THE CORRELATION AMONG EXTREME WIND SPEED IN DIFFERENT DIRECTIONS

NEW METHOD FOR ESTIMATING DIRECTIONAL EXTREME WIND SPEED BY CONSIDERING THE CORRELATION AMONG EXTREME WIND SPEED IN DIFFERENT DIRECTIONS The Eighth Asia-Pacific Conference on Wind Engineering, December 0 4, 203, Chennai, India NEW ETHOD FO ESTIATING DIECTIONAL EXTEE WIND SPEED BY CONSIDEING THE COELATION AONG EXTEE WIND SPEED IN DIFFEENT

More information

Relations and Functions (for Math 026 review)

Relations and Functions (for Math 026 review) Section 3.1 Relations and Functions (for Math 026 review) Objective 1: Understanding the s of Relations and Functions Relation A relation is a correspondence between two sets A and B such that each element

More information

SEISMIC HAZARD CHARACTERIZATION AND RISK EVALUATION USING GUMBEL S METHOD OF EXTREMES (G1 AND G3) AND G-R FORMULA FOR IRAQ

SEISMIC HAZARD CHARACTERIZATION AND RISK EVALUATION USING GUMBEL S METHOD OF EXTREMES (G1 AND G3) AND G-R FORMULA FOR IRAQ 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2898 SEISMIC HAZARD CHARACTERIZATION AND RISK EVALUATION USING GUMBEL S METHOD OF EXTREMES (G1 AND G3)

More information

ESTIMATION OF EXTREME INDIAN MONSOON RAINFALL

ESTIMATION OF EXTREME INDIAN MONSOON RAINFALL INTERNATIONAL JOURNAL OF CLIMATOLOGY, VOL. 16, 105-1 12 (1996) SHORTER CONTRIBUTION ESTIMATION OF EXTREME INDIAN MONSOON RAINFALL D. E. REEVE Sir William Halcmw & Partners Ltd, Swindon SN4 OQD, UK Received

More information

A NOTE ON SECOND ORDER CONDITIONS IN EXTREME VALUE THEORY: LINKING GENERAL AND HEAVY TAIL CONDITIONS

A NOTE ON SECOND ORDER CONDITIONS IN EXTREME VALUE THEORY: LINKING GENERAL AND HEAVY TAIL CONDITIONS REVSTAT Statistical Journal Volume 5, Number 3, November 2007, 285 304 A NOTE ON SECOND ORDER CONDITIONS IN EXTREME VALUE THEORY: LINKING GENERAL AND HEAVY TAIL CONDITIONS Authors: M. Isabel Fraga Alves

More information

Challenges in implementing worst-case analysis

Challenges in implementing worst-case analysis Challenges in implementing worst-case analysis Jon Danielsson Systemic Risk Centre, lse,houghton Street, London WC2A 2AE, UK Lerby M. Ergun Systemic Risk Centre, lse,houghton Street, London WC2A 2AE, UK

More information

INCORPORATION OF WEIBULL DISTRIBUTION IN L-MOMENTS METHOD FOR REGIONAL FREQUENCY ANALYSIS OF PEAKS-OVER-THRESHOLD WAVE HEIGHTS

INCORPORATION OF WEIBULL DISTRIBUTION IN L-MOMENTS METHOD FOR REGIONAL FREQUENCY ANALYSIS OF PEAKS-OVER-THRESHOLD WAVE HEIGHTS INCORPORATION OF WEIBULL DISTRIBUTION IN L-MOMENTS METHOD FOR REGIONAL FREQUENCY ANALYSIS OF PEAKS-OVER-THRESHOLD WAVE HEIGHTS Yoshimi Goda, Masanobu Kudaa, and Hiroyasu Kawai The L-moments of the distribution

More information

ON A GENERALIZATION OF THE GUMBEL DISTRIBUTION

ON A GENERALIZATION OF THE GUMBEL DISTRIBUTION ON A GENERALIZATION OF THE GUMBEL DISTRIBUTION S. Adeyemi Department of Mathematics Obafemi Awolowo University, Ile-Ife. Nigeria.0005 e-mail:shollerss00@yahoo.co.uk Abstract A simple generalization of

More information

Characterizations of Weibull Geometric Distribution

Characterizations of Weibull Geometric Distribution Journal of Statistical Theory and Applications Volume 10, Number 4, 2011, pp. 581-590 ISSN 1538-7887 Characterizations of Weibull Geometric Distribution G. G. Hamedani Department of Mathematics, Statistics

More information

Sharp statistical tools Statistics for extremes

Sharp statistical tools Statistics for extremes Sharp statistical tools Statistics for extremes Georg Lindgren Lund University October 18, 2012 SARMA Background Motivation We want to predict outside the range of observations Sums, averages and proportions

More information

Applications of Differentiation

Applications of Differentiation MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Module9 7 Introduction Applications of to Matrices Differentiation y = x(x 1)(x 2) d 2

More information

Bayesian Modelling of Extreme Rainfall Data

Bayesian Modelling of Extreme Rainfall Data Bayesian Modelling of Extreme Rainfall Data Elizabeth Smith A thesis submitted for the degree of Doctor of Philosophy at the University of Newcastle upon Tyne September 2005 UNIVERSITY OF NEWCASTLE Bayesian

More information

A NOTE ON SOME RELIABILITY PROPERTIES OF EXTREME VALUE, GENERALIZED PARETO AND TRANSFORMED DISTRIBUTIONS

A NOTE ON SOME RELIABILITY PROPERTIES OF EXTREME VALUE, GENERALIZED PARETO AND TRANSFORMED DISTRIBUTIONS 59 / A Note on some Realiability Properties of Extreme Value, Generalized. Research Article myscience VII (1-2), 2012, 59-72 University of Mysore http://myscience.uni-mysore.ac.in A NOTE ON SOME RELIABILITY

More information

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x? . What are the domain and range of the function Fall 9 Math 3 Final Exam Solutions f(x) = + ex e x? Answer: The function is well-defined everywhere except when the denominator is zero, which happens when

More information

Battle of extreme value distributions: A global survey on extreme daily rainfall

Battle of extreme value distributions: A global survey on extreme daily rainfall WATER RESOURCES RESEARCH, VOL. 49, 187 201, doi:10.1029/2012wr012557, 2013 Battle of extreme value distributions: A global survey on extreme daily rainfall Simon Michael Papalexiou, 1 and Demetris Koutsoyiannis

More information

RESILIENT INFRASTRUCTURE June 1 4, 2016

RESILIENT INFRASTRUCTURE June 1 4, 2016 RESILIENT INFRASTRUCTURE June 1 4, 2016 ANALYSIS OF SPATIALLY-VARYING WIND CHARACTERISTICS FOR DISTRIBUTED SYSTEMS Thomas G. Mara The Boundary Layer Wind Tunnel Laboratory, University of Western Ontario,

More information

Discussion on Human life is unlimited but short by Holger Rootzén and Dmitrii Zholud

Discussion on Human life is unlimited but short by Holger Rootzén and Dmitrii Zholud Extremes (2018) 21:405 410 https://doi.org/10.1007/s10687-018-0322-z Discussion on Human life is unlimited but short by Holger Rootzén and Dmitrii Zholud Chen Zhou 1 Received: 17 April 2018 / Accepted:

More information

Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators

Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators Computational Statistics & Data Analysis 51 (26) 94 917 www.elsevier.com/locate/csda Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators Alberto Luceño E.T.S. de

More information

The Convergence Rate for the Normal Approximation of Extreme Sums

The Convergence Rate for the Normal Approximation of Extreme Sums The Convergence Rate for the Normal Approximation of Extreme Sums Yongcheng Qi University of Minnesota Duluth WCNA 2008, Orlando, July 2-9, 2008 This talk is based on a joint work with Professor Shihong

More information

WEIBULL RENEWAL PROCESSES

WEIBULL RENEWAL PROCESSES Ann. Inst. Statist. Math. Vol. 46, No. 4, 64-648 (994) WEIBULL RENEWAL PROCESSES NIKOS YANNAROS Department of Statistics, University of Stockholm, S-06 9 Stockholm, Sweden (Received April 9, 993; revised

More information

Extreme Value Theory and Applications

Extreme Value Theory and Applications Extreme Value Theory and Deauville - 04/10/2013 Extreme Value Theory and Introduction Asymptotic behavior of the Sum Extreme (from Latin exter, exterus, being on the outside) : Exceeding the ordinary,

More information

Lesson Objectives: we will learn:

Lesson Objectives: we will learn: Lesson Objectives: Setting the Stage: Lesson 66 Improper Integrals HL Math - Santowski we will learn: How to solve definite integrals where the interval is infinite and where the function has an infinite

More information

Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE. Rick Katz

Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE. Rick Katz 1 Lecture 2 APPLICATION OF EXREME VALUE THEORY TO CLIMATE CHANGE Rick Katz Institute for Study of Society and Environment National Center for Atmospheric Research Boulder, CO USA email: rwk@ucar.edu Home

More information

Global Estimates of Extreme Wind Speed and Wave Height

Global Estimates of Extreme Wind Speed and Wave Height 15 MARCH 2011 V I N O T H A N D Y O U N G 1647 Global Estimates of Extreme Wind Speed and Wave Height J. VINOTH AND I. R. YOUNG Faculty of Engineering and Industrial Sciences, Swinburne University of Technology,

More information

Physics and Chemistry of the Earth

Physics and Chemistry of the Earth Physics and Chemistry of the Earth 34 (2009) 626 634 Contents lists available at ScienceDirect Physics and Chemistry of the Earth journal homepage: www.elsevier.com/locate/pce Performances of some parameter

More information

Fixed Point Iteration for Estimating The Parameters of Extreme Value Distributions

Fixed Point Iteration for Estimating The Parameters of Extreme Value Distributions Fixed Point Iteration for Estimating The Parameters of Extreme Value Distributions arxiv:0902.07v [stat.co] Feb 2009 Tewfik Kernane and Zohrh A. Raizah 2 Department of Mathematics, Faculty of Sciences

More information

Comparative Distributions of Hazard Modeling Analysis

Comparative Distributions of Hazard Modeling Analysis Comparative s of Hazard Modeling Analysis Rana Abdul Wajid Professor and Director Center for Statistics Lahore School of Economics Lahore E-mail: drrana@lse.edu.pk M. Shuaib Khan Department of Statistics

More information

Generalized Logistic Distribution in Extreme Value Modeling

Generalized Logistic Distribution in Extreme Value Modeling Chapter 3 Generalized Logistic Distribution in Extreme Value Modeling 3. Introduction In Chapters and 2, we saw that asymptotic or approximated model for large values is the GEV distribution or GP distribution.

More information

14 Increasing and decreasing functions

14 Increasing and decreasing functions 14 Increasing and decreasing functions 14.1 Sketching derivatives READING Read Section 3.2 of Rogawski Reading Recall, f (a) is the gradient of the tangent line of f(x) at x = a. We can use this fact to

More information

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -27 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc.

INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY. Lecture -27 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. INDIAN INSTITUTE OF SCIENCE STOCHASTIC HYDROLOGY Lecture -27 Course Instructor : Prof. P. P. MUJUMDAR Department of Civil Engg., IISc. Summary of the previous lecture Frequency factors Normal distribution

More information

ExtremeValuesandShapeofCurves

ExtremeValuesandShapeofCurves ExtremeValuesandShapeofCurves Philippe B. Laval Kennesaw State University March 23, 2005 Abstract This handout is a summary of the material dealing with finding extreme values and determining the shape

More information

Mathematical Economics: Lecture 3

Mathematical Economics: Lecture 3 Mathematical Economics: Lecture 3 Yu Ren WISE, Xiamen University October 7, 2012 Outline 1 Example of Graphing Example 3.1 Consider the cubic function f (x) = x 3 3x. Try to graph this function Example

More information

APPROXIMATING THE GENERALIZED BURR-GAMMA WITH A GENERALIZED PARETO-TYPE OF DISTRIBUTION A. VERSTER AND D.J. DE WAAL ABSTRACT

APPROXIMATING THE GENERALIZED BURR-GAMMA WITH A GENERALIZED PARETO-TYPE OF DISTRIBUTION A. VERSTER AND D.J. DE WAAL ABSTRACT APPROXIMATING THE GENERALIZED BURR-GAMMA WITH A GENERALIZED PARETO-TYPE OF DISTRIBUTION A. VERSTER AND D.J. DE WAAL ABSTRACT In this paper the Generalized Burr-Gamma (GBG) distribution is considered to

More information

2 = = 0 Thus, the number which is largest in magnitude is equal to the number which is smallest in magnitude.

2 = = 0 Thus, the number which is largest in magnitude is equal to the number which is smallest in magnitude. Limits at Infinity Two additional topics of interest with its are its as x ± and its where f(x) ±. Before we can properly discuss the notion of infinite its, we will need to begin with a discussion on

More information

Algebra 2: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney

Algebra 2: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney Algebra 2: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney 1. The key to this problem is recognizing cubes as factors in the radicands. 24 16 5 2. The key to this problem is recognizing

More information

Math 576: Quantitative Risk Management

Math 576: Quantitative Risk Management Math 576: Quantitative Risk Management Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 11 Haijun Li Math 576: Quantitative Risk Management Week 11 1 / 21 Outline 1

More information

Generalized Transmuted -Generalized Rayleigh Its Properties And Application

Generalized Transmuted -Generalized Rayleigh Its Properties And Application Journal of Experimental Research December 018, Vol 6 No 4 Email: editorinchief.erjournal@gmail.com editorialsecretary.erjournal@gmail.com Received: 10th April, 018 Accepted for Publication: 0th Nov, 018

More information

Xia Wang and Dipak K. Dey

Xia Wang and Dipak K. Dey A Flexible Skewed Link Function for Binary Response Data Xia Wang and Dipak K. Dey Technical Report #2008-5 June 18, 2008 This material was based upon work supported by the National Science Foundation

More information

Continuous Univariate Distributions

Continuous Univariate Distributions Continuous Univariate Distributions Volume 1 Second Edition NORMAN L. JOHNSON University of North Carolina Chapel Hill, North Carolina SAMUEL KOTZ University of Maryland College Park, Maryland N. BALAKRISHNAN

More information

APPLICATION OF EXTREMAL THEORY TO THE PRECIPITATION SERIES IN NORTHERN MORAVIA

APPLICATION OF EXTREMAL THEORY TO THE PRECIPITATION SERIES IN NORTHERN MORAVIA APPLICATION OF EXTREMAL THEORY TO THE PRECIPITATION SERIES IN NORTHERN MORAVIA DANIELA JARUŠKOVÁ Department of Mathematics, Czech Technical University, Prague; jarus@mat.fsv.cvut.cz 1. Introduction The

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

IT S TIME FOR AN UPDATE EXTREME WAVES AND DIRECTIONAL DISTRIBUTIONS ALONG THE NEW SOUTH WALES COASTLINE

IT S TIME FOR AN UPDATE EXTREME WAVES AND DIRECTIONAL DISTRIBUTIONS ALONG THE NEW SOUTH WALES COASTLINE IT S TIME FOR AN UPDATE EXTREME WAVES AND DIRECTIONAL DISTRIBUTIONS ALONG THE NEW SOUTH WALES COASTLINE M Glatz 1, M Fitzhenry 2, M Kulmar 1 1 Manly Hydraulics Laboratory, Department of Finance, Services

More information

Limit Distributions of Extreme Order Statistics under Power Normalization and Random Index

Limit Distributions of Extreme Order Statistics under Power Normalization and Random Index Limit Distributions of Extreme Order tatistics under Power Normalization and Random Index Zuoxiang Peng, Qin Jiang & aralees Nadarajah First version: 3 December 2 Research Report No. 2, 2, Probability

More information

APPLICATIONS OF DIFFERENTIATION

APPLICATIONS OF DIFFERENTIATION 4 APPLICATIONS OF DIFFERENTIATION APPLICATIONS OF DIFFERENTIATION Many applications of calculus depend on our ability to deduce facts about a function f from information concerning its derivatives. APPLICATIONS

More information

Answers for Calculus Review (Extrema and Concavity)

Answers for Calculus Review (Extrema and Concavity) Answers for Calculus Review 4.1-4.4 (Extrema and Concavity) 1. A critical number is a value of the independent variable (a/k/a x) in the domain of the function at which the derivative is zero or undefined.

More information

Introduction to Algorithmic Trading Strategies Lecture 10

Introduction to Algorithmic Trading Strategies Lecture 10 Introduction to Algorithmic Trading Strategies Lecture 10 Risk Management Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Value at Risk (VaR) Extreme Value Theory (EVT) References

More information

CONTAGION VERSUS FLIGHT TO QUALITY IN FINANCIAL MARKETS

CONTAGION VERSUS FLIGHT TO QUALITY IN FINANCIAL MARKETS EVA IV, CONTAGION VERSUS FLIGHT TO QUALITY IN FINANCIAL MARKETS Jose Olmo Department of Economics City University, London (joint work with Jesús Gonzalo, Universidad Carlos III de Madrid) 4th Conference

More information

1 Real functions. 1.1 What is a real function?

1 Real functions. 1.1 What is a real function? 1 Real functions After working through this section, you should be able to: (a) understand the definition of a real function; (b) use the notation for intervals of the real line; (c) recognise and use

More information

PREPRINT 2005:38. Multivariate Generalized Pareto Distributions HOLGER ROOTZÉN NADER TAJVIDI

PREPRINT 2005:38. Multivariate Generalized Pareto Distributions HOLGER ROOTZÉN NADER TAJVIDI PREPRINT 2005:38 Multivariate Generalized Pareto Distributions HOLGER ROOTZÉN NADER TAJVIDI Department of Mathematical Sciences Division of Mathematical Statistics CHALMERS UNIVERSITY OF TECHNOLOGY GÖTEBORG

More information

Overview of Extreme Value Theory. Dr. Sawsan Hilal space

Overview of Extreme Value Theory. Dr. Sawsan Hilal space Overview of Extreme Value Theory Dr. Sawsan Hilal space Maths Department - University of Bahrain space November 2010 Outline Part-1: Univariate Extremes Motivation Threshold Exceedances Part-2: Bivariate

More information

7.4 RECIPROCAL FUNCTIONS

7.4 RECIPROCAL FUNCTIONS 7.4 RECIPROCAL FUNCTIONS x VOCABULARY Word Know It Well Have Heard It or Seen It No Clue RECIPROCAL FUNCTION ASYMPTOTE VERTICAL ASYMPTOTE HORIZONTAL ASYMPTOTE RECIPROCAL a mathematical expression or function

More information

Construction of Combined Charts Based on Combining Functions

Construction of Combined Charts Based on Combining Functions Applied Mathematical Sciences, Vol. 8, 2014, no. 84, 4187-4200 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.45359 Construction of Combined Charts Based on Combining Functions Hyo-Il

More information

The Spatial Variation of the Maximum Possible Pollutant Concentration from Steady Sources

The Spatial Variation of the Maximum Possible Pollutant Concentration from Steady Sources International Environmental Modelling and Software Society (iemss) 2010 International Congress on Environmental Modelling and Software Modelling for Environment s Sake, Fifth Biennial Meeting, Ottawa,

More information

UNIVERSITY OF CALGARY. Inference for Dependent Generalized Extreme Values. Jialin He A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

UNIVERSITY OF CALGARY. Inference for Dependent Generalized Extreme Values. Jialin He A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES UNIVERSITY OF CALGARY Inference for Dependent Generalized Extreme Values by Jialin He A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

More information

Multivariate generalized Pareto distributions

Multivariate generalized Pareto distributions Multivariate generalized Pareto distributions Holger Rootzén and Nader Tajvidi Abstract Statistical inference for extremes has been a subject of intensive research during the past couple of decades. One

More information

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1.

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1. F16 MATH 15 Test November, 016 NAME: SOLUTIONS CRN: Use only methods from class. You must show work to receive credit. When using a theorem given in class, cite the theorem. Reminder: Calculators are not

More information

Extrema of log-correlated random variables Principles and Examples

Extrema of log-correlated random variables Principles and Examples Extrema of log-correlated random variables Principles and Examples Louis-Pierre Arguin Université de Montréal & City University of New York Introductory School IHP Trimester CIRM, January 5-9 2014 Acknowledgements

More information

Metastatistics of Extreme Values and its Application in Hydrology

Metastatistics of Extreme Values and its Application in Hydrology arxiv:1211.3087v1 [stat.ap] 13 Nov 2012 Metastatistics of Extreme Values and its Application in Hydrology Massimiliano Ignaccolo Dept. of Earth & Ocean Sciences, Nicholas School of the Environment, Duke

More information

function independent dependent domain range graph of the function The Vertical Line Test

function independent dependent domain range graph of the function The Vertical Line Test Functions A quantity y is a function of another quantity x if there is some rule (an algebraic equation, a graph, a table, or as an English description) by which a unique value is assigned to y by a corresponding

More information

Example 1: Inverse Functions Show that the functions are inverse functions of each other (if they are inverses, )

Example 1: Inverse Functions Show that the functions are inverse functions of each other (if they are inverses, ) p332 Section 5.3: Inverse Functions By switching the x & y coordinates of an ordered pair, the inverse function can be formed. (The domain and range switch places) Denoted by f 1 Definition of Inverse

More information

An Overview of Mathematics for Thermodynamics

An Overview of Mathematics for Thermodynamics CHEM 331 Physical Chemistry Revision 1.1 An Overview of Mathematics for Thermodynamics It is assumed you come to this Physical Chemistry I course with a solid background in Calculus. However, that background

More information

A Quasi Gamma Distribution

A Quasi Gamma Distribution 08; 3(4): 08-7 ISSN: 456-45 Maths 08; 3(4): 08-7 08 Stats & Maths www.mathsjournal.com Received: 05-03-08 Accepted: 06-04-08 Rama Shanker Department of Statistics, College of Science, Eritrea Institute

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Fall 2018 Practice Final Exam 2018-12-12 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be

More information

Math 121 Winter 2010 Review Sheet

Math 121 Winter 2010 Review Sheet Math 121 Winter 2010 Review Sheet March 14, 2010 This review sheet contains a number of problems covering the material that we went over after the third midterm exam. These problems (in conjunction with

More information

A simple analysis of the exact probability matching prior in the location-scale model

A simple analysis of the exact probability matching prior in the location-scale model A simple analysis of the exact probability matching prior in the location-scale model Thomas J. DiCiccio Department of Social Statistics, Cornell University Todd A. Kuffner Department of Mathematics, Washington

More information

On a Generalization of Weibull Distribution and Its Applications

On a Generalization of Weibull Distribution and Its Applications International Journal of Statistics and Applications 26, 6(3): 68-76 DOI:.5923/j.statistics.2663. On a Generalization of Weibull Distribution and Its Applications M. Girish Babu Department of Statistics,

More information

4.4 Graphs of Logarithmic Functions

4.4 Graphs of Logarithmic Functions 590 Chapter 4 Exponential and Logarithmic Functions 4.4 Graphs of Logarithmic Functions In this section, you will: Learning Objectives 4.4.1 Identify the domain of a logarithmic function. 4.4.2 Graph logarithmic

More information

On the modeling of size distributions when technologies are complex

On the modeling of size distributions when technologies are complex NBP Working Paper No. 195 On the modeling of size distributions when technologies are complex Jakub Growiec NBP Working Paper No. 195 On the modeling of size distributions when technologies are complex

More information

A Laplace Transform Technique for Evaluating Infinite Series

A Laplace Transform Technique for Evaluating Infinite Series 394 MATHEMATICS MAGAZINE determinant due to Mansion [3], although he did not state his method as a matrix factorization. See Muir's history [4] for more details. Acknowledgments. I thank John Rhodes and

More information

A review of methods to calculate extreme wind speeds

A review of methods to calculate extreme wind speeds Meteorol. Appl. 6, 119 132 (1999) A review of methods to calculate extreme wind speeds J P Palutikof 1, B B Brabson 2, D H Lister 1 and S T Adcock 3 1 Climatic Research Unit, University of East Anglia,

More information

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi. Lecture 03 Seismology (Contd.

Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi. Lecture 03 Seismology (Contd. Seismic Analysis of Structures Prof. T.K. Datta Department of Civil Engineering Indian Institute of Technology, Delhi Lecture 03 Seismology (Contd.) In the previous lecture, we discussed about the earth

More information

Frequency Analysis & Probability Plots

Frequency Analysis & Probability Plots Note Packet #14 Frequency Analysis & Probability Plots CEE 3710 October 0, 017 Frequency Analysis Process by which engineers formulate magnitude of design events (i.e. 100 year flood) or assess risk associated

More information

LQ-Moments for Statistical Analysis of Extreme Events

LQ-Moments for Statistical Analysis of Extreme Events Journal of Modern Applied Statistical Methods Volume 6 Issue Article 5--007 LQ-Moments for Statistical Analysis of Extreme Events Ani Shabri Universiti Teknologi Malaysia Abdul Aziz Jemain Universiti Kebangsaan

More information