Cyclic Schedules: General Structure. Frame Size Constraints

Size: px
Start display at page:

Download "Cyclic Schedules: General Structure. Frame Size Constraints"

Transcription

1 CPSC-663: Real-ime Systems Cyclic Schedules: General Structure Scheduling decision is made periodically: Frame Scheduling decision is made periodically: choose which job to execute perorm monitoring and enorcement operations decision points Major Cycle: Frames in a hyperperiod. major cycle hyperperiod H Frame Size Constraints Frames must be suiciently long so that every job can start and complete within a single rame: 1 max ei he hyperperiod must have an integer number o rames: 2 H " divides" H For monitoring purposes, rames must be suiciently small that between release time and deadline o every job there is at least one rame: t t t+ t+2 t +D i t +p i t t' t D t' t gcd p, 2 gcd p, D i i i i 1

2 CPSC-663: Real-ime Systems Frame Sizes: Example ask set: p i e i D i 15, 1, 14 20, 2, 26 22, 3, 22 H i : ei H i : 2 gcd pi, Di 3 2,3,4,5,6,10,.. 2,3,4,5,6 possible values or : 3,4,5,6 Slicing and Scheduling Blocks Slicing p i e i D i 4, 1, 4 5, 2, 5 20, 5, ?! slice , 5, 20, 20, 20, 1, 2, 1, 3, 1, scheduling block H 2

3 CPSC-663: Real-ime Systems Cyclic Executive Input: "Stored schedule: Lk or k 0,1,,F-1; " "Aperiodic job queue. ASK CYCLIC_EXECUIVE: t 0; /* current time */ k 0; /* current rame */ CurrentBlock : empty; BEGIN LOOP IF <any slice in CurrentBlock is not completed> take action; CurrentBlock : Lk; k : k+1 mod F; t : t+1; set timer to expire at time tf; IF <any slice in CurrentBlock is not released> take action; wake up periodic task server to handle slices in CurrentBlock; sleep until periodic task server completes or timer expires; IF <timer expired> CONINUE; WHILE <the aperiodic job queue is not empty> wake up the irst job in the queue; sleep until the aperiodic job completes; remove the just completed job rom the queue; END WHILE; sleep until next clock interrupt; END LOOP; END CYCLIC_EXECUIVE; What About Aperiodic Jobs? ypically: " Scheduled in the background. heir execution may be delayed. But: Aperiodic jobs are typically results o external events. hereore: he sooner the completion time, the more responsive the system Minimizing response time o aperiodic jobs becomes a design issue. Approach: Execute aperiodic jobs ahead o periodic jobs whenever possible. his is called Slack Stealing. 3

4 CPSC-663: Real-ime Systems Slack Stealing Lehoczky et al., RSS 87 x k " "Amount o time allocated to slices executed during rame F k. s k " "Slack during rame F k : s k : - x k. he cyclic executive can execute aperiodic jobs or s k amount o time without causing jobs to miss deadlines. Example: Sporadic Jobs Reminder: "Sporadic jobs have hard deadlines; the release time and "the execution time are not known a priori. "Worst-case execution time known when job is released. Need acceptance test: Jd,e s c s c+1 s l d F c-1 F c F c+1 F l F l+1 l s i i c S c, l : otal amount o slack in Frames F c,, F l. Acceptance est: "IF Sc,l < e HEN reject job; ELSE accept job; schedule execution; END; how?! 4

5 CPSC-663: Real-ime Systems Scheduling o Accepted Jobs Static scheduling: Schedule as large a slice o the accepted job as possible in the current rame. Schedule remaining portions as late as possible. Mechanism: Append slices o accepted job to list o periodic-task slices in rames where they are scheduled. Problem: Early commit. Alternatives: Rescheduling upon arrival. Priority-driven scheduling o sporadic jobs. EDF-Scheduling o Accepted Jobs 1 periodic tasks 2 3 N... acceptance test reject priority queue processor aperiodic 5

6 CPSC-663: Real-ime Systems Acceptance est or EDF-Scheduled Sporadic Jobs Sporadic Job J with deadline d arrives: est 1: "est whether current amount o slack beore d is " "enough to accommodate J. * " "I not, reject! est 2: "est whether sporadic jobs still in system with " "deadlines ater d will miss deadline i J " "is accepted. ** " "I yes, reject! Accept! * "Deine SJ i : "Amount o slack up to time d i ater J i has " " "been scheduled. ** "Update all SJ i with d i > d, that is, Accept. est or EDF Spor. Jobs Implementation Deine S i,k : slack in Frames F i,..., F k Precompute all S i,k in irst major cycle Initial amounts o slack in later cycles can be computed as S i+jf,k+j F S i,f + S 1,k + j -js 1,F Compute current slack o job with release time in F c-1 and deadline in F l+1 : " "S new c,l S c,l Σ dk<d e k c Implementation: Initially compute S c,l or newly arriving job. I negative, reject. Whenever job with earlier deadline arrives, decrease this value. I negative, reject new job. 6

7 CPSC-663: Real-ime Systems Static Scheduling o Jobs in Frames Layout o task schedule or cyclic executive can be ormulated as a schedule or jobs in a hyperperiod. his can be ormulated as a network low problem. J 1 F 1 J 2 F 2 Source e i J i F j Sink J n-1 J n F m-1 F m Pros and Cons o Pros: Conceptual simplicity iming constraints can be checked and enorced at rame boundaries. Preemption cost can be kept small by having appropriate rame sizes. Easy to validate: Execution times o slices known a priori. Cons: Diicult to maintain. Does not allow to integrate hard and sot deadlines. 7

8 CPSC-663: Real-ime Systems Putting the Cyclic Executive into Practice. P. Baker, Alan Shaw, he Cyclic Executive Model and Ada Implementation approaches or a Cyclic Executive: Solutions and Diiculties Naive solution using the DELAY statement Using an interrupt rom a hardware clock Dealing with lost or buered interrupts Handling rame overruns Naive Solution Using the DELAY Statement Source:. P. Baker, Alan Shaw, he Cyclic Executive Model and Ada 8

9 CPSC-663: Real-ime Systems Using an Interrupt rom a Hardware Clock Source:. P. Baker, Alan Shaw, he Cyclic Executive Model and Ada Dealing with Lost or Buered Interrupts Source:. P. Baker, Alan Shaw, he Cyclic Executive Model and Ada 9

10 CPSC-663: Real-ime Systems Handling Frame Overruns I ABORION: Source:. P. Baker, Alan Shaw, he Cyclic Executive Model and Ada Handling Frame Overruns II EXCEPIONS: Source:. P. Baker, Alan Shaw, he Cyclic Executive Model and Ada 10

Clock-Driven Scheduling (in-depth) Cyclic Schedules: General Structure

Clock-Driven Scheduling (in-depth) Cyclic Schedules: General Structure CPSC-663: Real-me Systems n-depth Precompute statc schedule o-lne e.g. at desgn tme: can aord expensve algorthms. Idle tmes can be used or aperodc jobs. Possble mplementaton: able-drven Schedulng table

More information

Clock-driven scheduling

Clock-driven scheduling Clock-driven scheduling Also known as static or off-line scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017

More information

3. Scheduling issues. Common approaches 3. Common approaches 1. Preemption vs. non preemption. Common approaches 2. Further definitions

3. Scheduling issues. Common approaches 3. Common approaches 1. Preemption vs. non preemption. Common approaches 2. Further definitions Common approaches 3 3. Scheduling issues Priority-driven (event-driven) scheduling This class of algorithms is greedy They never leave available processing resources unutilized An available resource may

More information

Real-Time Scheduling

Real-Time Scheduling 1 Real-Time Scheduling Formal Model [Some parts of this lecture are based on a real-time systems course of Colin Perkins http://csperkins.org/teaching/rtes/index.html] Real-Time Scheduling Formal Model

More information

Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2

Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Lecture Outline Scheduling periodic tasks The rate monotonic algorithm Definition Non-optimality Time-demand analysis...!2

More information

Task Models and Scheduling

Task Models and Scheduling Task Models and Scheduling Jan Reineke Saarland University June 27 th, 2013 With thanks to Jian-Jia Chen at KIT! Jan Reineke Task Models and Scheduling June 27 th, 2013 1 / 36 Task Models and Scheduling

More information

Aperiodic Task Scheduling

Aperiodic Task Scheduling Aperiodic Task Scheduling Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2017 年 11 月 29 日 These slides use Microsoft clip arts. Microsoft copyright

More information

There are three priority driven approaches that we will look at

There are three priority driven approaches that we will look at Priority Driven Approaches There are three priority driven approaches that we will look at Earliest-Deadline-First (EDF) Least-Slack-Time-first (LST) Latest-Release-Time-first (LRT) 1 EDF Earliest deadline

More information

Lecture 6. Real-Time Systems. Dynamic Priority Scheduling

Lecture 6. Real-Time Systems. Dynamic Priority Scheduling Real-Time Systems Lecture 6 Dynamic Priority Scheduling Online scheduling with dynamic priorities: Earliest Deadline First scheduling CPU utilization bound Optimality and comparison with RM: Schedulability

More information

Real-Time and Embedded Systems (M) Lecture 5

Real-Time and Embedded Systems (M) Lecture 5 Priority-driven Scheduling of Periodic Tasks (1) Real-Time and Embedded Systems (M) Lecture 5 Lecture Outline Assumptions Fixed-priority algorithms Rate monotonic Deadline monotonic Dynamic-priority algorithms

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Marcus Völp, Hermann Härtig WS 2013/14 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed

More information

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013 Lecture 3 Real-Time Scheduling Daniel Kästner AbsInt GmbH 203 Model-based Software Development 2 SCADE Suite Application Model in SCADE (data flow + SSM) System Model (tasks, interrupts, buses, ) SymTA/S

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Lecture 3 Real-Time Scheduling Dr. Daniel Kästner AbsInt Angewandte Informatik GmbH kaestner@absint.com Model-based Software Development Generator Lustre programs Esterel programs

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Hermann Härtig WS 2018/19 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed Priority schedulers

More information

Real-time operating systems course. 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm

Real-time operating systems course. 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm Real-time operating systems course 6 Definitions Non real-time scheduling algorithms Real-time scheduling algorithm Definitions Scheduling Scheduling is the activity of selecting which process/thread should

More information

System Model. Real-Time systems. Giuseppe Lipari. Scuola Superiore Sant Anna Pisa -Italy

System Model. Real-Time systems. Giuseppe Lipari. Scuola Superiore Sant Anna Pisa -Italy Real-Time systems System Model Giuseppe Lipari Scuola Superiore Sant Anna Pisa -Italy Corso di Sistemi in tempo reale Laurea Specialistica in Ingegneria dell Informazione Università di Pisa p. 1/?? Task

More information

Networked Embedded Systems WS 2016/17

Networked Embedded Systems WS 2016/17 Networked Embedded Systems WS 2016/17 Lecture 2: Real-time Scheduling Marco Zimmerling Goal of Today s Lecture Introduction to scheduling of compute tasks on a single processor Tasks need to finish before

More information

Real-Time Scheduling. Real Time Operating Systems and Middleware. Luca Abeni

Real-Time Scheduling. Real Time Operating Systems and Middleware. Luca Abeni Real Time Operating Systems and Middleware Luca Abeni luca.abeni@unitn.it Definitions Algorithm logical procedure used to solve a problem Program formal description of an algorithm, using a programming

More information

Priority-driven Scheduling of Periodic Tasks (1) Advanced Operating Systems (M) Lecture 4

Priority-driven Scheduling of Periodic Tasks (1) Advanced Operating Systems (M) Lecture 4 Priority-driven Scheduling of Periodic Tasks (1) Advanced Operating Systems (M) Lecture 4 Priority-driven Scheduling Assign priorities to jobs, based on their deadline or other timing constraint Make scheduling

More information

Andrew Morton University of Waterloo Canada

Andrew Morton University of Waterloo Canada EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo Canada Outline 1) Introduction and motivation 2) Review of EDF and feasibility analysis 3) Hardware accelerators and scheduling

More information

Embedded Systems 14. Overview of embedded systems design

Embedded Systems 14. Overview of embedded systems design Embedded Systems 14-1 - Overview of embedded systems design - 2-1 Point of departure: Scheduling general IT systems In general IT systems, not much is known about the computational processes a priori The

More information

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund Scheduling Periodic Real-Time Tasks on Uniprocessor Systems Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 08, Dec., 2015 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 38 Periodic Control System Pseudo-code

More information

Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3

Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3 Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3 Lecture Outline The rate monotonic algorithm (cont d) Maximum utilisation test The deadline monotonic algorithm The earliest

More information

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund Non-Preemptive and Limited Preemptive Scheduling LS 12, TU Dortmund 09 May 2017 (LS 12, TU Dortmund) 1 / 31 Outline Non-Preemptive Scheduling A General View Exact Schedulability Test Pessimistic Schedulability

More information

Delay bounds (Simon S. Lam) 1

Delay bounds (Simon S. Lam) 1 1 Pacet Scheduling: End-to-End E d Delay Bounds Delay bounds (Simon S. Lam) 1 2 Reerences Delay Guarantee o Virtual Cloc server Georey G. Xie and Simon S. Lam, Delay Guarantee o Virtual Cloc Server, IEEE/ACM

More information

Scheduling Slack Time in Fixed Priority Pre-emptive Systems

Scheduling Slack Time in Fixed Priority Pre-emptive Systems Scheduling Slack Time in Fixed Priority Pre-emptive Systems R.I.Davis Real-Time Systems Research Group, Department of Computer Science, University of York, England. ABSTRACT This report addresses the problem

More information

Design of Real-Time Software

Design of Real-Time Software Design of Real-Time Software Reference model Reinder J. Bril Technische Universiteit Eindhoven Department of Mathematics and Computer Science System Architecture and Networking Group P.O. Box 513, 5600

More information

EDF Scheduling. Giuseppe Lipari CRIStAL - Université de Lille 1. October 4, 2015

EDF Scheduling. Giuseppe Lipari  CRIStAL - Université de Lille 1. October 4, 2015 EDF Scheduling Giuseppe Lipari http://www.lifl.fr/~lipari CRIStAL - Université de Lille 1 October 4, 2015 G. Lipari (CRIStAL) Earliest Deadline Scheduling October 4, 2015 1 / 61 Earliest Deadline First

More information

Real-Time Systems. Lecture 4. Scheduling basics. Task scheduling - basic taxonomy Basic scheduling techniques Static cyclic scheduling

Real-Time Systems. Lecture 4. Scheduling basics. Task scheduling - basic taxonomy Basic scheduling techniques Static cyclic scheduling Real-Time Systems Lecture 4 Scheduling basics Task scheduling - basic taxonomy Basic scheduling techniques Static cyclic scheduling 1 Last lecture (3) Real-time kernels The task states States and transition

More information

EDF Scheduling. Giuseppe Lipari May 11, Scuola Superiore Sant Anna Pisa

EDF Scheduling. Giuseppe Lipari   May 11, Scuola Superiore Sant Anna Pisa EDF Scheduling Giuseppe Lipari http://feanor.sssup.it/~lipari Scuola Superiore Sant Anna Pisa May 11, 2008 Outline 1 Dynamic priority 2 Basic analysis 3 FP vs EDF 4 Processor demand bound analysis Generalization

More information

Lecture Note #6: More on Task Scheduling EECS 571 Principles of Real-Time Embedded Systems Kang G. Shin EECS Department University of Michigan

Lecture Note #6: More on Task Scheduling EECS 571 Principles of Real-Time Embedded Systems Kang G. Shin EECS Department University of Michigan Lecture Note #6: More on Task Scheduling EECS 571 Principles of Real-Time Embedded Systems Kang G. Shin EECS Department University of Michigan Note 6-1 Mars Pathfinder Timing Hiccups? When: landed on the

More information

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i Embedded Systems 15-1 - REVIEW: Aperiodic scheduling C i J i 0 a i s i f i d i Given: A set of non-periodic tasks {J 1,, J n } with arrival times a i, deadlines d i, computation times C i precedence constraints

More information

Real-Time Systems. LS 12, TU Dortmund

Real-Time Systems. LS 12, TU Dortmund Real-Time Systems Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund April 24, 2014 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 57 Organization Instructor: Jian-Jia Chen, jian-jia.chen@cs.uni-dortmund.de

More information

Process Scheduling for RTS. RTS Scheduling Approach. Cyclic Executive Approach

Process Scheduling for RTS. RTS Scheduling Approach. Cyclic Executive Approach Process Scheduling for RTS Dr. Hugh Melvin, Dept. of IT, NUI,G RTS Scheduling Approach RTS typically control multiple parameters concurrently Eg. Flight Control System Speed, altitude, inclination etc..

More information

Resource Sharing in an Enhanced Rate-Based Execution Model

Resource Sharing in an Enhanced Rate-Based Execution Model In: Proceedings of the 15th Euromicro Conference on Real-Time Systems, Porto, Portugal, July 2003, pp. 131-140. Resource Sharing in an Enhanced Rate-Based Execution Model Xin Liu Steve Goddard Department

More information

LSN 15 Processor Scheduling

LSN 15 Processor Scheduling LSN 15 Processor Scheduling ECT362 Operating Systems Department of Engineering Technology LSN 15 Processor Scheduling LSN 15 FCFS/FIFO Scheduling Each process joins the Ready queue When the current process

More information

A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption

A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption Rohini Krishnapura, Steve Goddard, Ala Qadi Computer Science & Engineering University of Nebraska Lincoln Lincoln, NE 68588-0115

More information

Real-Time Scheduling and Resource Management

Real-Time Scheduling and Resource Management ARTIST2 Summer School 2008 in Europe Autrans (near Grenoble), France September 8-12, 2008 Real-Time Scheduling and Resource Management Lecturer: Giorgio Buttazzo Full Professor Scuola Superiore Sant Anna

More information

Real-time Systems: Scheduling Periodic Tasks

Real-time Systems: Scheduling Periodic Tasks Real-time Systems: Scheduling Periodic Tasks Advanced Operating Systems Lecture 15 This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To view a copy of

More information

CIS 4930/6930: Principles of Cyber-Physical Systems

CIS 4930/6930: Principles of Cyber-Physical Systems CIS 4930/6930: Principles of Cyber-Physical Systems Chapter 11 Scheduling Hao Zheng Department of Computer Science and Engineering University of South Florida H. Zheng (CSE USF) CIS 4930/6930: Principles

More information

Static priority scheduling

Static priority scheduling Static priority scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017 Some slides are derived from lectures

More information

Spare CASH: Reclaiming Holes to Minimize Aperiodic Response Times in a Firm Real-Time Environment

Spare CASH: Reclaiming Holes to Minimize Aperiodic Response Times in a Firm Real-Time Environment Spare CASH: Reclaiming Holes to Minimize Aperiodic Response Times in a Firm Real-Time Environment Deepu C. Thomas Sathish Gopalakrishnan Marco Caccamo Chang-Gun Lee Abstract Scheduling periodic tasks that

More information

RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES

RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES Department for Embedded Systems/Real-Time Systems, University of Ulm {name.surname}@informatik.uni-ulm.de Abstract:

More information

CSE 380 Computer Operating Systems

CSE 380 Computer Operating Systems CSE 380 Computer Operating Systems Instructor: Insup Lee & Dianna Xu University of Pennsylvania, Fall 2003 Lecture Note 3: CPU Scheduling 1 CPU SCHEDULING q How can OS schedule the allocation of CPU cycles

More information

Scheduling. Uwe R. Zimmer & Alistair Rendell The Australian National University

Scheduling. Uwe R. Zimmer & Alistair Rendell The Australian National University 6 Scheduling Uwe R. Zimmer & Alistair Rendell The Australian National University References for this chapter [Bacon98] J. Bacon Concurrent Systems 1998 (2nd Edition) Addison Wesley Longman Ltd, ISBN 0-201-17767-6

More information

CPU SCHEDULING RONG ZHENG

CPU SCHEDULING RONG ZHENG CPU SCHEDULING RONG ZHENG OVERVIEW Why scheduling? Non-preemptive vs Preemptive policies FCFS, SJF, Round robin, multilevel queues with feedback, guaranteed scheduling 2 SHORT-TERM, MID-TERM, LONG- TERM

More information

IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00

IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00 TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00 Koen Langendoen Marco Zuniga Question: 1 2 3 4 5 Total Points:

More information

Optimal Utilization Bounds for the Fixed-priority Scheduling of Periodic Task Systems on Identical Multiprocessors. Sanjoy K.

Optimal Utilization Bounds for the Fixed-priority Scheduling of Periodic Task Systems on Identical Multiprocessors. Sanjoy K. Optimal Utilization Bounds for the Fixed-priority Scheduling of Periodic Task Systems on Identical Multiprocessors Sanjoy K. Baruah Abstract In fixed-priority scheduling the priority of a job, once assigned,

More information

Task Reweighting under Global Scheduling on Multiprocessors

Task Reweighting under Global Scheduling on Multiprocessors ask Reweighting under Global Scheduling on Multiprocessors Aaron Block, James H. Anderson, and UmaMaheswari C. Devi Department of Computer Science, University of North Carolina at Chapel Hill March 7 Abstract

More information

The Rate-Based Execution Model

The Rate-Based Execution Model University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln CSE Technical reports Computer Science and Engineering, Department of 4-1-1999 The Rate-Based Execution Model Kevin Jeffay

More information

Real Time Operating Systems

Real Time Operating Systems Real Time Operating ystems Luca Abeni luca.abeni@unitn.it Interacting Tasks Until now, only independent tasks... A job never blocks or suspends A task only blocks on job termination In real world, jobs

More information

ENHANCING CPU PERFORMANCE USING SUBCONTRARY MEAN DYNAMIC ROUND ROBIN (SMDRR) SCHEDULING ALGORITHM

ENHANCING CPU PERFORMANCE USING SUBCONTRARY MEAN DYNAMIC ROUND ROBIN (SMDRR) SCHEDULING ALGORITHM ENHANCING CPU PERFORMANCE USING SUBCONTRARY MEAN DYNAMIC ROUND ROBIN (SMD) SCHEDULING ALGORITHM Sourav Kumar Bhoi *1, Sanjaya Kumar Panda 2 and Debashee Tarai 3 * 1 Department of Computer Science & Engineering,

More information

Deadline-driven scheduling

Deadline-driven scheduling Deadline-driven scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017 Some slides are derived from lectures

More information

CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators

CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators CycleTandem: Energy-Saving Scheduling for Real-Time Systems with Hardware Accelerators Sandeep D souza and Ragunathan (Raj) Rajkumar Carnegie Mellon University High (Energy) Cost of Accelerators Modern-day

More information

Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks

Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks Moonju Park Ubiquitous Computing Lab., IBM Korea, Seoul, Korea mjupark@kr.ibm.com Abstract. This paper addresses the problem of

More information

TDDB68 Concurrent programming and operating systems. Lecture: CPU Scheduling II

TDDB68 Concurrent programming and operating systems. Lecture: CPU Scheduling II TDDB68 Concurrent programming and operating systems Lecture: CPU Scheduling II Mikael Asplund, Senior Lecturer Real-time Systems Laboratory Department of Computer and Information Science Copyright Notice:

More information

A Theory of Rate-Based Execution. A Theory of Rate-Based Execution

A Theory of Rate-Based Execution. A Theory of Rate-Based Execution Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs cs.unc.edu Steve Goddard Computer Science & Engineering University of Nebraska Ð Lincoln goddard@cse cse.unl.edu

More information

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Mitra Nasri Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany nasri@eit.uni-kl.de

More information

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks Junsung Kim, Björn Andersson, Dionisio de Niz, and Raj Rajkumar Carnegie Mellon University 2/31 Motion Planning on Self-driving Parallel

More information

Lecture: Workload Models (Advanced Topic)

Lecture: Workload Models (Advanced Topic) Lecture: Workload Models (Advanced Topic) Real-Time Systems, HT11 Martin Stigge 28. September 2011 Martin Stigge Workload Models 28. September 2011 1 System

More information

A Framework for Automated Competitive Analysis of On-line Scheduling of Firm-Deadline Tasks

A Framework for Automated Competitive Analysis of On-line Scheduling of Firm-Deadline Tasks A Framework for Automated Competitive Analysis of On-line Scheduling of Firm-Deadline Tasks Krishnendu Chatterjee 1, Andreas Pavlogiannis 1, Alexander Kößler 2, Ulrich Schmid 2 1 IST Austria, 2 TU Wien

More information

Scheduling Lecture 1: Scheduling on One Machine

Scheduling Lecture 1: Scheduling on One Machine Scheduling Lecture 1: Scheduling on One Machine Loris Marchal 1 Generalities 1.1 Definition of scheduling allocation of limited resources to activities over time activities: tasks in computer environment,

More information

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #7: More on Uniprocessor Scheduling

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #7: More on Uniprocessor Scheduling EECS 571 Principles of Real-Time Embedded Systems Lecture Note #7: More on Uniprocessor Scheduling Kang G. Shin EECS Department University of Michigan Precedence and Exclusion Constraints Thus far, we

More information

Reducing Tardiness Under Global Scheduling by Splitting Jobs

Reducing Tardiness Under Global Scheduling by Splitting Jobs Reducing Tardiness Under Global Scheduling by Splitting Jobs Jeremy P. Erickson and James H. Anderson The University of North Carolina at Chapel Hill Abstract Under current analysis, tardiness bounds applicable

More information

Time and Schedulability Analysis of Stateflow Models

Time and Schedulability Analysis of Stateflow Models Time and Schedulability Analysis of Stateflow Models Marco Di Natale Scuola Superiore S. Anna Haibo Zeng Mc Gill University Outline Context: MBD of Embedded Systems Relationship with PBD An Introduction

More information

Comp 204: Computer Systems and Their Implementation. Lecture 11: Scheduling cont d

Comp 204: Computer Systems and Their Implementation. Lecture 11: Scheduling cont d Comp 204: Computer Systems and Their Implementation Lecture 11: Scheduling cont d 1 Today Scheduling algorithms continued Shortest remaining time first (SRTF) Priority scheduling Round robin (RR) Multilevel

More information

A Utilization Bound for Aperiodic Tasks and Priority Driven Scheduling

A Utilization Bound for Aperiodic Tasks and Priority Driven Scheduling A Utilization Bound for Aperiodic Tasks and Priority Driven Scheduling Tarek F. Abdelzaher, Vivek Sharma Department of Computer Science, University of Virginia, Charlottesville, VA 224 Chenyang Lu Department

More information

EDF Feasibility and Hardware Accelerators

EDF Feasibility and Hardware Accelerators EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo, Waterloo, Canada, arrmorton@uwaterloo.ca Wayne M. Loucks University of Waterloo, Waterloo, Canada, wmloucks@pads.uwaterloo.ca

More information

Improved Schedulability Analysis of EDF Scheduling on Reconfigurable Hardware Devices

Improved Schedulability Analysis of EDF Scheduling on Reconfigurable Hardware Devices Improved Schedulability Analysis of EDF Scheduling on Reconfigurable Hardware Devices Nan Guan 1, Zonghua Gu 2, Qingxu Deng 1, Weichen Liu 2 and Ge Yu 1 1 Dept of Computer Science and Engineering 2 Dept

More information

On-line scheduling of periodic tasks in RT OS

On-line scheduling of periodic tasks in RT OS On-line scheduling of periodic tasks in RT OS Even if RT OS is used, it is needed to set up the task priority. The scheduling problem is solved on two levels: fixed priority assignment by RMS dynamic scheduling

More information

Real Time Operating Systems

Real Time Operating Systems Real Time Operating ystems hared Resources Luca Abeni Credits: Luigi Palopoli, Giuseppe Lipari, and Marco Di Natale cuola uperiore ant Anna Pisa -Italy Real Time Operating ystems p. 1 Interacting Tasks

More information

A New Sufficient Feasibility Test for Asynchronous Real-Time Periodic Task Sets

A New Sufficient Feasibility Test for Asynchronous Real-Time Periodic Task Sets A New Sufficient Feasibility Test for Asynchronous Real-Time Periodic Task Sets Abstract The problem of feasibility analysis for asynchronous periodic task sets (ie where tasks can have an initial offset

More information

Probabilistic real-time scheduling. Liliana CUCU-GROSJEAN. TRIO team, INRIA Nancy-Grand Est

Probabilistic real-time scheduling. Liliana CUCU-GROSJEAN. TRIO team, INRIA Nancy-Grand Est Probabilistic real-time scheduling Liliana CUCU-GROSJEAN TRIO team, INRIA Nancy-Grand Est Outline What is a probabilistic real-time system? Relation between pwcet and pet Response time analysis Optimal

More information

Exam Spring Embedded Systems. Prof. L. Thiele

Exam Spring Embedded Systems. Prof. L. Thiele Exam Spring 20 Embedded Systems Prof. L. Thiele NOTE: The given solution is only a proposal. For correctness, completeness, or understandability no responsibility is taken. Sommer 20 Eingebettete Systeme

More information

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Lecture #14 Risat Pathan Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Specification Implementation Multiprocessor scheduling -- Partitioned

More information

Controlling Preemption for Better Schedulability in Multi-Core Systems

Controlling Preemption for Better Schedulability in Multi-Core Systems 2012 IEEE 33rd Real-Time Systems Symposium Controlling Preemption for Better Schedulability in Multi-Core Systems Jinkyu Lee and Kang G. Shin Dept. of Electrical Engineering and Computer Science, The University

More information

Online Energy-Aware I/O Device Scheduling for Hard Real-Time Systems with Shared Resources

Online Energy-Aware I/O Device Scheduling for Hard Real-Time Systems with Shared Resources Online Energy-Aware I/O Device Scheduling for Hard Real-Time Systems with Shared Resources Abstract The challenge in conserving energy in embedded real-time systems is to reduce power consumption while

More information

Discrete Event Simulation

Discrete Event Simulation Discrete Event Simulation Henry Z. Lo June 9, 2014 1 Motivation Suppose you were a branch manager of a bank. How many tellers should you staff to keep customers happy? With prior knowledge of how often

More information

arxiv: v1 [cs.os] 6 Jun 2013

arxiv: v1 [cs.os] 6 Jun 2013 Partitioned scheduling of multimode multiprocessor real-time systems with temporal isolation Joël Goossens Pascal Richard arxiv:1306.1316v1 [cs.os] 6 Jun 2013 Abstract We consider the partitioned scheduling

More information

CEC 450 Real-Time Systems

CEC 450 Real-Time Systems E 450 Real-ime Systems Lecture 4 Rate Monotonic heory Part September 7, 08 Sam Siewert Quiz Results 93% Average, 75 low, 00 high Goal is to learn what you re not learning yet Motivation to keep up with

More information

Semi-Partitioned Fixed-Priority Scheduling on Multiprocessors

Semi-Partitioned Fixed-Priority Scheduling on Multiprocessors Semi-Partitioned Fixed-Priority Scheduling on Multiprocessors Shinpei Kato and Nobuyuki Yamasaki Department of Information and Computer Science Keio University, Yokohama, Japan {shinpei,yamasaki}@ny.ics.keio.ac.jp

More information

A 2-Approximation Algorithm for Scheduling Parallel and Time-Sensitive Applications to Maximize Total Accrued Utility Value

A 2-Approximation Algorithm for Scheduling Parallel and Time-Sensitive Applications to Maximize Total Accrued Utility Value A -Approximation Algorithm for Scheduling Parallel and Time-Sensitive Applications to Maximize Total Accrued Utility Value Shuhui Li, Miao Song, Peng-Jun Wan, Shangping Ren Department of Engineering Mechanics,

More information

CS 374: Algorithms & Models of Computation, Spring 2017 Greedy Algorithms Lecture 19 April 4, 2017 Chandra Chekuri (UIUC) CS374 1 Spring / 1

CS 374: Algorithms & Models of Computation, Spring 2017 Greedy Algorithms Lecture 19 April 4, 2017 Chandra Chekuri (UIUC) CS374 1 Spring / 1 CS 374: Algorithms & Models of Computation, Spring 2017 Greedy Algorithms Lecture 19 April 4, 2017 Chandra Chekuri (UIUC) CS374 1 Spring 2017 1 / 1 Part I Greedy Algorithms: Tools and Techniques Chandra

More information

Scheduling Stochastically-Executing Soft Real-Time Tasks: A Multiprocessor Approach Without Worst-Case Execution Times

Scheduling Stochastically-Executing Soft Real-Time Tasks: A Multiprocessor Approach Without Worst-Case Execution Times Scheduling Stochastically-Executing Soft Real-Time Tasks: A Multiprocessor Approach Without Worst-Case Execution Times Alex F. Mills Department of Statistics and Operations Research University of North

More information

CHAPTER 5 - PROCESS SCHEDULING

CHAPTER 5 - PROCESS SCHEDULING CHAPTER 5 - PROCESS SCHEDULING OBJECTIVES To introduce CPU scheduling, which is the basis for multiprogrammed operating systems To describe various CPU-scheduling algorithms To discuss evaluation criteria

More information

CPU Scheduling. Heechul Yun

CPU Scheduling. Heechul Yun CPU Scheduling Heechul Yun 1 Recap Four deadlock conditions: Mutual exclusion No preemption Hold and wait Circular wait Detection Avoidance Banker s algorithm 2 Recap: Banker s Algorithm 1. Initialize

More information

Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems

Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems Jan Reineke Saarland University July 4, 2013 With thanks to Jian-Jia Chen! Jan Reineke July 4, 2013 1 / 58 Task Models and Scheduling

More information

Real-time scheduling of sporadic task systems when the number of distinct task types is small

Real-time scheduling of sporadic task systems when the number of distinct task types is small Real-time scheduling of sporadic task systems when the number of distinct task types is small Sanjoy Baruah Nathan Fisher Abstract In some real-time application systems, there are only a few distinct kinds

More information

Rate Monotonic Analysis (RMA)

Rate Monotonic Analysis (RMA) Rate Monotonic Analysis (RMA) ktw@csie.ntu.edu.tw (Real-Time and Embedded System Laboratory) Major References: An Introduction to Rate Monotonic Analysis Tutorial Notes SEI MU* Distributed Real-Time System

More information

Reducing Tardiness Under Global Scheduling by Splitting Jobs

Reducing Tardiness Under Global Scheduling by Splitting Jobs Reducing Tardiness Under Global Scheduling by Splitting Jobs Jeremy P. Erickson and James H. Anderson The University of North Carolina at Chapel Hill Abstract Under current analysis, soft real-time tardiness

More information

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University

Che-Wei Chang Department of Computer Science and Information Engineering, Chang Gung University Che-Wei Chang chewei@mail.cgu.edu.tw Department of Computer Science and Information Engineering, Chang Gung University } 2017/11/15 Midterm } 2017/11/22 Final Project Announcement 2 1. Introduction 2.

More information

Feedback EDF Scheduling of Real-Time Tasks Exploiting Dynamic Voltage Scaling

Feedback EDF Scheduling of Real-Time Tasks Exploiting Dynamic Voltage Scaling Feedback EDF Scheduling of Real-Time Tasks Exploiting Dynamic Voltage Scaling Yifan Zhu and Frank Mueller (mueller@cs.ncsu.edu) Department of Computer Science/ Center for Embedded Systems Research, North

More information

Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors

Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors Technical Report No. 2009-7 Load Regulating Algorithm for Static-Priority Task Scheduling on Multiprocessors RISAT MAHMUD PATHAN JAN JONSSON Department of Computer Science and Engineering CHALMERS UNIVERSITY

More information

ENHANCING THE CPU PERFORMANCE USING A MODIFIED MEAN- DEVIATION ROUND ROBIN SCHEDULING ALGORITHM FOR REAL TIME SYSTEMS.

ENHANCING THE CPU PERFORMANCE USING A MODIFIED MEAN- DEVIATION ROUND ROBIN SCHEDULING ALGORITHM FOR REAL TIME SYSTEMS. Volume 3, o. 3, March 2012 Journal of lobal Research in Computer Science RSRCH PPR vailable Online at www.jgrcs.info HC H CPU PRFORMC US MODFD M- DVO ROUD ROB SCHDUL LORHM FOR RL M SYSMS. H.s.Behera *1,

More information

A New Task Model and Utilization Bound for Uniform Multiprocessors

A New Task Model and Utilization Bound for Uniform Multiprocessors A New Task Model and Utilization Bound for Uniform Multiprocessors Shelby Funk Department of Computer Science, The University of Georgia Email: shelby@cs.uga.edu Abstract This paper introduces a new model

More information

FPCL and FPZL Schedulability Analysis

FPCL and FPZL Schedulability Analysis FP and FPZL Schedulability Analysis Robert I. Davis Real-Time Systems Research Group, Department of Computer Science, University of Yor, YO10 5DD, Yor (UK) rob.davis@cs.yor.ac.u Abstract This paper presents

More information

Paper Presentation. Amo Guangmo Tong. University of Taxes at Dallas February 11, 2014

Paper Presentation. Amo Guangmo Tong. University of Taxes at Dallas February 11, 2014 Paper Presentation Amo Guangmo Tong University of Taxes at Dallas gxt140030@utdallas.edu February 11, 2014 Amo Guangmo Tong (UTD) February 11, 2014 1 / 26 Overview 1 Techniques for Multiprocessor Global

More information

Environment (E) IBP IBP IBP 2 N 2 N. server. System (S) Adapter (A) ACV

Environment (E) IBP IBP IBP 2 N 2 N. server. System (S) Adapter (A) ACV The Adaptive Cross Validation Method - applied to polling schemes Anders Svensson and Johan M Karlsson Department of Communication Systems Lund Institute of Technology P. O. Box 118, 22100 Lund, Sweden

More information

Shedding the Shackles of Time-Division Multiplexing

Shedding the Shackles of Time-Division Multiplexing Shedding the Shackles of Time-Division Multiplexing Farouk Hebbache with Florian Brandner, 2 Mathieu Jan, Laurent Pautet 2 CEA List, LS 2 LTCI, Télécom ParisTech, Université Paris-Saclay Multi-core Architectures

More information

Complexity and Algorithms for Two-Stage Flexible Flowshop Scheduling with Availability Constraints

Complexity and Algorithms for Two-Stage Flexible Flowshop Scheduling with Availability Constraints Complexity and Algorithms or Two-Stage Flexible Flowshop Scheduling with Availability Constraints Jinxing Xie, Xijun Wang Department o Mathematical Sciences, Tsinghua University, Beijing 100084, China

More information