Exploring the Effect of Bungee Length Manipulation on Acceleration Applied to Jumper

Size: px
Start display at page:

Download "Exploring the Effect of Bungee Length Manipulation on Acceleration Applied to Jumper"

Transcription

1 Ball 1 Stephen Ball Lab Partner: Gustavo Larramendi Bungee Report 6 November 2014 Exploring the Effect of Bungee Length Manipulation on Acceleration Applied to Jumper Introduction In order to experience a thrilling bungee jump, a jumper should experience as much time in free fall as possible. This parameter may be analyzed via the jumper s maximum deceleration during the jump; a higher amount of deceleration means the jumper was slowed down over a shorter distance, allowing for more relative time in free fall. However, the parameters of the Bungee Challenge dictate that the jumper may experience no more than three times acceleration due to gravity (3 X 9.81 m/s 2, or m/s 2 ). In this experiment, we examined the relationship between bungee cord length and the maximum acceleration experienced by the jumper. This connection relates to Newton s second law of F total = mass X acceleration; acceleration is greatest when maximum force is applied, so maximum acceleration in a bungee system can be modeled via equation 1: F TOTAL = m X a, so a = F total /m F TOTAL = F bungee,max - mg Equation 1 : a max = (F b,max /m)-g Methods We approached the posed question with the following set up, outlined in Fig. 1. First, the analog force sensor was hung at a height of 2.14 m on a stand clamped to a lab table; the

2 Ball 2 sensor was calibrated to tare for the mass of the hanging portion of bungee cord (2.00 m). Using the Capstone program, we changed the sensor s Gain Property to 10X for an improved signal to noise ratio, then changed its Sample Rate to 2.00 khz. A tape measure was then hung from the same stand with its zero mark exactly lined up with the bottom of the force sensor s hook (henceforth referred to as the zero point). We decided to test the bungee length jumper acceleration relationship over the course of five bungee length trial groups, with 5 trials in each group. L refers to the bungee length, including the loops tied on either end; for this experiment, our 5 trial Figure 1: Set-up parameters. groups are defined by L values of.11 m,.36 m,.66 m,.79 m, and.99 m. All loop lengths were kept under.02 m to minimize related interference. For each trial, one loop of the bungee cord was hung from the force sensor, while the hanging mass (henceforth referred to as the jumper ) was hung from the bottom bungee loop. We started recording the force sensor readings in Capstone, and then dropped the jumper from the zero point; all jumpers were dropped with the bottom of the bungee loop lined up with this zero point. Force recording was stopped after the first rebound; we determined the maximum upward force (F b,max ) by highlighting the entire data set and turning on the Maximum display within Capstone.

3 F b,max (N) Ball 3 Results Trial Group L F b,max a max (m, ±.01m) (N, ±.001N) (m/s 2, ±.01m/s 2 ) We first present our results for the a max L relationship, which we found to have a negative linear correlation. In other words, as bungee length increased, the maximum acceleration experienced by the jumper decreased by 2.88 ±.21 m/s 2 for every additional meter of L. This relationship is depicted graphically in Fig. 3, a max (m/s 2 ) along with equation 2 that describes the relationship. 19 Figure 2: Results Data Table. Table exhibits relevant bungee length, force exerted by the bungee cord, and the maximum acceleration experienced by the jumper. a max vs. L a max = L L (m) Figure 3: a max vs. L. Graphical representation of the relationship between maximum acceleration experienced by the jumper and bungee cord length. Equation 2: a max = L F b,max vs. L F b = L L(m) A similar correlation exists for the F b,max L relationship. As bungee length increased, F b experienced by the jumper decreased by ±.01 N for every additional meter of L. Figure 4:F b vs. L. Graphical representation of the relationship between F b,max and bungee cord length.

4 Ball 4 Fig. 4 depicts this association graphically, and equation 3 describes the relationship. Equation 3: F b,max = L The uncertainty for the relationships given in both equations 2 and 3 is 7% based on an Excel linear regression. Discussion We should first emphasize that this data and our equations may only be applied to a system with a.050 kg jumper. However, our work shows that this small scale experiment with any mass can produce equations that are able to predict maximum acceleration experienced by a jumper of said mass. There is one major condition that must be met, however; F b,max must be greater than m jumper X g in order to guarantee rebound of the system. Once that condition has been met, calculated maximum acceleration values can be used to determine if the parameters of the bungee challenge have been met. In order for this to be true, a max must be less than three times acceleration due to gravity (29.43 m/s 2 ) so as to prevent any damage to the egg. Our a max of m/ s 2 in the.050 kg system was only 74% of this maximum allotted acceleration; therefore, further research with regards to acceleration should incorporate static cords and packaged bungees in order to figure out how to create the most thrilling experience. Our experimentally determined equations both had uncertainties of 7%, leaving room for improvement to this experiment as well. My hands were not a completely reliable release system for the jumper; I was constantly straining to make sure the bungee loop lined up with the zero point and that I released the jumper from a stand-still. This variance most likely contributed the most to uncertainty, so an automated drop system could provide slightly more

5 Ball 5 accurate data. Additionally, we recognize that we may not be able to extrapolate acceleration rates for much higher L values. While a linear model works quite well for explaining the acceleration variance for L from.1 to 1 m (R 2 =.985), the relationship may change for much higher bungee lengths. Conclusion Our experiment demonstrates that one of the main parameters for the Bungee Challenge can easily be checked using small scale force sensor trials. Maximum force readings may be used to calculate the maximum acceleration of the egg, which can be compared against the 3 X g threshold to ensure safe acceleration rates. Seeing as larger bungee cords lead to smaller acceleration rates, the results of this experiment indicate that further research should be done regarding the effects of incorporating static cords and bungee bundling on overall acceleration. Keeping all of these factors in mind, we recommend that Bungee Challenge participants use Newton s second law and its derived experimental equations to determine a thrilling yet safe bungee cord length.

A Case Study of Hooke s Law and the Variation of Spring Constant

A Case Study of Hooke s Law and the Variation of Spring Constant A Case Study of Hooke s Law and the Variation of Spring Constant James Freeman PHYS 113; Professor Khalifa Freeman 2 Introduction Bungee jumping is more than an extreme sport when viewed through the lenses

More information

Jamie White Partner: Victor Yu Section 5 November 19, 2014 Modeling the Relationship between Bungee Cord Length and Displacement

Jamie White Partner: Victor Yu Section 5 November 19, 2014 Modeling the Relationship between Bungee Cord Length and Displacement Jamie White Partner: Victor Yu Section 5 November 19, 2014 Modeling the Relationship between Bungee Cord Length and Displacement 1. Introduction This experiment is the second in a pair of experiments leading

More information

Determining the Relationship Between Elastic String Length and Maximum Acceleration

Determining the Relationship Between Elastic String Length and Maximum Acceleration Scott Philips and Jamie Guider and Mike Barry Monday 11/14/16 Determining the Relationship Between Elastic String Length and Maximum Acceleration ABSTRACT An experiment was carried out in order to assess

More information

Modelling Elastic Cord as an Ideal Spring: The Relationship Between Spring Constant k and Equilibrium Length l Kalady Osowski

Modelling Elastic Cord as an Ideal Spring: The Relationship Between Spring Constant k and Equilibrium Length l Kalady Osowski Modelling Elastic Cord as an Ideal Spring: The Relationship Between Spring Constant k and Equilibrium Length l Kalady Osowski ABSTRACT: For a given an elastic cord, there exists a relationship between

More information

Characterizing the Behavior of an Elastic Cord Using the Conservation of Work and Energy Theorem

Characterizing the Behavior of an Elastic Cord Using the Conservation of Work and Energy Theorem Arthur Love and Kaleigh Hinton PHYS 113-02 Characterizing the Behavior of an Elastic Cord Using the Conservation of Work and Energy Theorem Abstract: The purpose of this experiment was to design a bungee

More information

Dynamic Relationship between Bungee Cord s Length and Tension Force

Dynamic Relationship between Bungee Cord s Length and Tension Force Saimon Islam, Yoko Koyoma. Professor Cumming Physics 113- Thursday morning November 15, 015. Dynamic Relationship between Bungee Cord s Length and Tension Force Introduction: The purpose of this experiment

More information

How the Length of the Cord Affects the Value of K. Summary:

How the Length of the Cord Affects the Value of K. Summary: Taylor Witherell Partners: Phuong Mai, Matthew Richards Section: 113-01 Date: 7 November 2017 How the Length of the Cord Affects the Value of K Summary: Our goal was to find an equation in terms of the

More information

Modelling the Spring Constant with the Classical Work-Energy Theorem Aaron Jeong & James McCullum

Modelling the Spring Constant with the Classical Work-Energy Theorem Aaron Jeong & James McCullum Modelling the Spring Constant with the Classical Work-Energy Theorem Aaron Jeong & James McCullum Introduction The aim of the egg bungee challenge is to drop an egg from a set height and have it get as

More information

Name: Ryan Lesher Lab Partner: Brian D Ostroph Section: PHYS Date: 10/31/2017

Name: Ryan Lesher Lab Partner: Brian D Ostroph Section: PHYS Date: 10/31/2017 Title: Bungee Modeling the Dynamic Behavior of Bungee Cords Experiment Summary In this experiment, we attempted to obtain a model of how the dynamic behavior of bungee cords changes when the length of

More information

Name. VCE Physics Unit 3 Preparation Work

Name. VCE Physics Unit 3 Preparation Work Name. VCE Physics Unit 3 Preparation Work Transition into 2019 VCE Physics Unit 3+4 Units 3 and 4 include four core areas of study plus one detailed study. Unit 3: How do fields explain motion and electricity?

More information

Relationship Between Spring Constant and Length of Bungee Cord

Relationship Between Spring Constant and Length of Bungee Cord Matt Marcus and Juliana Kerper Section: 1 Date: 10/10/16, 11/8/16 Relationship Between Spring Constant and Length of Bungee Cord Abstract: Hooke s Law states that the Force of a Spring is equal to the

More information

At the end of this project we hope to have designed a quality bungee experience for an egg.

At the end of this project we hope to have designed a quality bungee experience for an egg. 1 Bungee Lab 1 11/6/2014 Section 6 Is Hooke s Law an Appropriate Model for a Bungee Cord? Introduction At the end of this project we hope to have designed a quality bungee experience for an egg. To get

More information

Relationship between mass, height of drop, and bungee cord length in a bungee drop. I. Introduction

Relationship between mass, height of drop, and bungee cord length in a bungee drop. I. Introduction Susan Ma Partners: Amanda Maner, Robert Conley Physics 113 Monday November 17, 2014 Relationship between mass, height of drop, and bungee cord length in a bungee drop I. Introduction In the Bungee Challenge

More information

Physics lab Hooke s Law and Pendulums

Physics lab Hooke s Law and Pendulums Name: Date: Physics lab Hooke s Law and Pendulums Part A: Hooke s Law Introduction Hooke s Law explains the relationship between the force exerted on a spring, the stretch of the string, and the spring

More information

PRELAB IMPULSE AND MOMENTUM

PRELAB IMPULSE AND MOMENTUM Impulse Momentum and Jump PRELAB IMPULSE AND MOMENTUM. In a car collision, the driver s body must change speed from a high value to zero. This is true whether or not an airbag is used, so why use an airbag?

More information

LAB 4: FORCE AND MOTION

LAB 4: FORCE AND MOTION Lab 4 - Force & Motion 37 Name Date Partners LAB 4: FORCE AND MOTION A vulgar Mechanik can practice what he has been taught or seen done, but if he is in an error he knows not how to find it out and correct

More information

= 40 N. Q = 60 O m s,k

= 40 N. Q = 60 O m s,k Sample Exam #2 Technical Physics Multiple Choice ( 6 Points Each ): F app = 40 N 20 kg Q = 60 O = 0 1. A 20 kg box is pulled along a frictionless floor with an applied force of 40 N. The applied force

More information

D. Experiment Summary

D. Experiment Summary Deriving Equations for a Dynamic Bungee Egg Drop Experiment D. Experiment Summary The purpose of this lab was to explore the dynamic aspect of a bungee as opposed to the static aspects. Our goal was to

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Energy Conservation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapter 7 Sections,, 3, 5, 6 Chapter 8 Sections - 4 Introduction: Perhaps one of the most unusual

More information

BUNGEE PART 2: DETERMINING THE EMPIRICAL AND THEORETICAL RELATIONSHIP BETWEEN INITIAL BUNGEE LENGTH AND DYNAMIC EQUILIBRIUM POSITION

BUNGEE PART 2: DETERMINING THE EMPIRICAL AND THEORETICAL RELATIONSHIP BETWEEN INITIAL BUNGEE LENGTH AND DYNAMIC EQUILIBRIUM POSITION Carmody 1 Allison Carmody Lab Partner: Josh Dolan Physics 113-01 McClain 15 November 2017 BUNGEE PART 2: DETERMINING THE EMPIRICAL AND THEORETICAL RELATIONSHIP BETWEEN INITIAL BUNGEE LENGTH AND DYNAMIC

More information

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1 Work and Energy Experiment 18 Work is a measure of energy transfer. In the absence of friction, when positive work is done on an object, there will be an increase in its kinetic or potential energy. In

More information

Lab #5: Newton s First Law

Lab #5: Newton s First Law Lab #5: Newton s First Law Reading Assignment: Chapter 5 Chapter 6, Sections 6-1 through 6-3, Section 6-5 Introduction: A common misnomer is that astronauts experience zero g s during space flight. In

More information

Constant velocity and constant acceleration

Constant velocity and constant acceleration Constant velocity and constant acceleration Physics 110 Laboratory Introduction In this experiment we will investigate two rather simple forms of motion (kinematics): motion with uniform (non-changing)

More information

What are Numerical Methods? (1/3)

What are Numerical Methods? (1/3) What are Numerical Methods? (1/3) Numerical methods are techniques by which mathematical problems are formulated so that they can be solved by arithmetic and logic operations Because computers excel at

More information

Lab: Simple Harmonic Motion: Pendulum Mr. Fineman

Lab: Simple Harmonic Motion: Pendulum Mr. Fineman Lab Partners: Lab: Simple Harmonic Motion: Pendulum Mr. Fineman Objective: Students will determine the factors that affect the period of a pendulum, and explain how their experimental results differ to

More information

Semester I lab quiz Study Guide (Mechanics) Physics 135/163

Semester I lab quiz Study Guide (Mechanics) Physics 135/163 Semester I lab quiz Study Guide (Mechanics) Physics 135/163 In this guide, lab titles/topics are listed alphabetically, with a page break in between each one. You are allowed to refer to your own handwritten

More information

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force

Chapter 4. Forces and the Laws of Motion. CH 4 Forces and the Laws of Motion.notebook. April 09, Changes in Motion. A. Force CH 4 Forces and the Laws of Motion.notebook Chapter 4 A. Force April 09, 2015 Changes in Motion Forces and the Laws of Motion 1. Defined as the cause of an acceleration, or the change in an object s motion,

More information

Precalculations Individual Portion Correlation and Regression: Statistical Analysis of Trends

Precalculations Individual Portion Correlation and Regression: Statistical Analysis of Trends Name: Date of lab: Section number: M E 345. Lab 3 Precalculations Individual Portion Correlation and Regression: Statistical Analysis of Trends Precalculations Score (for instructor or TA use only): /

More information

Your name and your lab partner(s): John and Joe Carmody Section:

Your name and your lab partner(s): John and Joe Carmody Section: Your name and your lab partner(s): John and Joe Carmody Section: 6 Date: 1-1-16 Deriving a Mathematical Model for Variance in Bungee Spring Constant Dependent on Equilibrium Length Abstract: Given Hooke

More information

EVEN MORE ACCELERATION LAB (1/2 Point Each, 16 Points Total)

EVEN MORE ACCELERATION LAB (1/2 Point Each, 16 Points Total) AP PHYSICS Name: Period: Date: DEVIL PHYSICS BADDEST CLASS ON CAMPUS EVEN MORE ACCELERATION LAB (1/2 Point Each, 16 Points Total) Part I. Elevator Physics (10pts) (with lab partner, lab partner name: )

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life. Forces and Newton s Laws Reading Notes Name: Section 4-1: Force What is force? Give an example of a force you have experienced continuously all your life. Give an example of a situation where an object

More information

Lab Report Outline the Bones of the Story

Lab Report Outline the Bones of the Story Lab Report Outline the Bones of the Story In this course, you are asked to write only the outline of a lab report. A good lab report provides a complete record of your experiment, and even in outline form

More information

Experiment P-9 An Inclined Plane

Experiment P-9 An Inclined Plane 1 Experiment P-9 An Inclined Plane Objectives To understand the principles of forces on an inclined plane. To measure the parallel component of the gravitational force and compare it to the calculated

More information

Applications of Newton's Laws

Applications of Newton's Laws Applications of Newton's Laws Purpose: To apply Newton's Laws by applying forces to objects and observing their motion; directly measuring these forces that are applied. Apparatus: Pasco track, Pasco cart,

More information

NEWTON S LAWS OF MOTION

NEWTON S LAWS OF MOTION Book page 44-47 NETON S LAS OF MOTION INERTIA Moving objects have inertia a property of all objects to resist a change in motion Mass: a measure of a body s inertia Two types of mass: - inertial mass m

More information

A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure 1

A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure 1 A student suspended a spring from a laboratory stand and then hung a weight from the spring. Figure shows the spring before and after the weight is added. Figure (a) Which distance gives the extension

More information

5. All forces change the motion of objects. 6. The net force on an object is equal to the mass of the object times the acceleration of the object.

5. All forces change the motion of objects. 6. The net force on an object is equal to the mass of the object times the acceleration of the object. Motion, Forces, and Newton s Laws Newton s Laws of Motion What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree

More information

Force and Motion 20 N. Force: Net Force on 2 kg mass = N. Net Force on 3 kg mass = = N. Motion: Mass Accel. of 2 kg mass = = kg m/s 2.

Force and Motion 20 N. Force: Net Force on 2 kg mass = N. Net Force on 3 kg mass = = N. Motion: Mass Accel. of 2 kg mass = = kg m/s 2. Force and Motion Team In previous labs, you used a motion sensor to measure the position, velocity, and acceleration of moving objects. You were not concerned about the mechanism that caused the object

More information

1/9/2017. Newton s 2 nd Law of Motion, revisited

1/9/2017. Newton s 2 nd Law of Motion, revisited Discuss the forces involved (relative size, direction, name of, etc.) in each of the following scenarios: Coasting to a stop at a stop sign Crashing into wall during a car race Accelerating to the speed

More information

Motion on a linear air track

Motion on a linear air track Motion on a linear air track Introduction During the early part of the 17 th century, Galileo experimentally examined the concept of acceleration. One of his goals was to learn more about freely falling

More information

LABORATORY VII MECHANICAL OSCILLATIONS

LABORATORY VII MECHANICAL OSCILLATIONS LABORATORY VII MECHANICAL OSCILLATIONS In most of the laboratory problems so far objects have been moving with constant acceleration because the total force acting on that object was constant. In this

More information

Work and Energy. W F s)

Work and Energy. W F s) Work and Energy Experiment 18 Work is a measure of energy transfer. In the absence of friction, when positive work is done on an object, there will be an increase in its kinetic or potential energy. In

More information

Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion

Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion Universiti Teknologi MARA Fakulti Sains Gunaan Dynamics & Kinematics: Newton s Laws of Motion in One-Dimensional Motion PHY406: A Physical Science Activity Name: HP: Lab # 5: The goal of today s activity

More information

Driveway Races Acceleration

Driveway Races Acceleration Driveway Races Acceleration You may notice that when things move they rarely move at the same speed all the time. Especially when you drive, you can see right away that your speed is constantly changing.

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

Static and Kinetic Friction

Static and Kinetic Friction Ryerson University - PCS 120 Introduction Static and Kinetic Friction In this lab we study the effect of friction on objects. We often refer to it as a frictional force yet it doesn t exactly behave as

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 6 Chapter 4 Physics I 02.10.2013 Dynamics: Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES

LAB 6 - GRAVITATIONAL AND PASSIVE FORCES 83 Name Date Partners LAB 6 - GRAVITATIONAL AND PASSIVE FORCES OBJECTIVES OVERVIEW And thus Nature will be very conformable to herself and very simple, performing all the great Motions of the heavenly

More information

Lab: Newton s Second Law

Lab: Newton s Second Law Ph4_ConstMass2ndLawLab Page 1 of 9 Lab: Newton s Second Law Constant Mass Equipment Needed Qty Equipment Needed Qty 1 Mass and Hanger Set (ME-8967) 1 Motion Sensor (CI-6742) 1 String (SE-8050) 1 m Balance

More information

Lab 10 - Harmonic Motion and the Pendulum

Lab 10 - Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum L10-1 Name Date Partners Lab 10 - Harmonic Motion and the Pendulum L (measured from the suspension point to the center of mass) Groove marking the center of mass

More information

Physics 1050 Experiment 3. Force and Acceleration

Physics 1050 Experiment 3. Force and Acceleration Force and Acceleration Prelab uestions! These questions need to be completed before entering the lab. Please show all workings. Prelab 1: Draw the free body diagram for the cart on an inclined plane. Break

More information

Physics 1020 Experiment 6. Equilibrium of a Rigid Body

Physics 1020 Experiment 6. Equilibrium of a Rigid Body 1 2 Introduction Static equilibrium is defined as a state where an object is not moving in any way. The two conditions for the equilibrium of a rigid body (such as a meter stick) are 1. the vector sum

More information

Lab: Simple Harmonic Motion: Pendulum Mr. Fineman

Lab: Simple Harmonic Motion: Pendulum Mr. Fineman Lab Partners: Lab: Simple Harmonic Motion: Pendulum Mr. Fineman Objective: Students will determine the factors that affect the period of a pendulum, and explain how their experimental results differ to

More information

Torque and Rotational Equilibrium

Torque and Rotational Equilibrium Torque and Rotational Equilibrium Theory Torque is the rotational analog of force. If you want something to move (translate), you apply a force; if you want something to rotate, you apply a torque. Torque

More information

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins.

Lab: Vectors. You are required to finish this section before coming to the lab. It will be checked by one of the lab instructors when the lab begins. Lab: Vectors Lab Section (circle): Day: Monday Tuesday Time: 8:00 9:30 1:10 2:40 Name Partners Pre-Lab You are required to finish this section before coming to the lab. It will be checked by one of the

More information

The Spring: Hooke s Law and Oscillations

The Spring: Hooke s Law and Oscillations Experiment 10 The Spring: Hooke s Law and Oscillations 10.1 Objectives Investigate how a spring behaves when it is stretched under the influence of an external force. To verify that this behavior is accurately

More information

Foundations of Physical Science. Unit One: Forces and Motion

Foundations of Physical Science. Unit One: Forces and Motion Foundations of Physical Science Unit One: Forces and Motion Chapter 3: Forces and Motion 3.1 Force, Mass and Acceleration 3.2 Weight, Gravity and Friction 3.3 Equilibrium, Action and Reaction Learning

More information

Mechanical Behavior of a Spring R. Hooke, DePotentia Restitutiva (1678)

Mechanical Behavior of a Spring R. Hooke, DePotentia Restitutiva (1678) Mechanical Behavior of a Spring R. Hooke, DePotentia Restitutiva (1678) We have measured the strength k of a mechanical spring using both static and dynamic methods. In the static method, we explored Hooke

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

LAB 5: Induction: A Linear Generator

LAB 5: Induction: A Linear Generator 1 Name Date Partner(s) OBJECTIVES LAB 5: Induction: A Linear Generator To understand how a changing magnetic field induces an electric field. To observe the effect of induction by measuring the generated

More information

Static and Kinetic Friction

Static and Kinetic Friction Experiment 12 If you try to slide a heavy box resting on the floor, you may find it difficult to get the box moving. Static friction is the force that is acting against the box. If you apply a light horizontal

More information

What happens if one pulls on the spring? The spring exerts a restoring force which is proportional to the distance it is stretched, F = - k x (1)

What happens if one pulls on the spring? The spring exerts a restoring force which is proportional to the distance it is stretched, F = - k x (1) Physics 244 Harmonic Motion Introduction In this lab you will observe simple harmonic motion qualitatively in the laboratory and use a program run in Excel to find the mathematical description of the motion

More information

General Physics I Lab. M1 The Atwood Machine

General Physics I Lab. M1 The Atwood Machine Purpose General Physics I Lab In this experiment, you will learn the basic operation of computer interfacing and use it in an experimental study of Newton s second law. Equipment and components Science

More information

TIphysics.com. Physics. Pendulum Explorations ID: By Irina Lyublinskaya

TIphysics.com. Physics. Pendulum Explorations ID: By Irina Lyublinskaya Pendulum Explorations ID: 17 By Irina Lyublinskaya Time required 90 minutes Topic: Circular and Simple Harmonic Motion Explore what factors affect the period of pendulum oscillations. Measure the period

More information

Work and Energy. computer masses (200 g and 500 g) If the force is constant and parallel to the object s path, work can be calculated using

Work and Energy. computer masses (200 g and 500 g) If the force is constant and parallel to the object s path, work can be calculated using Work and Energy OBJECTIVES Use a Motion Detector and a Force Sensor to measure the position and force on a hanging mass, a spring, and a dynamics cart. Determine the work done on an object using a force

More information

2. How will we adjust our fitting procedure to compensate for fact that the acceleration differs depending on the direction of motion?

2. How will we adjust our fitting procedure to compensate for fact that the acceleration differs depending on the direction of motion? The Coefficient of Kinetic Friction 1 Name: Lab Section Number: Pre-Lab Questions: 1. What type of data will we be using to determine the acceleration of the cart up and down the ramp this week? What type

More information

PHY 221 Lab 9 Work and Energy

PHY 221 Lab 9 Work and Energy PHY 221 Lab 9 Work and Energy Name: Partners: Before coming to lab, please read this packet and do the prelab on page 13 of this handout. Goals: While F = ma may be one of the most important equations

More information

Jumping Up. PY205m. apply the Energy Principle to the point particle system of the jumper, and

Jumping Up. PY205m. apply the Energy Principle to the point particle system of the jumper, and Jumping Up PY205m 1 Purpose In this lab you will review the Energy Principle and the Momentum Principle by fully analyzing what happens in a jump upward from a crouching position: apply the Energy Principle

More information

Chapter 4. Forces in One Dimension

Chapter 4. Forces in One Dimension Chapter 4 Forces in One Dimension Chapter 4 Forces in One Dimension In this chapter you will: *VD Note Use Newton s laws to solve problems. Determine the magnitude and direction of the net force that causes

More information

General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law

General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law MECH-2: Newton's Second Law Page 1 of 5 1 EQUIPMENT General Physics I Lab (PHYS-2011) Experiment MECH-2: Newton's Second Law 1 250 g Stackable Masses (set of 2) ME-6757A 1 Smart Cart Blue ME-1241 1 Mass

More information

Simple Harmonic Motion and Damping

Simple Harmonic Motion and Damping Simple Harmonic Motion and Damping Marie Johnson Cabrices Chamblee Charter High School Background: Atomic Force Microscopy, or AFM, is used to characterize materials. It is used to measure local properties,

More information

PH211 Chapter 4 Solutions

PH211 Chapter 4 Solutions PH211 Chapter 4 Solutions 4.3.IDENTIFY: We know the resultant of two vectors of equal magnitude and want to find their magnitudes. They make the same angle with the vertical. Figure 4.3 SET UP: Take to

More information

Lab 7. Newton s Third Law and Momentum

Lab 7. Newton s Third Law and Momentum Lab 7. Newton s Third Law and Momentum Goals To explore the behavior of forces acting between two objects when they touch one another or interact with one another by some other means, such as a light string.

More information

Force and Motion. Thought Experiment

Force and Motion. Thought Experiment Team Force and Motion In previous labs, you used a motion sensor to measure the position, velocity, and acceleration of moving objects. You were not concerned about the mechanism that caused the object

More information

Torque and Rotational Equilibrium

Torque and Rotational Equilibrium Torque and Rotational Equilibrium Name Section Theory Torque is the rotational analog of force. If you want something to move (translate), you apply a force; if you want something to rotate, you apply

More information

Equilibrium & Elasticity

Equilibrium & Elasticity PHYS 101 Previous Exam Problems CHAPTER 12 Equilibrium & Elasticity Static equilibrium Elasticity 1. A uniform steel bar of length 3.0 m and weight 20 N rests on two supports (A and B) at its ends. A block

More information

Physics 101 Lecture 5 Newton`s Laws

Physics 101 Lecture 5 Newton`s Laws Physics 101 Lecture 5 Newton`s Laws Dr. Ali ÖVGÜN EMU Physics Department The Laws of Motion q Newton s first law q Force q Mass q Newton s second law q Newton s third law qfrictional forces q Examples

More information

Physics 1021 Experiment 1. Introduction to Simple Harmonic Motion

Physics 1021 Experiment 1. Introduction to Simple Harmonic Motion 1 Physics 1021 Introduction to Simple Harmonic Motion 2 Introduction to SHM Objectives In this experiment you will determine the force constant of a spring. You will measure the period of simple harmonic

More information

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector Name Date Period Newton s Second Law: Net Force and Acceleration Procedures: Newton s second law describes a relationship between the net force acting on an object and the objects acceleration. In determining

More information

Pendulums and the Acceleration of Gravity

Pendulums and the Acceleration of Gravity GSCI 100 - Physical Science Laboratory Experiment # Name Partners Pendulums and the Acceleration of Gravity Date Section Background: The use of the pendulum for timing purposes was discovered by Galileo

More information

PHYS 2211L Final Examination Laboratory Simple Pendulum.

PHYS 2211L Final Examination Laboratory Simple Pendulum. PHYS 11L Final Examination Laboratory Simple Pendulum Study Assignment: Lesson notes: This laboratory is the final examination for PHYS 11L. You should insure that you thoroughly understand the requirements

More information

Lab 17 Torques/Moments

Lab 17 Torques/Moments Lab 17 Torques/Moments Name Partner s Name I. Introduction/Theory Terminology: The word 'torque' does not typically appear in the index to statics books such as Bedford and Fowler. For these authors, the

More information

θ Beam Pivot F r Figure 1. Figure 2. STATICS (Force Vectors, Tension & Torque) MBL-32 (Ver. 3/20/2006) Name: Lab Partner: Lab Partner:

θ Beam Pivot F r Figure 1. Figure 2. STATICS (Force Vectors, Tension & Torque) MBL-32 (Ver. 3/20/2006) Name: Lab Partner: Lab Partner: Please Circle Your Lab day: M T W T F Name: Lab Partner: Lab Partner: Project #1: Kinesthetic experiences with force vectors and torque. Project #2: How does torque depend on the lever arm? Project #1:

More information

FRANKLIN-SIMPSON HIGH SCHOOL

FRANKLIN-SIMPSON HIGH SCHOOL FRANKLIN-SIMPSON HIGH SCHOOL Course Name: Pre-AP Physics Unit Name: Forces and Newton s Laws Quality Core Objectives: Unit 3 Newton s Laws A.1. Scientific Inquiry a. Identify and clarify research questions

More information

Experiment P30: Centripetal Force on a Pendulum (Force Sensor, Photogate)

Experiment P30: Centripetal Force on a Pendulum (Force Sensor, Photogate) PASCO scientific Physics Lab Manual: P30-1 Experiment P30: (Force Sensor, Photogate) Concept Time SW Interface Macintosh File Windows File centripetal force 30 m 500 or 700 P30 Centripetal Force P30_CENT.SWS

More information

The Coefficient of Friction

The Coefficient of Friction The Coefficient of Friction OBJECTIVE To determine the coefficient of static friction between two pieces of wood. To determine the coefficient of kinetic friction between two pieces of wood. To investigate

More information

To verify Newton s Second Law as applied to an Atwood Machine.

To verify Newton s Second Law as applied to an Atwood Machine. Atwood Machine Equipment Computer, PASCO Interface Table Clamp Double pulley apparatus (one smart pulley) Smart Pulley Data Cable String Two Mass Hangers One Mass Set (1 500, 2 200, 1 100, 1 50, 2 20,

More information

Purpose of the experiment

Purpose of the experiment Impulse and Momentum PES 116 Adanced Physics Lab I Purpose of the experiment Measure a cart s momentum change and compare to the impulse it receies. Compare aerage and peak forces in impulses. To put the

More information

PHY 221 Lab 7 Work and Energy

PHY 221 Lab 7 Work and Energy PHY 221 Lab 7 Work and Energy Name: Partners: Goals: Before coming to lab, please read this packet and do the prelab on page 13 of this handout. Note: originally, Lab 7 was momentum and collisions. The

More information

Developing a Scientific Theory

Developing a Scientific Theory Name Date Developing a Scientific Theory Equipment Needed Qty Equipment Needed Qty Photogate/Pulley System (ME-6838) 1 String (SE-8050) 1 Mass and Hanger Set (ME-8967) 1 Universal Table Clamp (ME-9376B)

More information

PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES

PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES Lab Section M / T / W / Th /24 pts Name: Partners: PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES OBJECTIVES 1. To verify the conditions for static equilibrium. 2. To get practice at finding components

More information

Lab 10: Harmonic Motion and the Pendulum

Lab 10: Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum 119 Name Date Partners Lab 10: Harmonic Motion and the Pendulum OVERVIEW A body is said to be in a position of stable equilibrium if, after displacement in any direction,

More information

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples The Laws of Motion Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples Gravitational Force Gravitational force is a vector Expressed by Newton s Law of Universal

More information

Newton s Second Law. Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m.

Newton s Second Law. Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m. Newton s Second Law Newton s Second Law of Motion describes the results of a net (non-zero) force F acting on a body of mass m. F net = ma (1) It should come as no surprise that this force produces an

More information

Second Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law.

Second Law. In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Second Law Objective In this experiment you will verify the relationship between acceleration and force predicted by Newton s second law. Apparatus Table clamp, Vertical rod, Right-angle clamp, Horizontal

More information

2 o. (2) Here, the parameters vo and g are, respectively, the initial velocity and the acceleration.

2 o. (2) Here, the parameters vo and g are, respectively, the initial velocity and the acceleration. PHY101 Physics Lab: TO GRAVITY ACCELERATION DUE Purpose To determine the value of the gravitational acceleration Theory When we use the word acceleration we mean the rate at which the velocity of a moving

More information

Newton s First Law and IRFs

Newton s First Law and IRFs Goals: Physics 207, Lecture 6, Sept. 22 Recognize different types of forces and know how they act on an object in a particle representation Identify forces and draw a Free Body Diagram Solve 1D and 2D

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 6 Chapter 4 Physics I 02.10.2013 Dynamics: Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov2013/physics1spring.html

More information

Chapter 4 Thrills and Chills >600 N If your weight is 600 N (blue vector), then the bathroom scale would have to be providing a force of greater than 600 N (red vector). Another way of looking at the situation

More information