The Control of a Continuously Operated Pole-Changing Induction Machine

Size: px
Start display at page:

Download "The Control of a Continuously Operated Pole-Changing Induction Machine"

Transcription

1 The Control of a Continuously Operated PoleChanging Induction Machine J.W. Kelly Electrical and Computer Engineering Michigan State University East Lansing, MI February 2002 MD Lab 1/0202 1

2 Outline Pole Changing Techniques for Induction Machines Reconfigurable Stator Winding Multiple Stator Windings Experimental Induction Machine with a 3:1 Pole Ratio 3phase12pole Configuration 3phase4pole Configuration 9phase4pole Configuration PolePhase Variation MD Lab 1/0202 2

3 Nine Phase Operation Coordinate Transformation of Machine Variables 9 Phase PWM Techniques Continuous Operation of a Pole Changing Induction Machine Issues During the PoleChanging Transition Proposed Technique for Torque Regulation During PoleChanging Transient Experimental Setup Conclusions MD Lab 1/0202 3

4 Background 2:1 Polechanging using Reconfigurable Stator Winding Series connected phase coils resulting in 8 poles Mechanical Contactors phasebelt C 1 C 2 C 3 C 4 C 3 C 1 C 4 C 2 3phase Power supply MD Lab 1/0202 4

5 Seriesparallel connected phase coils resulting in 4 poles Mechanical Contactors phasebelt C 1 C 2 C 3 C 4 C 1 C 3 C 2 C 4 3phase Power supply MD Lab 1/0202 5

6 3:1 Polechanging using Reconfigurable Stator Winding Delta connected phase coils resulting in 2 poles 60 o Phase Belt phasebelt (Mechanical degrees) 60 o L 1 L 2 L 3 L 5 L 6 L 7 L 8 L 9 L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 a a a c c c b b b a a a c c c b b b L 4 L 9 L 7 L 7 L 8 L 1 L 1 L2 L2 polepitch (Electrical degrees) 180 o L 9 L 8 L 9 L 3 L 3 MD Lab 1/0202 6

7 Wye connected phase coils resulting in 6 poles 60 o Phase Belt L 1 L 1 L 2 phasebelt (Mechanical degrees) 20 o L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 a c b a c b a c b a c b a c b a c b L 1 L 7 L 7 L o polepitch (Electrical degrees) b L 9 L L 9 6 L L 6 3 L 3 a L 4 c L 8 L 8 L5 L 5 L 2 MD Lab 1/0202 7

8 Induction Machine with Dual Stator Windings: Lippo and Osama 4 pole configuration two 3phase inverters, 6 winding currents:[i a1,i b1,i c1,i a2,i b2,i c2 ] a aaabbbb b bbbcccc c c ccaaaaaaaabbbb b bbbcccc c c ccaaa a c c c c c c c c a a a a a a a a b b b b b b b b c c c c c c c c a a a a a a a a b b b b b b b b 2 pole configuration two 3phase inverters, 6 winding currents:[i a1,i b1,i c1, i a2, i c2, i b2 ] a aa a c c c c c c c c b b b b b b b b a a aa a aa a c c c c c c c c b b b b b b b b a a a a b b b b b b b b a a a a a a a a c c c c c c c c b b b b b b b b a aa a aa a a c c c c c c c c MD Lab 1/0202 8

9 Machine Variables Described in Six Dimensional Space Analysis in sixdimensional space too complex V 1 V 2 V 3 V 4 V 5 V 6 = [R][I] d [λ] (1) dt Transformation to Simplify Analysis: One 6D Machine mapped into Two independent machines in 3D V 2q V 2d V 4q V 4d V 02 V 04 = [T] V 1 V 2 V 3 V 4 V 5 V 6 (2) MD Lab 1/0202 9

10 Use Stator Winding MMF as basis for Transformation I 1 (φ) = I 2 (φ) = I 3 (φ) = I 4 (φ) = I 5 (φ) = I 6 (φ) = N sh cos (h(φ)i a (t)) (3) h=1,2,3... h=1,2,3... h=1,2,3... h=1,2,3... h=1,2,3... h=1,2,3... N sh cos (h(φ π)i a (t)) (4) N sh cos h(φ π 3 )i a(t) (5) N sh cos h(φ 2π 3 )i a(t) (6) N sh cos h(φ 2π 3 )i a(t) (7) N sh cos h(φ π 3 )i a(t) (8) (9) Total MMF of Dual Stator Machine I T otal = I 1 I 2 I 3 I 4 I 4 I 5 I 6 (10) MD Lab 1/

11 Total MMF Harmonic Composition (Fourier Series Expansion) I T otal = I fundalmental I 2 nd I 3 rd I 4 th I 5 th I 6 th (11) The 6D machine variables are transformed into two sets of 2D variables. One set is based the MMF fundamental component. These machines describe a 2 pole machine. The other set is based on MMF 2 nd harmonic component. These variables describe a 4 pole machine. The 3 rd harmonic component of the Total MMF defines the 1D zerosequence subspace for the 2 pole machine The 6 rd harmonic component of the Total MMF defines the 1D zerosequence subspace for the 4 pole machine MD Lab 1/

12 Transformation Matrix from original six dimensional space to 2 3dimensional subspaces q 4 d 4 q T = 2 = 1 d (12) Transformation Matrix for arbitrary reference frame rotating at θ m T (θm) = 1 3 cos(2θm) cos(2θm) cos(2θm 2π 3 ) cos(2θ m 2π 3 ) cos(2θ m 2π 3 ) cos(2θ m 2π 3 ) sin(2θm) sin(2θm) sin(2θm 2π 3 ) sin(2θ m 2π 3 ) sin(2θ m 2π 3 ) sin(2θ m 2π 3 ) cos(θm) cos(θm) cos(θm 2π 3 ) cos(θ m 2π 3 ) cos(θ m 2π 3 ) cos(θ m 2π 3 ) sin(θm) sin(θm) sin(θm 2π 3 ) sin(θ m 2π 3 ) sin(θ m 2π 3 ) sin(θ m 2π 3 ) (13) MD Lab 1/

13 Transformed Voltage and Flux Linkage Equations v q4s = r s i q4s λ q4s ω 4 λ d4s (14) v d4s = r s i d4s λ d4s ω 4 λ d4s (15) v q2s = r s i q2s λ q2s ω 2 λ d2s (16) v d2s = r s i d2s λ d2s ω 2 λ d2s (17) v 04s = r s i 04s λ 04s (18) v 02s = r s i 02s λ 02s (19) λ q4s = (L m4 L ls )i q4s L m4 i q4r (20) λ d4s = (L m4 L ls )i d4s L m4 i d4r (21) λ q2s = (L m2 L ls )i q2s L m2 i q2r (22) λ d2s = (L m2 L ls )i q2s L m2 i d2r (23) Transformed Torque Equation T e = 2(λ d4s i q4s λ q4s i d4s ) (λ d2s i q2s λ q2s i d2s ) (24) MD Lab 1/

14 Experimental 3:1 Pole Induction Machine Winding Diagram 9 Leg Inverter 12p 3phase i A1 i B2 i C3 i A4 i B5 i C6 i A7 i B8 i C9 4p i A1 i A2 i A3 i B4 i B5 i B6 i C7 i C8 i C9 3phase i A1 i B2 i C3 i D4 i E5 i F6 i G7 i H8 i I9 4p 9phase MD Lab 1/

15 3phase12pole Configuration phasebelt 10 o a c' b a' c b' a c' b a' c b' a c' b a' c b' a c' b a' c b' a c' b a' c b' a c' b a' c b' 0 o 60 o 120 o 180 o 240 o 300 o 0 o 60 o 120 o 180 o 240 o 300 o 0 o 60 o 120 o 180 o 240 o 300 o 0 o 60 o 120 o 180 o 240 o 300 o 0 o 60 o 120 o 180 o 240 o 300 o 0 o 60 o 120 o 180 o 240 o 300 o Ni 3phase4pole Configuration phasebelt 30 o a a' a c' c c' b b' b a' a a' c c' c b' b b' 0 o 180 o 0 o 60 o 240 o 60 o 120 o 300 o 120 o 180 o 0 o 180 o 240 o 60 o 240 o 300 o 120 o 120 o a a' a c' c c' b b' b a' a a' c c' c b' b b' 0 o 180 o 0 o 60 o 240 o 60 o 120 o 300 o 120 o 180 o 0 o 180 o 240 o 60 o 240 o 300 o 120 o 120 o Ni 9phase4pole Configuration phasebelt 10 o a f' b g' c h' d i' e a' f b' g c' h d' i e' 0 o 20 o 40 o 60 o 80 o 100 o 120 o 140 o 160 o 180 o 200 o 220 o 240 o 260 o 280 o 300 o 320 o 340 o a f' b g' c h' d i' e a' f b' g c' h d' i e' 0 o 20 o 40 o 60 o 80 o 100 o 120 o 140 o 160 o 180 o 200 o 220 o 240 o 260 o 280 o 300 o 320 o 340 o Ni MD Lab 1/

16 3phase4pole vs 9phase4pole MMF MMF 9 phase for one complete electrical cycle slots degrees slots 60 MMF 3 phase for one complete electrical cycle slots degrees slots MD Lab 1/

17 9 Phase Operation Coordinate Transformation 9 dimensional machine variables too complex, transform to 2D space (for conventional Field Orientation Control) Transformation from 9 to 2 dimensions is over defined Transformation from 2 to 9 dimensions is under defined Add Constraints in order to make transformation unique MD Lab 1/

18 Define a new 9D coordinate system consisting of three 3phase coordinate systems, rotated 40 o wrt to each other Map 1 3 of the 2D space vector into each 3phase system 2 to 9 transformation fq fas f bs cos(α 2π 9 ) sin(α 2π 9 ) f d3 fcs cos(α 4π f 9 ) sin(α 4π 9 ) 1 f o ds fes = 3 cos(α 6π 9 ) sin(α 6π 3 9 ) f q cos(α 2 8π 9 ) sin(α 8π 3 9 ) f d3 f fs cos(α 10π ) sin(α 10π 9 9 ) 1 f o fgs cos(α 12π 3 ) sin(α 12π 9 9 ) f q f hs cos(α 14π ) sin(α 14π 9 9 ) f d3 f is cos(α 16π ) sin(α 16π 9 9 ) 1 f o 3 (25) MD Lab 1/

19 9 to 2 transformation f q1 cos(α) 0 0 cos(α 2π 3 ) 0 0 cos(α 2π 3 ) 0 f d1 sin(α) 0 0 sin(α 2π 3 ) 0 0 sin(α 2π 3 ) 0 f o f q2 f d2 = 2 0 cos(α 2π 9 ) 0 0 cos(α 8π 9 ) 0 0 cos(α 8π 9 ) 0 sin(α 9 2π 9 ) 0 0 sin(α 8π 9 ) 0 0 sin(α 8π 9 ) f o f q3 0 0 cos(α 4π ) 0 0 cos(α 10π 9 9 ) 0 0 cos(α f d3 0 0 sin(α 4π ) 0 0 sin(α 10π 9 9 ) 0 0 sin(α f o (26) MD Lab 1/

20 Realization of a 9D Space Vector Voltage Command Via Pulse Width Modulation (PWM) 512 possible space vectors from a 9leg inverter NinephaseVoltage Space Vectors j0.6 Vdc j0.4 Vdc j0.2 Vdc 0 j0.2 Vdc j0.4 Vdc j0.6 Vdc 0.6 Vdc 0.4 Vdc 0.2 Vdc Vdc 0.6 Vdc 0.4 Vdc MD Lab 1/

21 Extending 3phase Space Vector PWM algorithm for 9phase Space Vector PWM Only 72 space vectors are used V n, offset = max V 1 V dc... V n V dc min V 1 V dc... V n V dc (27) {V45 max} {V36 max} {V27 max} {V18 max} MD Lab 1/

22 A new SVPWM for n > 3 nphase Systems The Minimum Voltage Difference SVPWM Technique MD Lab 1/

23 Proposal: The Control of a Continuously Operated PoleChanging Induction Machine Goals: Decrease the Torque reduction during the polechanging transition Preserve Control during the polechanging transition MD Lab 1/

24 Comparison of 4 pole and 12 pole Stator Current Densities 4 pole Stator Current Density 0 12 pole Stator Current Density radians: Stators Circumference MD Lab 1/

25 MD Lab 1/ Interaction between the Stator Current Density and airgap flux results in a tangential force on the rotor df dθ = B gk s (t, θ) (28) 4 pole steady state operation Tangential Force K s B grotor 0 K s stator current B g airgap flux from rotor currents radians Transition from 12 poles to 4 poles Tangential Force K s B grotor K s stator current B g airgap flux from rotor currents radians

26 Approach: Via a coordinate transformation, decouple the machine into two (possibly three) independent machines Regulate the two independent torques in order to pole change Control each machine separately MD Lab 1/

27 Experimental Setup: A/D quadature Inputs position sensor Control Program i a PIII 600MHz RTLinux 3.0 FPGA I/O board 9Leg Inverter torque sensor Dynamometer SVPWM & Communication i i 9 Winding IM MD Lab 1/

28 Speedtorque curves for the 12 pole and 4 pole configurations phase 12pole Motor Nm phase 4pole Motor rpm Figure 1: Speedtorque curves for 12 pole and 4 pole configurations MD Lab 1/

29 Speed control: 3phase12pole Induction motor Space Vector Field Orientation Control 3phase SVPWM rpms seconds Figure 2: Speedtorque curves for 12 pole and 4 pole configurations MD Lab 1/

30 Conclusions: A variety of pole changing technique exists There are no techniques for regulating torque during the polechanging transition Issues during the polechanging transition: reduction in torque flux and torque tracking) Requirements for a method to decrease torque reduction during the polechanging transition and preserve control: New PWM scheme Modelling the machine as two independent machines Develop method to analyze a polechanging machine in terms of Field Orientation Transformation MD Lab 1/

Unified Torque Expressions of AC Machines. Qian Wu

Unified Torque Expressions of AC Machines. Qian Wu Unified Torque Expressions of AC Machines Qian Wu Outline 1. Review of torque calculation methods. 2. Interaction between two magnetic fields. 3. Unified torque expression for AC machines. Permanent Magnet

More information

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as

More information

Lecture 9: Space-Vector Models

Lecture 9: Space-Vector Models 1 / 30 Lecture 9: Space-Vector Models ELEC-E8405 Electric Drives (5 ECTS) Marko Hinkkanen Autumn 2017 2 / 30 Learning Outcomes After this lecture and exercises you will be able to: Include the number of

More information

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 47 CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 5.1 INTRODUCTION This chapter describes the simulation model and experimental set up used for the fault analysis. For the simulation set up, the

More information

Lecture 1: Induction Motor

Lecture 1: Induction Motor 1 / 22 Lecture 1: Induction Motor ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Aalto University School of Electrical Engineering Spring 2016 2 / 22 Learning Outcomes

More information

Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique

Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique S.Anuradha 1, N.Amarnadh Reddy 2 M.Tech (PE), Dept. of EEE, VNRVJIET, T.S, India 1 Assistant Professor, Dept.

More information

Synchronous Machine Modeling

Synchronous Machine Modeling ECE 53 Session ; Page / Fall 07 Synchronous Machine Moeling Reference θ Quarature Axis B C Direct Axis Q G F D A F G Q A D C B Transient Moel for a Synchronous Machine Generator Convention ECE 53 Session

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.7 International Journal of Advance Engineering and Research Development Volume 4, Issue 5, May-07 e-issn (O): 348-4470 p-issn (P): 348-6406 Mathematical modeling

More information

Chapter 5 Three phase induction machine (1) Shengnan Li

Chapter 5 Three phase induction machine (1) Shengnan Li Chapter 5 Three phase induction machine (1) Shengnan Li Main content Structure of three phase induction motor Operating principle of three phase induction motor Rotating magnetic field Graphical representation

More information

A Multirate Field Construction Technique for Efficient Modeling of the Fields and Forces within Inverter-Fed Induction Machines

A Multirate Field Construction Technique for Efficient Modeling of the Fields and Forces within Inverter-Fed Induction Machines A Multirate Field Construction Technique for Efficient Modeling of the Fields and Forces within Inverter-Fed Induction Machines Dezheng Wu, Steve Peare School of Electrical and Computer Engineering Purdue

More information

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Project Work Dmitry Svechkarenko Royal Institute of Technology Department of Electrical Engineering Electrical Machines and

More information

INDUCTION MOTOR MODEL AND PARAMETERS

INDUCTION MOTOR MODEL AND PARAMETERS APPENDIX C INDUCTION MOTOR MODEL AND PARAMETERS C.1 Dynamic Model of the Induction Motor in Stationary Reference Frame A three phase induction machine can be represented by an equivalent two phase machine

More information

Performance analysis of variable speed multiphase induction motor with pole phase modulation

Performance analysis of variable speed multiphase induction motor with pole phase modulation ARCHIVES OF ELECTRICAL ENGINEERING VOL. 65(3), pp. 425-436 (2016) DOI 10.1515/aee-2016-0031 Performance analysis of variable speed multiphase induction motor with pole phase modulation HUIJUAN LIU, JUN

More information

Transient Analysis of Three Phase Squirrel Cage Induction Machine using Matlab

Transient Analysis of Three Phase Squirrel Cage Induction Machine using Matlab Transient Analysis of Three Phase Squirrel Cage Induction Machine using Matlab Mukesh Kumar Arya*, Dr.Sulochana Wadhwani** *( Department of Electrical Engineering, Madhav Institute of Technology & Science,

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

2016 Kappa Electronics Motor Control Training Series Kappa Electronics LLC. -V th. Dave Wilson Co-Owner Kappa Electronics.

2016 Kappa Electronics Motor Control Training Series Kappa Electronics LLC. -V th. Dave Wilson Co-Owner Kappa Electronics. 2016 Kappa Electronics Motor Control Training Series 2016 Kappa Electronics C V th CoOwner Kappa Electronics www.kappaiq.com Benefits of Field Oriented Control NewtonMeters Maximum Torque Per Amp (MTPA)

More information

Lecture Set 8 Induction Machines

Lecture Set 8 Induction Machines Lecture Set 8 Induction Machine S.D. Sudhoff Spring 2018 Reading Chapter 6, Electromechanical Motion Device, Section 6.1-6.9, 6.12 2 Sample Application Low Power: Shaded pole machine (mall fan) Permanent

More information

Step Motor Modeling. Step Motor Modeling K. Craig 1

Step Motor Modeling. Step Motor Modeling K. Craig 1 Step Motor Modeling Step Motor Modeling K. Craig 1 Stepper Motor Models Under steady operation at low speeds, we usually do not need to differentiate between VR motors and PM motors (a hybrid motor is

More information

REAL TIME CONTROL OF DOUBLY FED INDUCTION GENERATOR. Benmeziane Meriem, Zebirate Soraya, Chaker Abelkader Laboratory SCAMRE, ENPO, Oran, Algeria

REAL TIME CONTROL OF DOUBLY FED INDUCTION GENERATOR. Benmeziane Meriem, Zebirate Soraya, Chaker Abelkader Laboratory SCAMRE, ENPO, Oran, Algeria REAL TIME CONTROL OF DOUBLY FED INDUCTION GENERATOR Benmeziane Meriem, Zebirate Soraya, Chaker Abelkader Laboratory SCAMRE, ENPO, Oran, Algeria This paper presents a real time simulation method of wind

More information

Digital Control of Electric Drives. Induction Motor Vector Control. Czech Technical University in Prague Faculty of Electrical Engineering

Digital Control of Electric Drives. Induction Motor Vector Control. Czech Technical University in Prague Faculty of Electrical Engineering Digital Control of Electric Drives Induction Motor Vector Control Czech Technical University in Prague Faculty of Electrical Engineering BE1M14DEP O. Zoubek, J. Zdenek 1 Induction Motor Control Methods

More information

A Novel Three-phase Matrix Converter Based Induction Motor Drive Using Power Factor Control

A Novel Three-phase Matrix Converter Based Induction Motor Drive Using Power Factor Control Australian Journal of Basic and Applied Sciences, 8(4) Special 214, Pages: 49-417 AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com A Novel

More information

STUDY OF INDUCTION MOTOR DRIVE WITH DIRECT TORQUE CONTROL SCHEME AND INDIRECT FIELD ORIENTED CONTROL SCHEME USING SPACE VECTOR MODULATION

STUDY OF INDUCTION MOTOR DRIVE WITH DIRECT TORQUE CONTROL SCHEME AND INDIRECT FIELD ORIENTED CONTROL SCHEME USING SPACE VECTOR MODULATION STUDY OF INDUCTION MOTOR DRIVE WITH DIRECT TORQUE CONTROL SCHEME AND INDIRECT FIELD ORIENTED CONTROL SCHEME USING SPACE VECTOR MODULATION A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

More information

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous Machine Modeling

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous Machine Modeling ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous achine odeling Spring 214 Instructor: Kai Sun 1 Outline Synchronous achine odeling Per Unit Representation Simplified

More information

Three phase induction motor using direct torque control by Matlab Simulink

Three phase induction motor using direct torque control by Matlab Simulink Three phase induction motor using direct torque control by Matlab Simulink Arun Kumar Yadav 1, Dr. Vinod Kumar Singh 2 1 Reaserch Scholor SVU Gajraula Amroha, U.P. 2 Assistant professor ABSTRACT Induction

More information

A new FOC technique based on predictive current control for PMSM drive

A new FOC technique based on predictive current control for PMSM drive ISSN 1 746-7, England, UK World Journal of Modelling and Simulation Vol. 5 (009) No. 4, pp. 87-94 A new FOC technique based on predictive current control for PMSM drive F. Heydari, A. Sheikholeslami, K.

More information

3-Phase PMSM FOC Control

3-Phase PMSM FOC Control 3-Phase PMSM FOC Control 32-BIT MICROCONTROLLER FM3 Family APPLICATION NOTE Publication Number FM3_AN709-00015 Revision 1.0 Issue Date Feb 26, 2015 2 FM3_ AN709-00015-1v0-E, Feb 26, 2015 Target products

More information

A Microscopic Investigation of Force Generation in a Permanent Magnet Synchronous Machine

A Microscopic Investigation of Force Generation in a Permanent Magnet Synchronous Machine A Microscopic Investigation of Force Generation in a Permanent Magnet Synchronous Machine S. Pekarek, Purdue University (W. Zhu UM-Rolla), (B. Fahimi University of Texas-Arlington) February 7, 25 1 Outline

More information

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR MUKESH KUMAR ARYA * Electrical Engg. Department, Madhav Institute of Technology & Science, Gwalior, Gwalior, 474005,

More information

PROBLEM SOLUTIONS: Chapter 4

PROBLEM SOLUTIONS: Chapter 4 48 PROBLEM SOLUTIONS: Chapter 4 Problem 4.1 ω m = 100 π/30 = 40π rad/sec part (b): 60 Hz; 10π rad/sec part (c): 100 5/6 = 1000 r/min Problem 4. The voltages in the remaining two phases can be expressed

More information

Robust sliding mode speed controller for hybrid SVPWM based direct torque control of induction motor

Robust sliding mode speed controller for hybrid SVPWM based direct torque control of induction motor ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 3 (2007) No. 3, pp. 180-188 Robust sliding mode speed controller for hybrid SVPWM based direct torque control of induction motor

More information

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory 1 Modeling ree Acceleration of a Salient Synchronous Machine Using Two-Axis Theory Abdullah H. Akca and Lingling an, Senior Member, IEEE Abstract This paper investigates a nonlinear simulation model of

More information

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers Abdallah Farahat Mahmoud Dept. of Electrical Engineering, Al-Azhar University, Qena, Egypt engabdallah2012@azhar.edu.eg Adel S.

More information

2014 Texas Instruments Motor Control Training Series. -V th. Dave Wilson

2014 Texas Instruments Motor Control Training Series. -V th. Dave Wilson 2014 Texas Instruments Motor Control Training Series V th NewtonMeters Maximum Torque Per Amp (MTPA) Maximum torque per amp (MTPA) 2 0 0 V 200 V (tr e a c ti o n ) 150 1 5 0 V 100 1 0 0 V 50 5 0 V Simulated

More information

Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor

Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor IEEE PEDS 017, Honolulu, USA 1-15 June 015 Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor Hyoseok Shi, Noboru Niguchi, and Katsuhiro Hirata Department of Adaptive Machine

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

A Direct Torque Controlled Induction Motor with Variable Hysteresis Band

A Direct Torque Controlled Induction Motor with Variable Hysteresis Band UKSim 2009: th International Conference on Computer Modelling and Simulation A Direct Torque Controlled Induction Motor with Variable Hysteresis Band Kanungo Barada Mohanty Electrical Engineering Department,

More information

Lecture 7: Synchronous Motor Drives

Lecture 7: Synchronous Motor Drives 1 / 46 Lecture 7: Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 46 Learning Outcomes After this lecture and exercises you

More information

EFFICIENCY OPTIMIZATION OF VECTOR-CONTROLLED INDUCTION MOTOR DRIVE

EFFICIENCY OPTIMIZATION OF VECTOR-CONTROLLED INDUCTION MOTOR DRIVE EFFICIENCY OPTIMIZATION OF VECTOR-CONTROLLED INDUCTION MOTOR DRIVE Hussein Sarhan Department of Mechatronics Engineering, Faculty of Engineering Technology, Amman, Jordan ABSTRACT This paper presents a

More information

A simple model based control of self excited induction generators over a wide speed range

A simple model based control of self excited induction generators over a wide speed range ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 10 (2014) No. 3, pp. 206-213 A simple model based control of self excited induction generators over a wide speed range Krishna

More information

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines 1 Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines João Ferraz, Paulo Branco Phd. Abstract A sliding-mode observer for the rotor flux and speed

More information

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18,

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 196 A Method for the Modeling and Analysis of Permanent

More information

Chapter 4. Synchronous Generators. Basic Topology

Chapter 4. Synchronous Generators. Basic Topology Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.

More information

Simulation of 3-Phase 2- Stator Induction Motor Using MATLAB Platform

Simulation of 3-Phase 2- Stator Induction Motor Using MATLAB Platform International Journal of Alied Engineering Research ISSN 0973-456 Volume 3, Number (08). 9437-944 Simulation of 3-Phase - Stator Induction Motor Using MATLAB Platform Pallavi R.Burande Deartment of Electrical

More information

UNIT-I INTRODUCTION. 1. State the principle of electromechanical energy conversion.

UNIT-I INTRODUCTION. 1. State the principle of electromechanical energy conversion. UNIT-I INTRODUCTION 1. State the principle of electromechanical energy conversion. The mechanical energy is converted in to electrical energy which takes place through either by magnetic field or electric

More information

Experimental and Finite Element Analysis of an Electronic Pole-Change Drive

Experimental and Finite Element Analysis of an Electronic Pole-Change Drive Experimental and Finite Element Analysis of an Electronic Pole-Change Drive Mohamed Osama Thomas A. Lipo General Electric Company University of Wisconsin - Madison Corporate Research and Development Center

More information

HIGH PERFORMANCE CONTROLLERS BASED ON REAL PARAMETERS TO ACCOUNT FOR PARAMETER VARIATIONS DUE TO IRON SATURATION

HIGH PERFORMANCE CONTROLLERS BASED ON REAL PARAMETERS TO ACCOUNT FOR PARAMETER VARIATIONS DUE TO IRON SATURATION HIGH PERFORMANCE CONTROLLERS BASED ON REAL PARAMETERS TO ACCOUNT FOR PARAMETER VARIATIONS DUE TO IRON SATURATION Jorge G. Cintron-Rivera, Shanelle N. Foster, Wesley G. Zanardelli and Elias G. Strangas

More information

Measurements of a 37 kw induction motor. Rated values Voltage 400 V Current 72 A Frequency 50 Hz Power 37 kw Connection Star

Measurements of a 37 kw induction motor. Rated values Voltage 400 V Current 72 A Frequency 50 Hz Power 37 kw Connection Star Measurements of a 37 kw induction motor Rated values Voltage 4 V Current 72 A Frequency 5 Hz Power 37 kw Connection Star Losses of a loaded machine Voltage, current and power P = P -w T loss in Torque

More information

Modelling and Simulating a Three-Phase Induction Motor

Modelling and Simulating a Three-Phase Induction Motor MURDOCH UNIVERSITY SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGY Modelling and Simulating a Three-Phase Induction Motor ENG460 Engineering Thesis Benjamin Willoughby 3/3/2014 Executive Summary This

More information

Parameter Estimation of Three Phase Squirrel Cage Induction Motor

Parameter Estimation of Three Phase Squirrel Cage Induction Motor International Conference On Emerging Trends in Mechanical and Electrical Engineering RESEARCH ARTICLE OPEN ACCESS Parameter Estimation of Three Phase Squirrel Cage Induction Motor Sonakshi Gupta Department

More information

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE Nigerian Journal of Technology (NIJOTECH) Vol. 31, No. 3, November, 2012, pp. 365 369. Copyright 2012 Faculty of Engineering, University of Nigeria. ISSN 1115-8443 EFFECTS OF LOAD AND SPEED VARIATIONS

More information

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM Vandana Peethambaran 1, Dr.R.Sankaran 2 Assistant Professor, Dept. of

More information

An adaptive sliding mode control scheme for induction motor drives

An adaptive sliding mode control scheme for induction motor drives An adaptive sliding mode control scheme for induction motor drives Oscar Barambones, Patxi Alkorta, Aitor J. Garrido, I. Garrido and F.J. Maseda ABSTRACT An adaptive sliding-mode control system, which

More information

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department EE471: Electrical Machines-II Tutorial # 2: 3-ph Induction Motor/Generator Question #1 A 100 hp, 60-Hz, three-phase

More information

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mukesh C Chauhan 1, Hitesh R Khunt 2 1 P.G Student (Electrical),2 Electrical Department, AITS, rajkot 1 mcchauhan1@aits.edu.in

More information

Internal Model Control Approach to PI Tunning in Vector Control of Induction Motor

Internal Model Control Approach to PI Tunning in Vector Control of Induction Motor Internal Model Control Approach to PI Tunning in Vector Control of Induction Motor Vipul G. Pagrut, Ragini V. Meshram, Bharat N. Gupta, Pranao Walekar Department of Electrical Engineering Veermata Jijabai

More information

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) d axis: L fd L F - M R fd F L 1d L D - M R 1d D R fd R F e fd e F R 1d R D Subscript Notations: ( ) fd ~ field winding quantities

More information

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR 1 A.PANDIAN, 2 Dr.R.DHANASEKARAN 1 Associate Professor., Department of Electrical and Electronics Engineering, Angel College of

More information

Generalized Theory of Electrical Machines- A Review

Generalized Theory of Electrical Machines- A Review Generalized Theory of Electrical Machines- A Review Dr. Sandip Mehta Department of Electrical and Electronics Engineering, JIET Group of Institutions, Jodhpur Abstract:-This paper provides an overview

More information

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 21 CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 2.1 INTRODUCTION The need for adjustable speed drives in industrial applications has been increasing progressively. The variable speed

More information

Motor-CAD combined electromagnetic and thermal model (January 2015)

Motor-CAD combined electromagnetic and thermal model (January 2015) Motor-CAD combined electromagnetic and thermal model (January 2015) Description The Motor-CAD allows the machine performance, losses and temperatures to be calculated for a BPM machine. In this tutorial

More information

DYNAMIC PHASOR MODELING OF DOUBLY-FED INDUCTION MACHINES INCLUDING SATURATION EFFECTS OF MAIN FLUX LINKAGE. Benjamin Braconnier

DYNAMIC PHASOR MODELING OF DOUBLY-FED INDUCTION MACHINES INCLUDING SATURATION EFFECTS OF MAIN FLUX LINKAGE. Benjamin Braconnier DYNAMIC PHASOR MODELING OF DOUBLY-FED INDUCTION MACHINES INCLUDING SATURATION EFFECTS OF MAIN FLUX LINKAGE by Benjamin Braconnier B.Sc., The University of Alberta, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT

More information

A Status Review OF IPM MOTOR DRIVES FOR ELECTRIC SUBMERSIBLE PUMP IN HARSH COLD OCEANS

A Status Review OF IPM MOTOR DRIVES FOR ELECTRIC SUBMERSIBLE PUMP IN HARSH COLD OCEANS 1 A Status Review OF IPM MOTOR DRIVES FOR ELECTRIC SUBMERSIBLE PUMP IN HARSH COLD OCEANS M. A. Rahman Memorial University of Newfoundland St. John s, NL, Canada, A1B 3X5 arahman@mun.ca 2 PES 2015 3 Outlines

More information

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

More information

Direct torque control of induction motor fed by two level inverter using space vector pulse width modulation

Direct torque control of induction motor fed by two level inverter using space vector pulse width modulation ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 9 (2013) No. 1, pp. 59-67 Direct torque control of induction motor fed by two level inverter using space vector pulse width modulation

More information

Analysis of Field Oriented Control Strategy for Induction Motor

Analysis of Field Oriented Control Strategy for Induction Motor Kalpa Publications in Engineering Volume 1, 2017, Pages 214 219 ICRISET2017. International Conference on Research and Innovations in Science, Engineering &Technology. Selected Papers in Engineering Analysis

More information

Matrix converter technology in doubly-fed induction generators for wind generators

Matrix converter technology in doubly-fed induction generators for wind generators University of Wollongong Thesis Collections University of Wollongong Thesis Collection University of Wollongong Year 2009 Matrix converter technology in doubly-fed induction generators for wind generators

More information

COMPARISION BETWEEN TWO LEVEL AND THREE LEVEL INVERTER FOR DIRECT TORQUE CONTROL INDUCTION MOTOR DRIVE

COMPARISION BETWEEN TWO LEVEL AND THREE LEVEL INVERTER FOR DIRECT TORQUE CONTROL INDUCTION MOTOR DRIVE COMPARISION BETWEEN TWO LEVEL AND THREE LEVEL INVERTER FOR DIRECT TORQUE CONTROL INDUCTION MOTOR DRIVE Shailesh B. Kadu 1, Prof. J.G. Choudhari 2 Research Scholar (Department of Electrical Engineering,

More information

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients) ELEC0047 - Power system dynamics, control and stability (a simple example of electromagnetic transients) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 25 Objectives

More information

Permanent Magnet Synchronous Motors (PMSM). Parameters influence on the synchronization process of a PMSM

Permanent Magnet Synchronous Motors (PMSM). Parameters influence on the synchronization process of a PMSM Permanent Magnet ynchronous Motors (PMM). Parameters influence on the synchronization process of a PMM J. ais, M. P. Donsión Department of Electromechanics and Power Electronics Faculty of electrical engineering

More information

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Nazeer Ahammad S1, Sadik Ahamad Khan2, Ravi Kumar Reddy P3, Prasanthi M4 1*Pursuing M.Tech in the field of Power Electronics 2*Working

More information

DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC

DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC 1 RAJENDRA S. SONI, 2 S. S. DHAMAL 1 Student, M. E. Electrical (Control Systems), K. K. Wagh College of Engg. & Research, Nashik 2

More information

Lecture Set 5 Distributed Windings and Rotating MMF

Lecture Set 5 Distributed Windings and Rotating MMF Lecture Set 5 Distributed Windings and Rotating MMF S.D. Sudhoff Spring 2017 Distributed Windings and Rotating MMF Objective In this chapter, we will set the stage to study ac machinery including permanent

More information

ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR

ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR Henneberger, G. 1 Viorel, I. A. Blissenbach, R. 1 Popan, A.D. 1 Department of Electrical Machines, RWTH Aachen, Schinkelstrasse 4,

More information

Steady State Modeling of Doubly Fed Induction Generator

Steady State Modeling of Doubly Fed Induction Generator Steady State Modeling of Douly Fed Induction Generator Bhola Jha 1, Dr. K. R. M Rao 2 1 Dept. of Electrical Engg., G. B. Pant Engg. College, Pauri-Garhwal, India 2 Dept. of Electrical Engg., M. J. College

More information

Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections

Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections Roberto Leidhold Peter Mutschler Department of Power Electronics and Control of Drives Darmsta University

More information

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 P.G Scholar, Sri Subramanya College of Engg & Tech, Palani, Tamilnadu, India

More information

A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines

A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines Nicolas Patin Member IEEE University of Technology of Compiègne Laboratoire d Electromécanique de Compiègne Rue Personne

More information

Lecture 8: Sensorless Synchronous Motor Drives

Lecture 8: Sensorless Synchronous Motor Drives 1 / 22 Lecture 8: Sensorless Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 22 Learning Outcomes After this lecture and exercises

More information

Lezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota

Lezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota Control Laboratory: a.a. 2015/2016 Lezione 9 30 March Instructor: Luca Schenato Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota What is left to do is how to design the low pass pole τ L for the

More information

Voltage Induced in a Rotating Loop

Voltage Induced in a Rotating Loop Voltage Induced in a Rotating Loop Assumptions: Air gap flux density is radial. The flux density is uniform under magnet poles and vanishes midpoint between poles (Neutral plane). As the rotor moves at

More information

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars 223 Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars Pelizari, A. ademir.pelizari@usp.br- University of Sao Paulo Chabu, I.E. ichabu@pea.usp.br - University of Sao Paulo

More information

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application 797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

Noise and Vibration of Electrical Machines

Noise and Vibration of Electrical Machines Noise and Vibration of Electrical Machines P. L. TIMÄR A. FAZEKAS J. KISS A. MIKLOS S. J. YANG Edited by P. L. Timär ш Akademiai Kiadö, Budapest 1989 CONTENTS Foreword xiii List of symbols xiv Introduction

More information

Electromagnetic Torque From Event Report Data A Measure of Machine Performance

Electromagnetic Torque From Event Report Data A Measure of Machine Performance Electromagnetic Torque From Event Report Data A Measure of Machine Performance Derrick Haas and Dale Finney Schweitzer Engineering Laboratories, Inc. 7 SEL Overview Electromagnetic torque calculation Modeling

More information

An improved deadbeat predictive current control for permanent magnet linear synchronous motor

An improved deadbeat predictive current control for permanent magnet linear synchronous motor Indian Journal of Engineering & Materials Sciences Vol. 22, June 2015, pp. 273-282 An improved deadbeat predictive current control for permanent magnet linear synchronous motor Mingyi Wang, iyi i, Donghua

More information

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1 Electro-Mechanical Systems DC Motors Principles of Operation Modeling (Derivation of fg Governing Equations (EOM)) Block Diagram Representations Using Block Diagrams to Represent Equations in s - Domain

More information

MODELING AND CONTROL OF DUAL MECHANICAL PORT ELECTRIC MACHINE DISSERTATION

MODELING AND CONTROL OF DUAL MECHANICAL PORT ELECTRIC MACHINE DISSERTATION MODELING AND CONTROL OF DUAL MECHANICAL PORT ELECTRIC MACHINE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State

More information

SEMINAR ON ELECTRICAL ENGINEERING, INFORMATICS, AND ITS EDUCATION

SEMINAR ON ELECTRICAL ENGINEERING, INFORMATICS, AND ITS EDUCATION SEMINAR ON ELECTRICAL ENGINEERING, INFORMATICS, AND ITS EDUCATION 2011 1 Sensorless Flux Vector Control of Induction Motor for Driving Centrifugal Pump Aripriharta 1, Rini Nur Hasanah 2 aripriharta@gmail.com,

More information

2014 Texas Instruments Motor Control Training Series. -V th. Dave Wilson

2014 Texas Instruments Motor Control Training Series. -V th. Dave Wilson 204 Texas Instruments Motor Control Training Series V th Speed Sensorless FOC P Commanded Rotor Speed Commanded i d = 0 Commanded i q (torque) P I P V d V q Reverse ClarkePark Transform θ d V a V b V c

More information

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ From now, we ignore the superbar - with variables in per unit. ψ 0 L0 i0 ψ L + L L L i d l ad ad ad d ψ F Lad LF MR if = ψ D Lad MR LD id ψ q Ll + Laq L aq i q ψ Q Laq LQ iq 41 Equivalent Circuits for

More information

UJET VOL. 2, NO. 2, DEC Page 8

UJET VOL. 2, NO. 2, DEC Page 8 UMUDIKE JOURNAL OF ENGINEERING AND TECHNOLOGY (UJET) VOL. 2, NO. 2, DEC 2016 PAGE 8-15 FINITE ELEMENT ANALYSIS OF A 7.5KW ASYNCHRONOUS MOTOR UNDER INTERMITTENT LOADING. Abunike, E. C. and Okoro, O. I.

More information

Estimation of speed in linear induction motor drive by MRAS using neural network and sliding mode control

Estimation of speed in linear induction motor drive by MRAS using neural network and sliding mode control Estimation of speed in linear induction motor drive by MRAS using neural network and sliding mode control M. Anka Rao 1, M. Vijaya kumar 2, O. Yugeswar Reddy 3 1 Asst. Professor, Dept. of Electrical Engg.,

More information

MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL

MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL B. MOULI CHANDRA 1 & S.TARA KALYANI 2 1 Electrical and Electronics Department,

More information

Department of Energy Tehnology Aalborg University, Denmark. Control of a saturated Permanent Magnet Synchronus Motor

Department of Energy Tehnology Aalborg University, Denmark. Control of a saturated Permanent Magnet Synchronus Motor Department of Energy Tehnology Aalborg University, Denmark Control of a saturated Permanent Magnet Synchronus Motor Conducted by PED 1034 Spring Semester, 2010 Title: Control of a saturated Permanent Magnet

More information

Dynamic Modeling Of A Dual Winding Induction Motor Using Rotor Reference Frame

Dynamic Modeling Of A Dual Winding Induction Motor Using Rotor Reference Frame American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-7, Issue-11, pp-323-329 www.ajer.org Research Paper Open Access Dynamic Modeling Of A Dual Winding Induction

More information

Verification of Nine-phase PMSM Model in d-q Coordinates with Mutual Couplings

Verification of Nine-phase PMSM Model in d-q Coordinates with Mutual Couplings dspace.vutbr.cz Verification of Nine-phase PMSM Model in d-q Coordinates with Mutual Couplings KOZOVSKÝ, M.; BLAHA, P.; VÁCLAVEK, P 6th IEEE International Conference on Control System, Computing and Engineering

More information

SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) volume 2 Issue 5 May 2015

SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) volume 2 Issue 5 May 2015 SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) volume 2 Issue 5 May 215 Torque Ripple Minimization of BLDC Motor by Using Vector Control R.keerthi Paul 1, P.Pradeep 2

More information

The synchronous machine (detailed model)

The synchronous machine (detailed model) ELEC0029 - Electric Power System Analysis The synchronous machine (detailed model) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct February 2018 1 / 6 Objectives The synchronous

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Class Notes 7: Permanent Magnet Brushless DC Motors September 5, 005 c 005 James

More information