Robustness of PSPACE-complete sets

Size: px
Start display at page:

Download "Robustness of PSPACE-complete sets"

Transcription

1 Robustness of PSPACE-complete sets A. Pavan a,1 and Fengming Wang b,1 a Department of Computer Science, Iowa State University. pavan@cs.iastate.edu b Department of Computer Science, Rutgers University. fengming@cs.rutgers.edu Abstract We study the robustness of complete languages in PSPACE and prove that they are robust against P-selective sparse sets. Earlier similar results are known for EXPcomplete sets [3] and NP-complete sets [7]. Key words: Computational Complexity, Complete Sets, Robustness, P-selective Sets, PSPACE. 1 Introduction This paper studies the robustness of complete sets which was initiated by Schöning [8]. Informally, a complete set is robust if it remains complete/hard even after we remove a small amount of information from it. More formally, if L is complete for a complexity class C, we say L is robust against a set S if L S is remains complete/hard for C. Several results are known regarding the robustness of complete sets for classes such as NP and EXP. Since many-one complete sets for EXP are complete via one-to-one and length-increasing reductions [2], it easily follows that they are robust against every sparse set in P. Buhrman, Hoene, Torenvliet [3] showed that many-one complete sets are also robust against sparse P-selective sets. They extended this result to show that 2-tt complete sets for EXP are also robust against sparse P-selective sets. Regarding non-sparse sets, Buhrman and Torenvliet [4] showed that if L is many-one complete for EXP, and S is a set in P with subexponential density, then L S is Turing complete for EXP. 1 This research was supported in part by NSF grant Preprint submitted to Elsevier Science 17 July 2008

2 Recently Glaßer et al. [7] showed that many-one complete sets for NP are also robust against sparse P-selective sets. Several negative results are also known regarding robustness of complete sets. Tang, Fu, and Liu [10] constructed a sparse set S such that for every manyone complete language L for EXP, L S fails to be p m-complete. Buhrman, Hoene, and Torenvliet [3] extended this result to the case of bounded truthtable complete sets for EXP. Glaßer et al. [7] showed similar results for NP. Thus the question of whether a complete set is robust against a sparse set or not crucially depends on the complexity of the sparse set. Buhrman and Torenvliet [5] survey these results. All known results regarding the robustness of complete sets involve the classes EXP and NP. Since NP PSPACE EXP, it is natural to study the robustness properties of PSPACE-complete sets. Do they have the properties of robustness similar to NP and EXP? In this paper we answer this question and show that many-one complete sets for PSPACE are also robust against sparse P-selective sets. Thus our main theorem builds a bridge between two previous results [7] and [3]. 2 Preliminaries Denote the length of a string x as x and the cardinality of a set S as S. The density of a set S is the function d(n) = Σ n S. If d(n) is bounded by a polynomial, we say that S is sparse. We fix a polynomial-time computable injective mapping from any n-tuple x 1, x 2,, x n to a single string. Given a language L and a string x, L(x) = 1 if x L, else L(x) = 0. A language L is P-selective [9], if there exists a polynomial-time Turing machine M such that for any strings x and y, the following conditions hold: M(x, y) {x, y}, and if {x, y} L, then M(x, y) L. We use the following well known result regarding P-selective sets. Lemma 1 [11] Let L be a P-selective language, and S be a finite set. There is a polynomial-time algorithm that orders S according to membership in S. I.e., the algorithm computes strings x 1, x 2,, x m such that {x 1, x 2, x m } = S, and L(x 1 ) L(x 2 ) L(x m ). 2

3 3 Main Theorem Cai and Furst [6], building on the work of Barrington [1], gave an elegant characterization for PSPACE. Denote the permutation group over five distinct elements as S 5. For each language L PSPACE there exists a polynomial p and a polynomial-time computable function f : Σ Σ S 5 such that x, x L f(x, 1 p( x ) ) f(x, 1 p( x ) 1) f(x, 0 p( x ) ) = I 5 where denotes composition of permutations, and I 5 is the identity permutation. We use this characterization of PSPACE. A set S is non-trivial, if both S and S have at least one element. Note that if a set S is trivial, it is easy to construct a set A in P such that A does not many reduce to S. Thus we focus on non-trivial sets. Theorem 2 Let L be a p m-complete set for PSPACE and let S be a P- selective sparse set. If L S is non-trivial, then L S is p m-hard for PSPACE. Proof. Let p and f correspond to L in the above characterization. Define the following set T : T = { x, y, π y = p( x ), π S 5 and f(x, 1 p( x ) ) f(x, y) = π} Clearly T belongs to PSPACE and there is a trivial p m-reduction from L to T which maps x to x, 0 p( x ), I 5, thus T is p m-complete for PSPACE. Let h denote the p m-reduction from T to L, and let h be computable in time q(n). Let S be a sparse P-selective set that has at most l(n) elements at length n. We now present an algorithm which witnesses the reduction from L to L S. Fix two strings y 1, y 2 such that y 1 L S and y 2 L S. Since L S is non-trivial, such strings exist. On input x, the algorithm maintains a list, denoted List, and ensures that for every y List, y belongs to L if and only if x belongs to L. We also ensure that the algorithm increments the size of the list during each iteration. Since S is sparse, after polynomially many iterations List will contain an element y that does not belong to S. At this stage, the algorithm will output y. We now give details. (1) Input x. (2) Set left = 0 p( x ), and List = {h( x, left, I 5 )}. (3) Find π such that h( x, 1 p( x ), π ) List. If f(x, 1 p( x ) ) = π, return y 1, else return y 2. If there is no such π, GOTO next step. 3

4 (4) Using binary search, find a string z such that left < z < 1 p( x ) and π, h( x, z, π ) List, and π, h( x, z + 1, π ) / List. Recall that there is no π for which h( x, 1 p( x ), π ) List, and there is a π such that h( x, left, π, ) List. Thus a string z with above properties must exist. (5) Let π be a permutation for which h( x, z, π ) List. Compute π = π f(x, z) 1 and w = h( x, z + 1, π ). Add w to List. (6) If List l(q( x, 0 p( x ), I 5 )), set left = z, and GOTO Step 3. (7) By Lemma 1, there is a polynomial-time algorithm that orders List. Output the first string in this order. We claim that the above reduction is correct. Trivially each step of the reduction, including the binary search, can be done in polynomial-time. Observe that when the size of List reaches l(q( x, 0 p( x ), I 5 )) + 1, the reduction stops. Also observe that during each iteration of the algorithm, the size of List increases by one. Thus the reduction is polynomial-time computable. Claim 1 For every string y List, x L if and only if y L. Proof. We prove this by induction. Initially the algorithm places h( x, 0 p( x ), I 5 ) into List. Recall that x L if and only if x, 0 p( x ), I 5 T. Since h is a reduction from T to L, x L if and only if h( x, 0 p( x ), I 5 ) L. Thus the claim holds initially. Assume that the claim holds before the start of an iteration. During an iteration, the algorithm finds a string z and a permutation π such that h( x, z, π ) List. By the induction hypothesis, h( x, z, π ) L if and only if x L. Thus, since h is a reduction from T to L, x, z, π T if and only if x L. Thus x L f(x, 1 p( x ) ) f(x, z + 1) f(x, z) = π f(x, 1 p( x ) ) f(x, z + 1) = π f(x, z) 1 = π x, z + 1, π T h( x, z + 1, π ) L. Since the reduction places h( x, z + 1, π ) into the list, the previous claim holds after this iteration of the algorithm. Thus for every string y List, x belongs to L if and only if y belongs to L. 4

5 Claim 2 The above reduction is correct Proof. The algorithm outputs a string either in Step 3 or in Step 7. First consider the case when it outputs a string in Step 3. In this case, there is a π such that h( x, 1 p( x ), π ) List. Thus, by the previous claim, x L if and only if h( x, 1 p( x ), π ) List. Thus x L if and only if x, 1 p( x ), π ) T. Thus x L if and only if f(x, 1 p( x ) ) = π. If f(x, 1 p( x ) ) = π, then the reduction outputs y 1, else it outputs y 2. Since y 1 L S, and y 2 L S, the reduction is correct. Assume that the reduction outputs a string in Step 7. Since S has at most l(q( x, 0 p( x ), I 5 )) strings of length q( x, 0 p( x ), I 5 ) and the cardinality of List is l(q( x, 0 p( x ), I 5 )) + 1, there is a string in List that is not in S. Thus when we order List using Lemma 1, the first string in the order does not belong to S. Thus the string output by the reduction does not belong to S. Also, by the previous claim, for every string y in List, x L if and only if y L. Thus the string output by the reduction belongs to L S if and only if x L. Thus L S is many-one hard for PSPACE. Observe that if a sparse set S is in P, then L S is in PSPACE. Corollary 3 Let L be an p m-complete set for PSPACE and let S be a sparse set in P. If L S is non-trivial, then L S remains p m-complete for PSPACE. References [1] D. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in NC 1. Journal of Computer and System Sciences, 38(1): , [2] L. Berman. On the structure of complete sets: Almost everywhere complexity and infinitely often speedup. In IEEE Conference on Foundations of Computer Science, pages 76 80, [3] H. Buhrman, A. Hoene, and L. Torenvliet. Splittings, robustness, and structure of complete sets. SIAM J. Comput., 27(3): , [4] H. Buhrman and L. Torenvliet. Separating complexity classes using structural properties. In IEEE Conference on Computational Complexity, pages , [5] H. Buhrman and L. Torenvliet. A Post s program for complexity theory. Bulletin of the EATCS, 85:41 51,

6 [6] J. Cai and M. Furst. PSPACE survives constant-width bottlenecks. Int. J. Found. Comput. Sci., 2(1):67 76, [7] C. Glaßer, A. Pavan, A. Selman, and S. Sengupta. Properties of NP-complete sets. In IEEE Conference on Computational Complexity, pages , [8] U. Schöning. Complete sets and closeness to complexity classes. Mathematical Systems Theory, 19(1):29 41, [9] A. Selman. P-selective sets, tally languages, and the behavior of polynomial time reducibilities on NP. Mathematical Systems Theory, 13:55 65, [10] S. Tang, B. Fu, and T. Liu. Exponential-time and subexponential-time sets. Theor. Comput. Sci., 115(2): , [11] S. Toda. On polynomial-time truth-table reducibility of intractable sets to P- selective sets. Mathematical Systems Theory, 24(2):68 82,

Mitosis in Computational Complexity

Mitosis in Computational Complexity Mitosis in Computational Complexity Christian Glaßer 1, A. Pavan 2, Alan L. Selman 3, and Liyu Zhang 4 1 Universität Würzburg, glasser@informatik.uni-wuerzburg.de 2 Iowa State University, pavan@cs.iastate.edu

More information

Autoreducibility, Mitoticity, and Immunity

Autoreducibility, Mitoticity, and Immunity Autoreducibility, Mitoticity, and Immunity Christian Glaßer, Mitsunori Ogihara, A. Pavan, Alan L. Selman, Liyu Zhang December 21, 2004 Abstract We show the following results regarding complete sets. NP-complete

More information

On the NP-Completeness of the Minimum Circuit Size Problem

On the NP-Completeness of the Minimum Circuit Size Problem On the NP-Completeness of the Minimum Circuit Size Problem John M. Hitchcock Department of Computer Science University of Wyoming A. Pavan Department of Computer Science Iowa State University Abstract

More information

Separating NE from Some Nonuniform Nondeterministic Complexity Classes

Separating NE from Some Nonuniform Nondeterministic Complexity Classes Separating NE from Some Nonuniform Nondeterministic Complexity Classes Bin Fu 1, Angsheng Li 2, and Liyu Zhang 3 1 Dept. of Computer Science, University of Texas - Pan American TX 78539, USA. binfu@cs.panam.edu

More information

Comparing Reductions to NP-Complete Sets

Comparing Reductions to NP-Complete Sets Comparing Reductions to NP-Complete Sets John M. Hitchcock A. Pavan Abstract Under the assumption that NP does not have p-measure 0, we investigate reductions to NP-complete sets and prove the following:

More information

Properties of NP-Complete Sets

Properties of NP-Complete Sets Properties of NP-Complete Sets Christian Glaßer, A. Pavan, Alan L. Selman, Samik Sengupta Abstract We study several properties of sets that are complete for NP. We prove that if L is an NP-complete set

More information

Probabilistic Autoreductions

Probabilistic Autoreductions Probabilistic Autoreductions Liyu Zhang 1, Chen Yuan 3, and Haibin Kan 2 1 Departmente of Computer Science, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA. liyu.zhang@utrgv.edu 2

More information

Length-Increasing Reductions for PSPACE-Completeness

Length-Increasing Reductions for PSPACE-Completeness Length-Increasing Reductions for PSPACE-Completeness John M. Hitchcock 1 and A. Pavan 2 1 Department of Computer Science, University of Wyoming. jhitchco@cs.uwyo.edu 2 Department of Computer Science, Iowa

More information

A Note on P-selective sets and on Adaptive versus Nonadaptive Queries to NP

A Note on P-selective sets and on Adaptive versus Nonadaptive Queries to NP A Note on P-selective sets and on Adaptive versus Nonadaptive Queries to NP Ashish V. Naik Alan L. Selman Abstract We study two properties of a complexity class whether there exists a truthtable hard p-selective

More information

Limitations of Efficient Reducibility to the Kolmogorov Random Strings

Limitations of Efficient Reducibility to the Kolmogorov Random Strings Limitations of Efficient Reducibility to the Kolmogorov Random Strings John M. HITCHCOCK 1 Department of Computer Science, University of Wyoming Abstract. We show the following results for polynomial-time

More information

Separating Cook Completeness from Karp-Levin Completeness under a Worst-Case Hardness Hypothesis

Separating Cook Completeness from Karp-Levin Completeness under a Worst-Case Hardness Hypothesis Separating Cook Completeness from Karp-Levin Completeness under a Worst-Case Hardness Hypothesis Debasis Mandal A. Pavan Rajeswari Venugopalan Abstract We show that there is a language that is Turing complete

More information

Proving SAT does not have Small Circuits with an Application to the Two Queries Problem

Proving SAT does not have Small Circuits with an Application to the Two Queries Problem Proving SAT does not have Small Circuits with an Application to the Two Queries Problem Lance Fortnow A. Pavan Samik Sengupta Abstract We show that if SAT does not have small circuits, then there must

More information

The Computational Complexity Column

The Computational Complexity Column The Computational Complexity Column by Jacobo Torán Dept. Theoretische Informatik, Universität Ulm Oberer Eselsberg, 89069 Ulm, Germany toran@informatik.uni-ulm.de http://theorie.informatik.uni-ulm.de/personen/jt.html

More information

Probabilistic Autoreductions

Probabilistic Autoreductions Probabilistic Autoreductions Liyu Zhang University of Texas Rio Grande Valley Joint Work with Chen Yuan and Haibin Kan SOFSEM 2016 1 Overview Introduction to Autoreducibility Previous Results Main Result

More information

Autoreducibility, mitoticity, and immunity

Autoreducibility, mitoticity, and immunity Journal of Computer and System Sciences 73 (2007) 735 754 www.elsevier.com/locate/jcss Autoreducibility, mitoticity, and immunity Christian Glaßer a, Mitsunori Ogihara b,1,a.pavan c,,2,alanl.selman d,3,

More information

Turing Machines With Few Accepting Computations And Low Sets For PP

Turing Machines With Few Accepting Computations And Low Sets For PP Turing Machines With Few Accepting Computations And Low Sets For PP Johannes Köbler a, Uwe Schöning a, Seinosuke Toda b, Jacobo Torán c a Abteilung Theoretische Informatik, Universität Ulm, 89069 Ulm,

More information

CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS

CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS 1. [6 POINTS] For language L 1 = {0 n 1 m n, m 1, m n}, which string is in L 1? ANSWER: 0001111 is in L 1 (with n =

More information

Strong Reductions and Isomorphism of Complete Sets

Strong Reductions and Isomorphism of Complete Sets Strong Reductions and Isomorphism of Complete Sets Ryan C. Harkins John M. Hitchcock A. Pavan Abstract We study the structure of the polynomial-time complete sets for NP and PSPACE under strong nondeterministic

More information

A Note on the Karp-Lipton Collapse for the Exponential Hierarchy

A Note on the Karp-Lipton Collapse for the Exponential Hierarchy A Note on the Karp-Lipton Collapse for the Exponential Hierarchy Chris Bourke Department of Computer Science & Engineering University of Nebraska Lincoln, NE 68503, USA Email: cbourke@cse.unl.edu January

More information

Bi-Immunity Separates Strong NP-Completeness Notions

Bi-Immunity Separates Strong NP-Completeness Notions Bi-Immunity Separates Strong NP-Completeness Notions A. Pavan 1 and Alan L Selman 2 1 NEC Research Institute, 4 Independence way, Princeton, NJ 08540. apavan@research.nj.nec.com 2 Department of Computer

More information

Sparse Sets, Approximable Sets, and Parallel Queries to NP. Abstract

Sparse Sets, Approximable Sets, and Parallel Queries to NP. Abstract Sparse Sets, Approximable Sets, and Parallel Queries to NP V. Arvind Institute of Mathematical Sciences C. I. T. Campus Chennai 600 113, India Jacobo Toran Abteilung Theoretische Informatik, Universitat

More information

Autoreducibility of NP-Complete Sets under Strong Hypotheses

Autoreducibility of NP-Complete Sets under Strong Hypotheses Autoreducibility of NP-Complete Sets under Strong Hypotheses John M. Hitchcock and Hadi Shafei Department of Computer Science University of Wyoming Abstract We study the polynomial-time autoreducibility

More information

On P-selective Sets and EXP Hard Sets. Bin Fu. Yale University, New Haven, CT and. UMIACS, University of Maryland at College Park, MD 20742

On P-selective Sets and EXP Hard Sets. Bin Fu. Yale University, New Haven, CT and. UMIACS, University of Maryland at College Park, MD 20742 On P-selective Sets and EXP Hard Sets Bin Fu Department of Computer Science, Yale University, New Haven, CT 06520 and UMIACS, University of Maryland at College Park, MD 20742 May 1997 Email: binfu@umiacs.umd.edu

More information

The Complexity of Unions of Disjoint Sets

The Complexity of Unions of Disjoint Sets Electronic Colloquium on Computational Complexity, Report No. 69 (2006) The Complexity of Unions of Disjoint Sets Christian Glaßer, Alan L. Selman, Stephen Travers, and Klaus W. Wagner Abstract This paper

More information

A Thirty Year Old Conjecture about Promise Problems

A Thirty Year Old Conjecture about Promise Problems A Thirty Year Old Conjecture about Promise Problems Andrew Hughes Debasis Mandal A. Pavan Nathan Russell Alan L. Selman Abstract Even, Selman, and Yacobi [ESY84, SY82] formulated a conjecture that in current

More information

Derandomizing from Random Strings

Derandomizing from Random Strings Derandomizing from Random Strings Harry Buhrman CWI and University of Amsterdam buhrman@cwi.nl Lance Fortnow Northwestern University fortnow@northwestern.edu Michal Koucký Institute of Mathematics, AS

More information

PROPERTIES OF NP-COMPLETE SETS

PROPERTIES OF NP-COMPLETE SETS Z O PROPERTIES OF NP-COMPLETE SETS CHRISTIAN GLAßER, A PAVAN, ALAN L SELMAN, AND SAMIK SENGUPTA Abstract We study several properties of sets that are complete for We prove that if is an -complete set and

More information

A Thirty Year Old Conjecture about Promise Problems

A Thirty Year Old Conjecture about Promise Problems A Thirty Year Old Conjecture about Promise Problems Andrew Hughes 1, A. Pavan 2, Nathan Russell 1, and Alan Selman 1 1 Department of Computer Science and Engineering, University at Buffalo. {ahughes6,nrussell,selman}@buffalo.edu

More information

One Bit of Advice.

One Bit of Advice. One Bit of Advice Harry Buhrman 1, Richard Chang 2, and Lance Fortnow 3 1 CWI & University of Amsterdam. Address: CWI, INS4, P.O. Box 94709, Amsterdam, The Netherlands. buhrman@cwi.nl. 2 Department of

More information

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem.

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem. 1 More on NP In this set of lecture notes, we examine the class NP in more detail. We give a characterization of NP which justifies the guess and verify paradigm, and study the complexity of solving search

More information

Review of unsolvability

Review of unsolvability Review of unsolvability L L H To prove unsolvability: show a reduction. To prove solvability: show an algorithm. Unsolvable problems (main insight) Turing machine (algorithm) properties Pattern matching

More information

Exact Learning Algorithms, Betting Games, and Circuit Lower Bounds

Exact Learning Algorithms, Betting Games, and Circuit Lower Bounds Exact Learning Algorithms, Betting Games, and Circuit Lower Bounds Ryan C. Harkins and John M. Hitchcock Abstract This paper extends and improves work of Fortnow and Klivans [6], who showed that if a circuit

More information

2. Notation and Relative Complexity Notions

2. Notation and Relative Complexity Notions 1. Introduction 1 A central issue in computational complexity theory is to distinguish computational problems that are solvable using efficient resources from those that are inherently intractable. Computer

More information

The Informational Content of Canonical Disjoint NP-Pairs

The Informational Content of Canonical Disjoint NP-Pairs The Informational Content of Canonical Disjoint NP-Pairs Christian Glaßer Alan L. Selman Liyu Zhang June 17, 2009 Abstract We investigate the connection between propositional proof systems and their canonical

More information

Relativized Worlds with an Innite Hierarchy. Lance Fortnow y. University of Chicago E. 58th. St. Chicago, IL Abstract

Relativized Worlds with an Innite Hierarchy. Lance Fortnow y. University of Chicago E. 58th. St. Chicago, IL Abstract Relativized Worlds with an Innite Hierarchy Lance Fortnow y University of Chicago Department of Computer Science 1100 E. 58th. St. Chicago, IL 60637 Abstract We introduce the \Book Trick" as a method for

More information

The Informational Content of Canonical Disjoint NP-Pairs

The Informational Content of Canonical Disjoint NP-Pairs The Informational Content of Canonical Disjoint NP-Pairs Christian Glaßer Alan L. Selman Liyu Zhang February 21, 2007 Abstract We investigate the connection between propositional proof systems and their

More information

Portland, ME 04103, USA IL 60637, USA. Abstract. Buhrman and Torenvliet created an oracle relative to which

Portland, ME 04103, USA IL 60637, USA. Abstract. Buhrman and Torenvliet created an oracle relative to which Beyond P NP = NEXP Stephen A. Fenner 1? and Lance J. Fortnow 2?? 1 University of Southern Maine, Department of Computer Science 96 Falmouth St., Portland, ME 04103, USA E-mail: fenner@usm.maine.edu, Fax:

More information

Lecture 4 : Quest for Structure in Counting Problems

Lecture 4 : Quest for Structure in Counting Problems CS6840: Advanced Complexity Theory Jan 10, 2012 Lecture 4 : Quest for Structure in Counting Problems Lecturer: Jayalal Sarma M.N. Scribe: Dinesh K. Theme: Between P and PSPACE. Lecture Plan:Counting problems

More information

A note on parallel and alternating time

A note on parallel and alternating time Journal of Complexity 23 (2007) 594 602 www.elsevier.com/locate/jco A note on parallel and alternating time Felipe Cucker a,,1, Irénée Briquel b a Department of Mathematics, City University of Hong Kong,

More information

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013

Chapter 2. Reductions and NP. 2.1 Reductions Continued The Satisfiability Problem (SAT) SAT 3SAT. CS 573: Algorithms, Fall 2013 August 29, 2013 Chapter 2 Reductions and NP CS 573: Algorithms, Fall 2013 August 29, 2013 2.1 Reductions Continued 2.1.1 The Satisfiability Problem SAT 2.1.1.1 Propositional Formulas Definition 2.1.1. Consider a set of

More information

A Relationship between Difference Hierarchies and Relativized Polynomial Hierarchies

A Relationship between Difference Hierarchies and Relativized Polynomial Hierarchies A Relationship between Difference Hierarchies and Relativized Polynomial Hierarchies Richard Beigel Yale University Richard Chang Cornell University Mitsunori Ogiwara University of Electro-Communications

More information

Polynomial-Time Random Oracles and Separating Complexity Classes

Polynomial-Time Random Oracles and Separating Complexity Classes Polynomial-Time Random Oracles and Separating Complexity Classes John M. Hitchcock Department of Computer Science University of Wyoming jhitchco@cs.uwyo.edu Adewale Sekoni Department of Computer Science

More information

Lecture 24: Randomized Complexity, Course Summary

Lecture 24: Randomized Complexity, Course Summary 6.045 Lecture 24: Randomized Complexity, Course Summary 1 1/4 1/16 1/4 1/4 1/32 1/16 1/32 Probabilistic TMs 1/16 A probabilistic TM M is a nondeterministic TM where: Each nondeterministic step is called

More information

Some Results on Derandomization

Some Results on Derandomization Some Results on Derandomization Harry Buhrman CWI and University of Amsterdam Lance Fortnow University of Chicago A. Pavan Iowa State University Abstract We show several results about derandomization including

More information

1 From previous lectures

1 From previous lectures CS 810: Introduction to Complexity Theory 9/18/2003 Lecture 11: P/poly, Sparse Sets, and Mahaney s Theorem Instructor: Jin-Yi Cai Scribe: Aparna Das, Scott Diehl, Giordano Fusco 1 From previous lectures

More information

Outline. Complexity Theory. Example. Sketch of a log-space TM for palindromes. Log-space computations. Example VU , SS 2018

Outline. Complexity Theory. Example. Sketch of a log-space TM for palindromes. Log-space computations. Example VU , SS 2018 Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 3. Logarithmic Space Reinhard Pichler Institute of Logic and Computation DBAI Group TU Wien 3. Logarithmic Space 3.1 Computational

More information

Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws

Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws Electronic Colloquium on Computational Complexity, Report No. 105 (2005) Extracting Kolmogorov Complexity with Applications to Dimension Zero-One Laws Lance Fortnow John M. Hitchcock A. Pavan N. V. Vinodchandran

More information

i ) and L(NM O 2 i ), L(NM O 2 L(NM Z i ) L(NM Z j ) =. j )) to (A, B) requires

i ) and L(NM O 2 i ), L(NM O 2 L(NM Z i ) L(NM Z j ) =. j )) to (A, B) requires Disjoint NP-Pairs Christian Glaßer 1 Alan L. Selman Samik Sengupta Liyu Zhang Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260 Email: {cglasser,selman,samik,lzhang7}@cse.buffalo.edu

More information

Baire Categories on Small Complexity Classes and Meager-Comeager Laws

Baire Categories on Small Complexity Classes and Meager-Comeager Laws Baire Categories on Small Complexity Classes and Meager-Comeager Laws Philippe Moser Department of Computer Science, National University of Ireland, Maynooth Co. Kildare, Ireland. Abstract We introduce

More information

A note on exponential circuit lower bounds from derandomizing Arthur-Merlin games

A note on exponential circuit lower bounds from derandomizing Arthur-Merlin games Electronic Colloquium on Computational Complexity, Report No. 74 (200) A note on exponential circuit lower bounds from derandomizing Arthur-Merlin games Harry Buhrman Scott Aaronson MIT aaronson@csail.mit.edu

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 1/29/2002. Notes for Lecture 3

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan 1/29/2002. Notes for Lecture 3 U.C. Bereley CS278: Computational Complexity Handout N3 Professor Luca Trevisan 1/29/2002 Notes for Lecture 3 In this lecture we will define the probabilistic complexity classes BPP, RP, ZPP and we will

More information

Space Complexity. The space complexity of a program is how much memory it uses.

Space Complexity. The space complexity of a program is how much memory it uses. Space Complexity The space complexity of a program is how much memory it uses. Measuring Space When we compute the space used by a TM, we do not count the input (think of input as readonly). We say that

More information

1 Randomized Computation

1 Randomized Computation CS 6743 Lecture 17 1 Fall 2007 1 Randomized Computation Why is randomness useful? Imagine you have a stack of bank notes, with very few counterfeit ones. You want to choose a genuine bank note to pay at

More information

Baire categories on small complexity classes and meager comeager laws

Baire categories on small complexity classes and meager comeager laws Information and Computation 206 (2008) 15 33 www.elsevier.com/locate/ic Baire categories on small complexity classes and meager comeager laws Philippe Moser Department of Computer Science, National University

More information

Reductions to Graph Isomorphism

Reductions to Graph Isomorphism Reductions to raph Isomorphism Jacobo Torán Institut für Theoretische Informatik Universität Ulm D-89069 Ulm, ermany jacobo.toran@uni-ulm.de June 13, 2008 Keywords: Computational complexity, reducibilities,

More information

ITCS:CCT09 : Computational Complexity Theory Apr 8, Lecture 7

ITCS:CCT09 : Computational Complexity Theory Apr 8, Lecture 7 ITCS:CCT09 : Computational Complexity Theory Apr 8, 2009 Lecturer: Jayalal Sarma M.N. Lecture 7 Scribe: Shiteng Chen In this lecture, we will discuss one of the basic concepts in complexity theory; namely

More information

ON THE STRUCTURE OF BOUNDED QUERIES TO ARBITRARY NP SETS

ON THE STRUCTURE OF BOUNDED QUERIES TO ARBITRARY NP SETS ON THE STRUCTURE OF BOUNDED QUERIES TO ARBITRARY NP SETS RICHARD CHANG Abstract. Kadin [6] showed that if the Polynomial Hierarchy (PH) has infinitely many levels, then for all k, P SAT[k] P SAT[k+1].

More information

Notes for Lecture 3... x 4

Notes for Lecture 3... x 4 Stanford University CS254: Computational Complexity Notes 3 Luca Trevisan January 14, 2014 Notes for Lecture 3 In this lecture we introduce the computational model of boolean circuits and prove that polynomial

More information

Low-Depth Witnesses are Easy to Find

Low-Depth Witnesses are Easy to Find Low-Depth Witnesses are Easy to Find Luis Antunes U. Porto Lance Fortnow U. Chicago Alexandre Pinto U. Porto André Souto U. Porto Abstract Antunes, Fortnow, van Melkebeek and Vinodchandran captured the

More information

satisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs

satisfiability (sat) Satisfiability unsatisfiability (unsat or sat complement) and validity Any Expression φ Can Be Converted into CNFs and DNFs Any Expression φ Can Be Converted into CNFs and DNFs φ = x j : This is trivially true. φ = φ 1 and a CNF is sought: Turn φ 1 into a DNF and apply de Morgan s laws to make a CNF for φ. φ = φ 1 and a DNF

More information

Some Results on Circuit Lower Bounds and Derandomization of Arthur-Merlin Problems

Some Results on Circuit Lower Bounds and Derandomization of Arthur-Merlin Problems Some Results on Circuit Lower Bounds and Derandomization of Arthur-Merlin Problems D. M. Stull December 14, 2016 Abstract We prove a downward separation for Σ 2 -time classes. Specifically, we prove that

More information

DRAFT. Algebraic computation models. Chapter 14

DRAFT. Algebraic computation models. Chapter 14 Chapter 14 Algebraic computation models Somewhat rough We think of numerical algorithms root-finding, gaussian elimination etc. as operating over R or C, even though the underlying representation of the

More information

Notes on Computer Theory Last updated: November, Circuits

Notes on Computer Theory Last updated: November, Circuits Notes on Computer Theory Last updated: November, 2015 Circuits Notes by Jonathan Katz, lightly edited by Dov Gordon. 1 Circuits Boolean circuits offer an alternate model of computation: a non-uniform one

More information

2-LOCAL RANDOM REDUCTIONS TO 3-VALUED FUNCTIONS

2-LOCAL RANDOM REDUCTIONS TO 3-VALUED FUNCTIONS 2-LOCAL RANDOM REDUCTIONS TO 3-VALUED FUNCTIONS A. Pavan and N. V. Vinodchandran Abstract. Yao (in a lecture at DIMACS Workshop on structural complexity and cryptography, 1990) showed that if a language

More information

Graph Isomorphism is in SPP

Graph Isomorphism is in SPP Graph Isomorphism is in SPP V. Arvind and Piyush P Kurur Institute of Mathematical Sciences, C.I.T Campus Chennai 600113, India email: {arvind,ppk}@imsc.ernet.in Abstract We show that Graph Isomorphism

More information

Lecture 21: Algebraic Computation Models

Lecture 21: Algebraic Computation Models princeton university cos 522: computational complexity Lecture 21: Algebraic Computation Models Lecturer: Sanjeev Arora Scribe:Loukas Georgiadis We think of numerical algorithms root-finding, gaussian

More information

Randomized Computation

Randomized Computation Randomized Computation Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach. Ahto Buldas Ahto.Buldas@ut.ee We do not assume anything about the distribution of the instances of the problem

More information

Some Connections between Bounded Query Classes and Non-Uniform Complexity (Long Version)

Some Connections between Bounded Query Classes and Non-Uniform Complexity (Long Version) Some Connections between Bounded Query Classes and Non-Uniform Complexity (Long Version) Amihood Amir Bar-Ilan University Richard Beigel University of Illinois at Chicago William Gasarch University of

More information

Notes for Lecture 3... x 4

Notes for Lecture 3... x 4 Stanford University CS254: Computational Complexity Notes 3 Luca Trevisan January 18, 2012 Notes for Lecture 3 In this lecture we introduce the computational model of boolean circuits and prove that polynomial

More information

A Note on the Complexity of Network Reliability Problems. Hans L. Bodlaender Thomas Wolle

A Note on the Complexity of Network Reliability Problems. Hans L. Bodlaender Thomas Wolle A Note on the Complexity of Network Reliability Problems Hans L. Bodlaender Thomas Wolle institute of information and computing sciences, utrecht university technical report UU-CS-2004-001 www.cs.uu.nl

More information

GRAPH ISOMORPHISM IS LOW FOR PP

GRAPH ISOMORPHISM IS LOW FOR PP GRAPH ISOMORPHISM IS LOW FOR PP Johannes Köbler, Uwe Schöning and Jacobo Torán Abstract. We show that the graph isomorphism problem is low for PP and for C = P, i.e., it does not provide a PP or C = P

More information

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler

Complexity Theory VU , SS The Polynomial Hierarchy. Reinhard Pichler Complexity Theory Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien 15 May, 2018 Reinhard

More information

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181.

Outline. Complexity Theory EXACT TSP. The Class DP. Definition. Problem EXACT TSP. Complexity of EXACT TSP. Proposition VU 181. Complexity Theory Complexity Theory Outline Complexity Theory VU 181.142, SS 2018 6. The Polynomial Hierarchy Reinhard Pichler Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Complexity Theory Umans Complexity Theory Lectures Lecture 1a: Problems and Languages Classify problems according to the computational resources required running time storage space parallelism randomness

More information

SOLUTION: SOLUTION: SOLUTION:

SOLUTION: SOLUTION: SOLUTION: Convert R and S into nondeterministic finite automata N1 and N2. Given a string s, if we know the states N1 and N2 may reach when s[1...i] has been read, we are able to derive the states N1 and N2 may

More information

Lecture Examples of problems which have randomized algorithms

Lecture Examples of problems which have randomized algorithms 6.841 Advanced Complexity Theory March 9, 2009 Lecture 10 Lecturer: Madhu Sudan Scribe: Asilata Bapat Meeting to talk about final projects on Wednesday, 11 March 2009, from 5pm to 7pm. Location: TBA. Includes

More information

Variations of the Turing Machine

Variations of the Turing Machine Variations of the Turing Machine 1 The Standard Model Infinite Tape a a b a b b c a c a Read-Write Head (Left or Right) Control Unit Deterministic 2 Variations of the Standard Model Turing machines with:

More information

Reductions between Disjoint NP-Pairs

Reductions between Disjoint NP-Pairs Reductions between Disjoint NP-Pairs Christian Glaßer Lehrstuhl für Informatik IV Universität Würzburg, 97074 Würzburg, Germany Alan L. Selman Department of Computer Science and Engineering University

More information

Recognizing Tautology by a Deterministic Algorithm Whose While-loop s Execution Time Is Bounded by Forcing. Toshio Suzuki

Recognizing Tautology by a Deterministic Algorithm Whose While-loop s Execution Time Is Bounded by Forcing. Toshio Suzuki Recognizing Tautology by a Deterministic Algorithm Whose While-loop s Execution Time Is Bounded by Forcing Toshio Suzui Osaa Prefecture University Saai, Osaa 599-8531, Japan suzui@mi.cias.osaafu-u.ac.jp

More information

Reductions for One-Way Functions

Reductions for One-Way Functions Reductions for One-Way Functions by Mark Liu A thesis submitted in partial fulfillment of the requirements for degree of Bachelor of Science (Honors Computer Science) from The University of Michigan 2013

More information

Lecture Notes: The Halting Problem; Reductions

Lecture Notes: The Halting Problem; Reductions Lecture Notes: The Halting Problem; Reductions COMS W3261 Columbia University 20 Mar 2012 1 Review Key point. Turing machines can be encoded as strings, and other Turing machines can read those strings

More information

A Note on Quadratic Residuosity and UP

A Note on Quadratic Residuosity and UP A Note on Quadratic Residuosity and UP Jin-Yi Cai a, Robert A. Threlfall b a Computer Sciences Department, University of Wisconsin, 1210 West Dayton St, Madison, WI 53706, USA b B & C Group International,

More information

BALA RAVIKUMAR Department of Computer Science, Sonoma State University Rohnert Park, CA 94928, USA

BALA RAVIKUMAR Department of Computer Science, Sonoma State University Rohnert Park, CA 94928, USA International Journal of Foundations of Computer Science c World Scientific Publishing Company ON THE EXISTENCE OF LOOKAHEAD DELEGATORS FOR NFA BALA RAVIKUMAR Department of Computer Science, Sonoma State

More information

Then RAND RAND(pspace), so (1.1) and (1.2) together immediately give the random oracle characterization BPP = fa j (8B 2 RAND) A 2 P(B)g: (1:3) Since

Then RAND RAND(pspace), so (1.1) and (1.2) together immediately give the random oracle characterization BPP = fa j (8B 2 RAND) A 2 P(B)g: (1:3) Since A Note on Independent Random Oracles Jack H. Lutz Department of Computer Science Iowa State University Ames, IA 50011 Abstract It is shown that P(A) \ P(B) = BPP holds for every A B. algorithmically random

More information

Amplifying ZPP SAT[1] and the Two Queries Problem

Amplifying ZPP SAT[1] and the Two Queries Problem Amplifying and the Two Queries Problem Richard Chang Suresh Purini University of Maryland Baltimore County Abstract This paper shows a complete upward collapse in the Polynomial Hierarchy (PH) if for ZPP,

More information

PAPER On the Degree of Multivariate Polynomials over Fields of Characteristic 2

PAPER On the Degree of Multivariate Polynomials over Fields of Characteristic 2 IEICE TRANS. INF. & SYST., VOL.E88 D, NO.1 JANUARY 2005 103 PAPER On the Degree of Multivariate Polynomials over Fields of Characteristic 2 Marcel CRASMARU a), Nonmember SUMMARY We show that a problem

More information

CSE200: Computability and complexity Space Complexity

CSE200: Computability and complexity Space Complexity CSE200: Computability and complexity Space Complexity Shachar Lovett January 29, 2018 1 Space complexity We would like to discuss languages that may be determined in sub-linear space. Lets first recall

More information

Lecture 3 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

Lecture 3 (Notes) 1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak; Topics in Theoretical Computer Science March 7, 2016 Lecturer: Ola Svensson Lecture 3 (Notes) Scribes: Ola Svensson Disclaimer: These notes were written for the lecturer only and may contain inconsistent

More information

CSCE 551 Final Exam, Spring 2004 Answer Key

CSCE 551 Final Exam, Spring 2004 Answer Key CSCE 551 Final Exam, Spring 2004 Answer Key 1. (10 points) Using any method you like (including intuition), give the unique minimal DFA equivalent to the following NFA: 0 1 2 0 5 1 3 4 If your answer is

More information

Lecture 23 : Nondeterministic Finite Automata DRAFT Connection between Regular Expressions and Finite Automata

Lecture 23 : Nondeterministic Finite Automata DRAFT Connection between Regular Expressions and Finite Automata CS/Math 24: Introduction to Discrete Mathematics 4/2/2 Lecture 23 : Nondeterministic Finite Automata Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Last time we designed finite state automata

More information

On Computing Boolean Connectives of Characteristic Functions

On Computing Boolean Connectives of Characteristic Functions On Computing Boolean Connectives of Characteristic Functions Richard Chang Computer Science Department Cornell University Ithaca, NY 14853 Jim Kadin Computer Science Department University of Maine Orono,

More information

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH.

-bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE ATIME QSAT, GEOGRAPHY, SUCCINCT REACH. CMPSCI 601: Recall From Last Time Lecture 26 Theorem: All CFL s are in sac. Facts: ITADD, MULT, ITMULT and DIVISION on -bit integers are all in ThC. Th The following problems are complete for PSPACE NPSPACE

More information

NP Might Not Be As Easy As Detecting Unique Solutions

NP Might Not Be As Easy As Detecting Unique Solutions NP Might Not Be As Easy As Detecting Unique Solutions Richard Beigel Lehigh University Harry Buhrman x CWI Lance Fortnow { University of Chicago Abstract We construct an oracle A such that P A = P A and

More information

CMPS 217 Logic in Computer Science. Lecture #17

CMPS 217 Logic in Computer Science.   Lecture #17 CMPS 217 Logic in Computer Science https://courses.soe.ucsc.edu/courses/cmps217/spring13/01 Lecture #17 1 The Complexity of FO-Truth on a Structure Structure A Complexity of Th(A) Structure of the natural

More information

1 Computational Problems

1 Computational Problems Stanford University CS254: Computational Complexity Handout 2 Luca Trevisan March 31, 2010 Last revised 4/29/2010 In this lecture we define NP, we state the P versus NP problem, we prove that its formulation

More information

Canonical Disjoint NP-Pairs of Propositional Proof Systems

Canonical Disjoint NP-Pairs of Propositional Proof Systems Canonical Disjoint NP-Pairs of Propositional Proof Systems Christian Glaßer Alan L. Selman Liyu Zhang November 19, 2004 Abstract We prove that every disjoint NP-pair is polynomial-time, many-one equivalent

More information

Lecture 8: Alternatation. 1 Alternate Characterizations of the Polynomial Hierarchy

Lecture 8: Alternatation. 1 Alternate Characterizations of the Polynomial Hierarchy CS 710: Complexity Theory 10/4/2011 Lecture 8: Alternatation Instructor: Dieter van Melkebeek Scribe: Sachin Ravi In this lecture, we continue with our discussion of the polynomial hierarchy complexity

More information

On Languages with Very High Information Content

On Languages with Very High Information Content Computer Science Technical Reports Computer Science 5-1992 On Languages with Very High Information Content Ronald V. Book University of California, Santa Barbara Jack H. Lutz Iowa State University, lutz@iastate.edu

More information

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS Automata Theory Lecture on Discussion Course of CS2 This Lecture is about Mathematical Models of Computation. Why Should I Care? - Ways of thinking. - Theory can drive practice. - Don t be an Instrumentalist.

More information

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k.

P is the class of problems for which there are algorithms that solve the problem in time O(n k ) for some constant k. Complexity Theory Problems are divided into complexity classes. Informally: So far in this course, almost all algorithms had polynomial running time, i.e., on inputs of size n, worst-case running time

More information