arxiv: v2 [cs.it] 4 Jun 2014

Size: px
Start display at page:

Download "arxiv: v2 [cs.it] 4 Jun 2014"

Transcription

1 CYCLIC CODES OVER THE RING Z p [u,v]/ u 2,v 2,uv vu PRAMOD KUMAR KEWAT, BAPPADITYA GHOSH AND SUKHAMOY PATTANAYAK arxiv: v2 [cs.it] 4 Jun 2014 Abstract. Let p be a prime number. In this paper, we study cyclic codes over the ring Z p [u,v]/ u 2,v 2,uv vu. We find a unique set of generators for these codes. We also study the rank and the Hamming distance of these codes. We obtain all except one ternary optimal code of length 12 as the Gray image of the cyclic codes over the ring Z p [u,v]/ u 2,v 2,uv vu. We also characterize the p-ary image of these cyclic codes under the Gray map. 1. Introduction Let R be a ring. A linear code of length n over R is a R submodule of R n. A linear code C of length n over R is cyclic if c n 1,c 0,...,c n 2 ) C whenever c 0,c 1,...,c n 1 ) C. We can consider a cyclic code C of length n over R as an ideal in R[x]/ x n 1 via the following correspondence R n R[x]/ x n 1, c 0,c 1,...,c n 1 ) c 0 +c 1 x+ +c n 1 x n 1. The cyclic codes form an important class of codes due to their rich algebraic structures and play a significant role in algebraic coding theory. The structure of cyclic codes over rings has been discussed in a series of papers [1, 2, 5, 6, 7, 8, 9, 13, 17, 20]. The structures of cyclic codes of length n over a finite chain ring have been discussed in [11] when n is not divisible by the characteristic of the residue field R. The structures of cyclic codes of length n, where n is divisible by the characteristic of the residue field R, over some finite chain ring have been discussed in [3, 4, 10, 18]. Yildiz and Karadeniz in [21] have considered the ring F 2 [u,v]/ u 2,v 2,uv vu, which is not a chain ring, and studied cyclic codes of odd length over that. They have find some good binary codes as the Gray images of these cyclic codes. The authors of [12] have considered the more general ring F 2 [u 1,u 2,,u k ]/ u 2 i,u 2 j,u i u j u j u i, and studied the general properties of cyclic codes over these rings and characterized the nontrivial one-generator cyclic codes. Sobhani and Molakarimi in [19] extended these studies to cyclic codes over the ring F 2 m[u,v]/ u 2,v 2,uv vu. Let R u 2,v 2,p = Z p +uz p +vz p +uvz p, where u 2 = 0, v 2 = 0, uv = vu and p is a prime number. Note that the ring R u 2,v 2,p can also be viewed as the quotient ring Z p [u,v]/ u 2,v 2,uv vu. In this paper, we discuss the structure of cyclic codes of arbitrary length over the ring R u 2,v 2,p. We find a unique set of generators, rank and a minimal spanning set for these codes. We also find the Hamming distance of these codes for length p l. Note that the rank and 1991 Mathematics Subject Classification. 94B15. Key words and phrases. Cyclic codes, Hamming distance. 1

2 2 P.K. Kewat, B. Ghosh and S. Patnayak the Hamming distance of these cyclic codes for p = 2 have not been discussed in [12, 19, 21]. Hence getting the rank and the Hamming distance of the cyclic codes over R u 2,v 2,p are new even for p = 2. We obtain all except one optimal code over Z 3 of length 12 as the images of cyclic codes over R u 2,v 2,p under the Gray map. We also characterize the p-ary image of these cyclic codes under the Gray map. Let R u 2,p = Z p + uz p,u 2 = 0 and R u 2,p,n = R u 2,p/ x n 1. The line of arguments we have used to find a set of generators are similar to [3, 18]. Let C be a cyclic code over the ring R u 2,v 2,p. The idea to find a set of generators is as follows. We view the cyclic code C as an ideal in R u 2,v 2,p,n = R u 2,v 2,p/ x n 1. Then we define the projection map from R u 2,v 2,p,n R u 2,p,n and we get an ideal in R u 2,p,n, which gives a cyclic codes over R u 2,p. The structure of cyclic codes over R u 2,p is known from [18]. By pullback, we find a set of generators for a cyclic code over R u 2,v 2,p. By using the division algorithm and direct computations, we have find the rank of these cyclic codes. The line of arguments we have used to find minimum distance are similar to [3, 18]. This paper is organized as follows. In Section 2, we discuss the preliminaries that we need. In Section 3 we give a unique set of generators for the cyclic codes C over the ring R u 2,v 2,p. In Section 4, we find a minimal spanning set for these codes and discuss about the rank. In Section 5, we find the minimum distance of these codes for length p l. In Section 6, we discuss some of the examples of these codes and give a list of cyclic codes C of length 3 over R u 2,v 2,3 whose ternary image gives optimal code under the Gray map. In Section 7, we characterize the p-ary image of cyclic codes over R u 2,v 2,p under the Gray map. 2. Preliminaries A ring R is called local ring if R has a unique maximal ideal. Let R be a finite commutative local ring with maximal ideal M. We define the residue field R = R/M. Let µ : R[x] R[x] denote the natural ring homomorphism that maps r r + M and the variable x to x. We define the degree of the polynomial fx) R[x] as the degree of the polynomial µfx)) in R[x], i.e., degfx)) = degµfx)) see, for example, [16]). A polynomial fx) R[x] is called regular if it is not a zero divisor. The following conditions are equivalent for a finite commutative local ring R. Proposition 2.1. cf. [16, Exercise XIII.2c)]) Let R be a finite commutative local ring. Let fx) = a 0 +a 1 x+ +a n x n be in R[x], then the following are equivalent. 1) fx) is regular; 2) a 0,a 1,,a n = R; 3) a i is an unit for some i, 0 i n; 4) µfx)) 0; Proof. 1) 2) : If possible, let fx) be a regular polynomial but a 0,a 1,, a n R. Since a 0,a 1,,a n is an ideal and R is a local ring, we have a 0,a 1,,a n M. Therefore, all a i are non unit elements. In a finite local

3 Cyclic codes over the ring R u 2,v 2,p 3 ring, if M = b 1,b 2,,b n and the nilpotency index of b i are t i respectively, then the element b t b t bn tn 1 is the zero divisor of all non unit elements. So the polynomial gx) = b t b t bn tn 1 is the zero divisor of fx). That is fx)gx) = 0. Hence, a contradiction. Therefore, a 0,a 1,,a n = R. 2) 3) : If possible, let all a i are non unit. Then a i M for all i. This implies that R = M. This gives a contradiction. Hence, a i is an unit for some i, 0 i n. 3) 4) : If a i is an unit, then a i / M. This gives a i + M 0. Hence, µfx)) 0. 4) 1) : Let µfx)) 0. We have a i + M 0 for some i. Therefore, a i is an unit in R. So there does not exists non zero element d R such that da i = 0. By McCoy Theorem See [15, Theorem 2]), we can say that fx) is not a divisor zero. That is fx) is regular. The following version of the division algorithm holds true for polynomials over finite commutative local rings. Proposition 2.2. cf. [16, Exercise XIII.6]) Let R be a finite commutative local ring. Let fx) and gx) be non zero polynomials in R[x]. If gx) is regular, then there exist polynomials qx) and rx) in R[x] such that fx) = gx)qx) + rx) and degrx)) < deggx)) The ring R u 2,v 2,p. Let R u 2,v 2,p = Z p + uz p + vz p + uvz p,u 2 = 0, v 2 = 0 and uv = vu. It is easy to see that the ring R u 2,v 2,p is a finite commutative local ring with unique maximal ideal u,v. The set {{0}, u, v, u+αv, u,v } gives all ideals of R u 2,v 2,p, where α is a non zero element of Z p. Since the maximal ideal u,v is not principal, the ring R u 2,v 2,p is not a chain ring. Let gx) be a non zero polynomial in Z p [x]. By Proposition 2.1, it is easy to see that the polynomial gx) + up 1 x) + vp 2 x) + uvp 3 x) R u 2,v 2,p[x] is regular. Note that deggx)+up 1 x)+vp 2 x)+uvp 3 x)) = deggx)) The Gray Map. Letw L andw H anddenotetheleeweightandhammingweightrespectively. Following [21], we define the Lee weight as follows w L a+ub+vc+uvd) = w H a+b+c+d,c+d,b+d,d) a,b,c,d Z p. Again as in [21], we define the Gray map φ L : R u 2,v 2,p Z 4 p as follows φ L a+ub+vc+uvd) = a+b+c+d,c+d,b+d,d) a,b,c,d Z p. The Gray map naturally extend to R n u 2,v 2,p as distance preserving isometry φ L : R n u 2,v 2,p,Lee Weight) Z4n p,hamming weight) as follows φ L a 1,a 2,,a n ) = φ L a 1 ),φ L a 2 ),,φ L a n )) a i R u 2,v 2,p. By linearity of the map φ L we obtain the following.

4 4 P.K. Kewat, B. Ghosh and S. Patnayak Theorem 2.3. If C is a linear code over of length n, size p k and minimum Lee weight d, then φ L C) is a p-ary linear code with parameters [4n,k,d]. 3. A generator for cyclic codes over the ring R u 2,v 2,p Let p be a prime number and n be a positive integer. Let R u 2,v 2,p = Z p + uz p + vz p + uvz p,u 2 = 0, v 2 = 0 and uv = vu. We can write R u 2,v 2,p as R u 2,v 2,p = R u 2,p + vr u 2,p,v 2 = 0, where R u 2,p = Z p + uz p,u 2 = 0. Let R u 2,v 2,p,n = R u 2,v 2,p[x]/ x n 1. Let C be a cyclic code of length n over R u 2,v 2,p. We also consider C as an ideal in R u 2,v 2,p,n. We define the map ψ : R u 2,v 2,p R u 2,p by ψα+vβ) = α, where α,β R u 2,p. Clearly the map ψ is a ring homomorphism. We extend this homomorphism to a homomorphism φ from C to the ring R u 2,p,n defined by φc 0 +c 1 x+ +c n 1 x n 1 ) = ψc 0 )+ψc 1 )x+ +ψc n 1 )x n 1, where c i R u 2,v 2,p. Let J = {rx) R u 2,p,n[x] : vrx) kerφ}. We see that J is an ideal of R u 2,p,n. Hence we can consider J as a cyclic code over R u 2,p. Now we know from [18] that any ideal of R u 2,p,n is of the form hx)+uqx),ubx), where hx),qx),bx) Z p [x], bx) hx) x n 1) mod p and bx) qx) x n 1 hx) ). So J = hx)+uqx),ubx). Therefore, we can write kerφ = vhx)+uvqx), uvbx). Since φ is a homomorphism, the image Imφ is an ideal of R u 2,p,n. Hence, Imφ is a cyclic code over R u 2,p. Again we can write Imφ as above. That is Imφ = gx)+upx),uax), where ax) gx) x n 1) mod p and ax) px) x n 1 gx) ). So the code C can be written as C = gx)+ up 1 x)+vq 1 x)+uvr 1 x),ua 1 x)+vq 2 x)+uvr 2 x),va 2 x)+uvr 3 x),uva 3 x), where a 3 x) a 1 x) gx) x n 1) and a 3 x) a 2 x) gx) x n 1). For an ideal C of the ring R u 2,v 2,p,n = R u 2,v 2,p[x]/ x n 1, we define the residue and the torsion of the ideal C as see [12]) ResC) = {a R u 2,p,n b R u 2,p,n : a+vb C} and TorC) = {a R u 2,p,n va C} It can be easily shown that when C is an ideal of R u 2,v 2,p,n, ResC) and TorC) both are ideals of R u 2,p,n. And also it is easy to show that ResC) = Imφ and TorC) = J. Now we define four ideals associated to C. C 1 = ResResC)) = C mod u,v, C 2 = TorResC)) = {fx) Z p [x] ufx) C mod v}, C 3 = ResTorC)) = {fx) Z p [x] vfx) C mod uv} and C 4 = TorTorC)) = {fx) Z p [x] uvfx) C}. These are ideals of Z p [x]/ x n 1, hence principal ideal and we have C 1 = gx), C 2 = a 1 x), C 3 = a 2 x), C 4 = a 3 x). Theorem 3.1. Any ideal C of the ring R u 2,v 2,p,n is uniquely generated by the polynomial A 1 x) = gx)+up 1 x) +vq 1 x) +uvr 1 x), A 2 x) = ua 1 x)+ vq 2 x)+uvr 2 x), A 3 x) = va 2 x)+uvr 3 x) and A 4 x) = uva 3 x) where p i x) s,

5 Cyclic codes over the ring R u 2,v 2,p 5 q i x) s, r i x) s are zero or degp 1 x)) < dega 1 x)), degq 1 x)) < dega 2 x)), degr 1 x)) < dega 3 x)), degq 2 x)) < dega 2 x)), degr 2 x)) < dega 3 x)), degr 3 x)) < dega 3 x)). Proof. We prove the degree results for the p 1 x), q 1 x) and r 1 x) only. Others followsimilarly. Let A 1 x) 0 anddegp 1 x)) dega 1 x)). Then bydivision algorithm, we have p 1 x) = a 1 x)qx)+rx) where degrx)) < dega 1 x)) or rx) = 0. Now A 1 x) qx)a 2 x) = gx) + urx) + vq 1 x) qx)q 2 x)) + uvr 1 x) qx)r 2 x)) C. Now if degq 1 x) qx)q 2 x)) dega 2 x)) then by division algorithm, we have q 1 x) qx)q 2 x) = a 2 x)q x) + r x), where degr x)) < dega 2 x)). Therefore, A 1 x) qx)a 2 x) q x)a 3 x) = gx)+urx)+vr x)+uvr 1 x) qx)r 2 x) q x)r 3 x)) C. Again by division algorithm, we have r 1 x) qx)r 2 x) q x)r 3 x) = a 3 x)q x)+r x), where degr x)) < dega 3 x)) and hence A 1 x) qx)a 2 x) q x)a 3 x) q x)a 4 x) = gx) + urx) + vr x) + uvr x) C. Now this polynomial satisfies our required property and also the polynomial A 1 x) can be replaced by this polynomial. Now we have to prove that the polynomials A i x) s are unique. Here again, we prove the uniqueness only for polynomial A 1 x). If possible, let A 1 x) = gx) + up 1 x) + vq 1 x) + uvr 1 x) and B 1 x) = gx) + up 1x)+vq 1x)+uvr 1x) are two polynomial with same property in C. Hence, A 1 x) B 1 x) = up 1 x) p 1 x))+vq 1x) q 1 x))+uvr 1x) r 1 x)) C. Sincep 1 x) p 1 x) C 2 anddegp 1 x) p 1 x)) < dega 1x))sop 1 x) p 1 x) = 0 or p 1 x) = p 1 x). Similarly we have q 1x) = q 1 x) and r 1x) = r 1 x). Therefore, A 1 x) = B 1 x). Proposition 3.2. Let C = gx)+up 1 x)+vq 1 x)+uvr 1 x),ua 1 x)+vq 2 x)+ uvr 2 x),va 2 x)+uvr 3 x),uva 3 x) be an ideal of the ring R u 2,v 2,p,n. Then we must have a 3 x) gx),a 3 x) a 1 x),a 3 x) a 2 x),a 2 x) gx),a 1 x) gx),gx) x n 1), 1) ) x n 1 a 1 x) p 1 x), 2) gx) a 2 x) xn 1 q 1 x) p ) 1x) gx) a 1 x) q 2x), 3) a 2 x) gx) a 1 x) q 2x), 4) a 3 x) q 2 x), 5) a 3 x) xn 1 a 2 x) r 3x), 6) a 3 x) xn 1 r 2 x) q ) 2x) a 1 x) a 2 x) r 3x), 7) a 3 x) p 1 x) gx) ) a 2 x) r 3x), 8) a 3 x) q 1 x) gx) ) a 1 x) r gx) 2x)+ a 1 x)a 2 x) q 2x)r 3 x), 9)

6 6 P.K. Kewat, B. Ghosh and S. Patnayak a 3 x) xn 1 gx) r 1 x) p 1x) a 1 x) r 2x)+ q p 1 x) 1x)+ q ) a 1 x) 2x) r 3 x). 10) a 2 x) Proof. Conditions given in 1) is clear from the above discussion. Condition 2) follows from the facts that xn 1 gx)+up gx) 1x)+vq 1 x)+uvr 1 x)) = u xn 1 p gx) 1x)+v xn 1 q gx) 1x)+uv xn 1 r gx) 1x) C. That is u xn 1 p gx) 1x) C mod v. Which implies that xn 1 p gx) 1x) C 2. So a 1 x) xn 1 p gx) 1x). For condition 3), we can write xn 1 gx)+up gx) 1x)+vq 1 x)+uvr 1 x)) xn 1 p 1 x) ua gx) a 1 x) 1x)+vq 2 x)+ uvr 2 x)) = v xn 1 q1 x) p 1x) q gx) a 1 x) 2x) ) +uv xn 1 r1 x) p 1x) r gx) a 1 x) 2x) ) C. Now v xn 1 q1 x) p 1x) q gx) a 1 x) 2x) ) C mod uv. So xn 1 q1 x) p 1x) q gx) a 1 x) 2x) ) C 3. Hence, a 2 x) xn 1 q1 x) p 1x) q gx) a 1 x) 2x) ). For condition 4), we have ugx) + up 1 x)+vq 1 x)+uvr 1 x)) gx) a 1 x) ua 1x)+vq 2 x)+uvr 2 x)) = v gx) a 1 x) q 2x) ) + uv q 1 x) gx) r a 1 x) 2x) ) C. Now v gx) q a 1 x) 2x) ) C mod uv. This gives gx) q a 1 x) 2x) ) C 3. So we have a 2 x) gx) q a 1 x) 2x). For condition 5), we have uua 1 x) + vq 2 x) + uvr 2 x)) = uvq 2 x) C. Therefore, q 2 x) C 4. Hence, a 3 x) q 2 x). For condition 6), we have xn 1 va a 2 x) 2x) + uvr 3 x)) = uv xn 1 r a 2 x) 3x) C. So xn 1 r a 2 x) 3x) C 4. Hence, a 3 x) xn 1 r a 2 x) 3x) C. Condition 7)followsfromthefactthat xn 1 ua a 1 x) 1x)+vq 2 x)+uvr 2 x)) xn 1 q 2 x) va a 1 x) a 2 x) 2x)+ uvr 3 x)) = uv xn 1 r2 a 1 x) q 2x) r x) a 2 x) 3x) ) C. So xn 1 r2 a 1 x) q 2x) r x) a 2 x) 3x) ) C 4. Hence, a 3 x) xn 1 r2 a 1 x) q 2x) r x) a 2 x) 3x) ). For condition 8), we have vgx) + up 1 x)+vq 1 x)+uvr 1 x)) gx) va a 2 x) 2x)+uvr 3 x)) = uv p 1 x) gx) r a 2 x) 3x) ) C. So p 1 x) gx) r a 2 x) 3x) ) C 4. Therefore, a 3 x) p 1 x) gx) r a 2 x) 3x) ). For condition 9), we can write ugx)+up 1 x)+vq 1 x)+uvr 1 x)) gx) ua a 1 x) 1x)+ vq 2 x) + uvr 2 x)) + gx)q 2x) va a 1 x)a 2 x) 2x) + uvr 3 x)) = uv q 1 x) gx) r a 1 x) 2x) + gx) q a 1 x)a 2 x) 2x)r 3 x) ) C. Thisgives q 1 x) gx) r a 1 x) 2x)+ gx) q a 1 x)a 2 x) 2x)r 3 x) ) C 4. Hence, a 3 x) q 1 x) gx) r a 1 x) 2x)+ gx) q a 1 x)a 2 x) 2x)r 3 x) ). Finally for condition10),wecanwrite xn 1 gx)+up gx) 1x)+vq 1 x)+uvr 1 x)) xn 1 p 1 x) ua gx) a 1 x) 1x)+ vq 2 x) + uvr 2 x)) + xn 1 p 1 x) r a 1 x) 2x)+ q 1x)+ q 1 x)+ p 1 x) a 1 x) q 2x) a 2 x) gx) p 1 x) a 1 x) q 2x) a 2 x) q 1 x)+ p 1 x) a 1 x) q 2x) a 2 x) va 2 x) + uvr 3 x)) = uv xn 1 gx) r1 x) p 1x) r 3 x) ) C. Thisimpliesthat xn 1 gx) r 3 x) ) C 4. Hence, we have a 3 x) xn 1 gx) r1 x) r a 1 x) 2x)+ r1 x) p 1x) r a 1 x) 2x) + q 1 x)+ p 1 x) a 1 x) q 2x) a 2 x) r 3 x) ). The following theorem characterizes the free cyclic codes over R u 2,v 2,p. Proposition 3.3. If C = gx)+up 1 x)+vq 1 x)+uvr 1 x),ua 1 x)+vq 2 x)+ uvr 2 x),va 2 x)+uvr 3 x),uva 3 x) be a cyclic code over the ring R u 2,v 2,p, then C is a free cyclic code if and only if gx) = a 3 x). In this case, we have C =

7 Cyclic codes over the ring R u 2,v 2,p 7 gx)+up 1 x)+vq 1 x)+uvr 1 x) and gx)+up 1 x)+vq 1 x)+uvr 1 x)) x n 1) in R u 2,v 2,p. Proof. Let gx) = a 3 x). Since a 3 x) a 1 x) gx) and a 3 x) a 2 x) gx), we get gx) = a 1 x) = a 2 x) = a 3 x). Here, we have Imφ = gx)+up 1 x),ua 1 x) and Kerφ = v a 2 x) + ur 3 x),ua 3 x). From [18, Lemma 3.1], we get Imφ = gx) + up 1 x) and Kerφ = v a 2 x) + ur 3 x). Therefore, we have C = gx) + up 1 x) + vq 1 x) + uvr 1 x),va 2 x) + uvr 3 x). Note that degp 1 x)), degr 3 x))<deggx)). FromCondition8),wehavea 3 x) p 1 x) r 3 x)),this givesp 1 x) = r 3 x). Sovgx)+up 1 x)+vq 1 x)+uvr 1 x)) = vgx)+uvp 1 x) = va 2 x)+uvr 3 x).therefore, wehavec = gx)+up 1 x)+vq 1 x)+uvr 1 x) and C R n degg 1x)) u 2,v 2,p Hence, C is a free cyclic code. Conversely, if C is a free cyclic code, wemust havec = gx)+up 1 x)+vq 1 x)+uvr 1 x). Since uva 3 x) C, we have uva 3 x) = uvαgx) for some α Z p. Note that a 3 x) gx), hence by comparing the coefficients both sides, we get gx) = a 3 x). For the second condition, by division algorithm, we have x n 1 = gx)+up 1 x)+vq 1 x)+ uvr 1 x))qx) + rx), where rx) = 0 or degrx)) < deggx)). This implies that rx) = x n 1) gx)+up 1 x)+vq 1 x)+uvr 1 x))qx) C. Note that gx) + up 1 x) + vq 1 x) + uvr 1 x) is the lowest degree polynomial in C. So rx) = 0. Hence, gx)+up 1 x)+vq 1 x)+uvr 1 x)) x n 1) in R u 2,v 2,p. Note that we get the simpler form for the generators of the cyclic code over R u 2,v 2,p, like in the above theorem, if we have gx) = a 1 x),a 2 x) or a 3 x) = a 1 x),a 2 x) If n is relatively prime to p. Let n be relatively prime to p. If C is a cyclic code of length n over the ring R u 2,v 2,p, then from [18], we have Imφ) = gx)+ua 1 x) and kerφ = v a 2 x)+ ua 3 x) witha 1 x) gx) x n 1)anda 3 x) a 2 x) x n 1).Nowcombining these two wecanwritec = g 1 x)+ua 1 x)+vq 1 x)+uvr 1 x),va 2 x)+uva 3 x) with the same conditions as above on gx) and a i x). In order to get conditions on q 1 x) and r 1 x), we will define a homomorphism φ v : R u 2,v 2,p R v 2,p as φ v a+bu+cv +duv) = a+cv. Now with C as above, we get φ v C) = g 1 x) + vq 1 x),va 2 x). Note that φ v C) is a cyclic code of length n over R v 2,p. Therefore, from [18], we have a 2 x) g 1 x) x n 1), a 2 x) q 1 x) xn 1 and degq 1 x)) < dega 2 x)). Since a 1 x) n is relatively prime to p, x n 1 can be uniquely factored as product ) of distinct irreducible factors. Therefore, we must have g.c.d. a 2 x), xn 1 = a 1 x) 1. But we have a 2 x) q 1 x) xn 1 a 1 x), this gives a 2x) q 1 x). Since degq 1 x)) < dega 2 x)), this gives q 1 x) = 0. Thus we have proved the following theorem. Theorem 3.4. Let C be a cyclic code over the ring R u 2,v 2,p of length n. If n is relatively prime to p, then we have C = gx)+ua 1 x)+uvr 1 x),va 2 x)+ uva 3 x) with a 1 x) gx) x n 1) and a 3 x) a 2 x) gx) x n 1).

8 8 P.K. Kewat, B. Ghosh and S. Patnayak 4. Ranks and minimal spanning sets In this section, we find the rank and minimal spanning set of cyclic codes over the ring R u 2,v 2,p. Following Dougherty and Shiromoto [13, page 401], we define the rank of the code C by the minimum number of generators of C and define the free rank of C by the maximum of the ranks of R u 2,v 2,p-free submodules of C. Theorem 4.1. Let n be a positive integer not relatively prime to p and C be a cyclic code of length n over R u 2,v 2,p. If C = gx) + up 1 x) + vq 1 x) + uvr 1 x),ua 1 x)+vq 2 x)+uvr 2 x),va 2 x)+uvr 3 x),uva 3 x) with t = deggx)), t 1 = dega 1 x)), t 2 = dega 2 x)), t = min{dega 1 x)),dega 2 x))} and t 3 = dega 3 x)), then C has free rank n t, rank n+t+t t 1 t 2 t 3 and the minimal spanning set B = {gx)+up 1 x)+vq 1 x)+uvr 1 x),xgx)+up 1 x)+vq 1 x)+ uvr 1 x)),,x n t 1 gx) + up 1 x) + vq 1 x) + uvr 1 x)),ua 1 x) + vq 2 x) + uvr 2 x),xua 1 x)+vq 2 x)+uvr 2 x)),,x t t 1 1 ua 1 x)+vq 2 x)+uvr 2 x)), va 2 x)+uvr 3 x),xva 2 x)+uvr 3 x)),,x t t 2 1 va 2 x)+uvr 3 x)),uva 3 x), xuva 3 x)),,x t t 3 1 uva 3 x))}. Furthermore, if q 2 x) 0, we have C = p 4n+t+t 3t 1 2t 2 t 3 and if q 2 x) = 0, we have C = p 4n+t 2t 1 2t 2 t 3. Proof. Let t = dega 2 x). It is suffices to show that B spans the set B = {gx)+up 1 x)+vq 1 x)+uvr 1 x),xgx)+up 1 x)+vq 1 x)+uvr 1 x)),,x n t 1 gx) + up 1 x) + vq 1 x) + uvr 1 x)),ua 1 x) + vq 2 x) + uvr 2 x),xua 1 x) + vq 2 x)+uvr 2 x)),,x n t1 1 ua 1 x)+vq 2 x)+uvr 2 x)),va 2 x) +uvr 3 x), xva 2 x) + uvr 3 x)),,x n t2 1 va 2 x) + uvr 3 x)),uva 3 x),xuva 3 x)),, x n t3 1 uva 3 x))}. First we show that uvx t 2 t 3 a 3 x)) B. Let the leading coefficient of x t 2 t 3 a 3 x)) be α 3 and of a 2 x) + ur 3 x) be α 2. Then there exist a constant c 0 Z p such that α 3 = c 0 α 2. By the division algorithm, we have uvx t 2 t 3 a 3 x)) = uvc 0 a 2 x) + ur 3 x)) + uvmx), where uvmx) is a polynomial in C such that degmx)) < t 2. Now degmx)) t 3 because a 3 x) is minimum degree polynomial such that uva 3 x) C. So t 3 degmx) < t 2 and uvmx) = α 0 uva 3 x)+α 1 uva 3 x)+ +α t2 t 3 1uva 3 x). Thus uvx t 2 t 3 a 3 x)) B. Let t = dega 1 x). Since ua 1 x) + vq 2 x) + uvr 2 x)) is not regular, we can not take ua 1 x) + vq 2 x) + uvr 2 x) as divisor in the division algorithm. Here, by direct computation, we show that uvx t 1 t 3 a 3 x)) B. Since a 3 x) a 1 x), we have a 1 x) = qx)a 3 x) for some qx) Z p [x]. This we can write as a 1 x) = a 3 x)q 0 +q 1 x+ +q t1 t 3 x t 1 t 3 ). Clearly, q t1 t 3 0 by degree comparison). Thus, we have uva 3 x)x t 1 t 3 = uvqt 1 1 t 3 a 1 x) uva 3 x)q 0 +q 1 x+ +q t1 3 1x t 1 t 3 1 ). Note that vua 1 x)+ vq 2 x)+uvr 2 x)) = uva 1 x), thus, uva 3 x t 1 t 3 B. By taking gx)+up 1 x)+ vq 1 x)+uvr 1 x) as divisor and applying the division algorithm for ua 1 x)+ vq 2 x)+uvr 2 x)andva 2 x)+uvr 3 x), wecanshowthatx t t 1 ua 1 x)+vq 2 x)+ uvr 2 x)),x t t 2 va 2 x) + uvr 3 x)) B. Similarly others also can be shown. So B is a generating set. It is easy to see that the elements x i t 1 gx) + up 1 x)+vq 1 x)+uvr 1 x)),1 i n, x j t1 1 ua 1 x)+vq 2 x)+uvr 2 x)),1 j t, x k t2 1 va 2 x)+uvr 3 x)), 1 k t and x l t3 1 uva 3 x)),1 l t can not be written as the linear combination of its preceding elements and other elements in the set B. Here we will only show that x t t1 1 ua 1 x) +

9 Cyclic codes over the ring R u 2,v 2,p 9 vq 2 x)+uvr 2 x)) can not be written as linear combinations of gx)+up 1 x)+ vq 1 x)+uvr 1 x),xgx)+up 1 x)+vq 1 x)+uvr 1 x)),,x n t 1 gx)+up 1 x)+ vq 1 x)+uvr 1 x)),ua 1 x)+vq 2 x)+uvr 2 x),xua 1 x)+vq 2 x)+uvr 2 x)),, x t t 1 2 ua 1 x) + vq 2 x) + uvr 2 x)), va 2 x) + uvr 3 x),xva 2 x) + uvr 3 x)),,x t t 2 1 va 2 x)+uvr 3 x)),uva 3 x),xuva 3 x)),,x t t 3 1 uva 3 x)). The proof is similar for the rest. Suppose x t t 1 1 ua 1 x) + vq 2 x) + uvr 2 x)) can be written as linear combinations of the above elements. Then we have x t t 1 1 ua 1 x)+vq 2 x)+vur 2 x)) = α 1 gx)+up 1 x)+vq 1 x)+vur 1 x))+ α 2 xgx) + up 1 x) + vq 1 x) + vur 1 x)) + + α n t x n t 1 gx) + up 1 x) + vq 1 x) + vur 1 x)) + β 1 ua 1 x) + vq 2 x) + vur 2 x)) + β 2 xua 1 x) + vq 2 x) + vur 2 x))+ +β t t1 2x t t 1 2 ua 1 x)+vq 2 x)+vur 2 x))+γ 1 va 2 x)+vur 3 x))+ γ 2 xva 2 x)+vur 3 x))+ +γ t t2 x t t 2 1 va 2 x)+vur 3 x))+δ 1 xvua 3 x))+ δ 2 xvua 3 x))+ +δ t t 3 x t t 3 1 vua 3 x)), whereα i = α i1 +α i2 u+α i3 v+α i4 uv, β i = β i1 + β i2 u + β i3 v + β i4 uv, γ i = γ i1 + γ i2 u + γ i3 v + γ i4 uv and δ i = δ i1 +δ i2 u+δ i3 v +δ i4 uv. We have x t t 1 1 ua 1 x)+vq 2 x)+vur 2 x)) = α 11 +α 21 x+ +α n t)1 x n t 1 )gx) +uα 12 +α 22 x+ +α n t)2 x n t 1 )gx) +uα 11 +α 21 x+ +α n t)1 x n t 1 )p 1 x) +uβ 11 +β 21 x+ +β t t1 1)1x t t 1 2 )a 1 x) +vm 1 x)+uvm 2 x), where m 1 x) and m 2 x) are polynomials in Z p [x]. By comparing both sides, we have α i1 = 0, 1 i n t and x t t1 1 a 1 x) = α 12 + α 22 x + + α n t)2 x n t 1 )gx) + β 11 + β 21 x + + β t t1 1)1x t t1 2 )a 1 x). Note that degx t t1 1 a 1 x)) = t 1 but degα 12 +α 22 x+ +α n t)2 x n t 1 )gx)) t and degβ 11 +β 21 x+ +β t t1 1)1x t t1 2 )a 1 x)) t 2. Hence, this gives a contradiction. Theorem 4.2. Let n be a positive integer relatively prime to p and C be a cyclic code of length n over R u 2,v 2,p. If C = gx)+ua 1 x)+uvr 1 x),va 2 x)+ uva 3 x) with t = deggx)), t 2 = dega 2 x)), then C has rank n t 2 and C = p 4n 2t 2t 2. The minimal spanning set of C is B = {gx) + ua 1 x) + uvr 1 x),xgx) + ua 1 x) + uvr 1 x)),,x n t 1 gx) + ua 1 x) + uvr 1 x)), va 2 x)+uva 3 x),xa 2 x)+uva 3 x)),,x t t 2 1 va 2 x)+uva 3 x)). Proof. The proof is same as Theorem Minimum distance Let n be a positive integer not relatively prime to p. Let C be a cyclic code of length n over R u 2,v 2,p. We define C uv = {kx) R u 2,v 2,p,n : uvkx) C}. It is easy to see that C uv is a cyclic code over Z p. Theorem 5.1. Let n be not relatively prime to p. If C = gx) + up 1 x) + vq 1 x)+uvr 1 x),ua 1 x)+vq 2 x)+uvr 2 x),va 2 x)+uvr 3 x),uva 3 x) is a cyclic code of length n over R u 2,v 2,p Then C uv = a 3 x) and w H C) = w H C uv ).

10 10 P.K. Kewat, B. Ghosh and S. Patnayak Proof. We have uva 3 x) C, thus a 3 x) C uv. If bx) C uv, then uvbx) C and hence there exist polynomials b 1 x),b 2 x),b 3 x),b 4 x) Z p [x] such that uvbx) = b 1 x)uvgx) + b 2 x)uva 1 x) + b 3 x)uva 2 x) + b 4 x)uva 3 x). Since a 3 x) a 2 x) gx)anda 3 x) a 1 x) gx),wehaveuvbx) = mx)uva 3 x)forsome polynomial mx) Z p [x]. So, C uv a 3 x), and hence C uv = a 3 x). Let mx) = m 0 x)+um 1 x)+vm 2 x)+uvm 3 x) C, where m 0 x),m 1 x),m 2 x), m 3 x) Z p [x]. We have uvmx) = uvm 0 x), w H uvmx)) w H mx)) and uvc is subcode of C with w H uvc) w H C). Therefore, it is sufficient to focus on the subcode uvc in order to prove the theorem. Since uvc = uva 3 x), we get w H C) = w H C uv ). Definition 5.2. Let m = b l 1 p l 1 +b l 2 p l 2 + +b 1 p+b 0, b i Z p,0 i l 1, be the p-adic expansion of m. 1) If b l i 0 for all 1 i q,q < l, and b l i = 0 for all i,q + 1 i l, then m is said to have a p-adic length q zero expansion. 2) If b l i 0 for all 1 i q,q < l, b l q 1 = 0 and b l i 0 for some i,q+2 i l, then m is said to have p-adic length q non-zero expansion. 3) If b l i 0 for 1 i l, then m is said to have a p-adic length l expansion or p-adic full expansion. Lemma 5.3. Let C be a cyclic code over R u 2,v 2,p of length p l where l is a positive integer. Let C = ax) where ax) = x pl 1 1) b hx), 1 b < p. If hx) generates a cyclic code of length p l 1 and minimum distance d then the minimum distance dc) of C is b+1)d. Proof. For c C, we have c = x pl 1 1) b hx)mx) for some mx) R u 2,v 2,p [x]. x pl 1) Since hx) generates a cyclic code of length p l 1, we have wc) = wx pl 1 1) b hx)mx)) = wx pl 1b hx)mx))+w b C 1 x pl 1 b 1) hx)mx))+ +w b C b 1 x pl 1 hx)mx))+whx)mx)). Thus, dc) = b+1)d. Theorem 5.4. Let C be a cyclic code over R u 2,v 2,p of length p l where l is a positive integer. Then, C = gx) + up 1 x) + vq 1 x) + uvr 1 x),ua 1 x) + vq 2 x) + uvr 2 x),va 2 x) + uvr 3 x),uva 3 x) where gx) = x 1) t,a 1 x) = x 1) t 1,a 2 x) = x 1) t 2 and a 3 x) = x 1) t 3 for some t > t 1 > t 3 > 0 and t > t 2 > t 3 > 0 1) If t 3 p l 1, then dc) = 2. 2) If t 3 > p l 1, lett 3 = b l 1 p l 1 +b l 2 p l 2 + +b 1 p+b 0 be the p-adicexpansion of t 3 and a 3 x) = x 1) t 3 = x pl 1 1) b l 1 x pl 2 1) b l 2 x p1 1) b 1 x p0 1) b 0. a) If t 3 has a p-adic length q zero expansion or full expansion l = q), then dc) = b l 1 +1)b l 2 +1) b l q +1). b) If t 3 has a p-adic length q non-zero expansion, then dc) = 2b l 1 + 1)b l 2 +1) b l q +1). Proof. The first claim easily follows from Proposition 3.2. From Theorem 5.1, we see that dc) = duvc) = d x 1) t 3 ). Hence, we only need to determine the minimum weight of uvc = x 1) t 3.

11 Cyclic codes over the ring R u 2,v 2,p 11 1) If t 3 p l 1, then x 1) t 3 x 1) pl 1 t 3 = x 1) pl 1 = x pl 1 1) C. Thus, dc) = 2. 2) Let t 3 > p l 1. a) If t 3 has a p-adic length q zero expansion, we have t 3 = b l 1 p l 1 + b l 2 p l b l q p l q, and a 3 x) = x 1) t 3 = x pl 1 1) b l 1 x p l 2 1) b l 2 x p l q 1) b l q. Let hx) = x p l q 1) b l q. Then hx) generates a cyclic code of length p l q+1 and minimum distance b l q +1). By Lemma 5.3, the subcode generated by x pl q+1 1) b l q+1 hx) has minimum distance b l q+1 + 1)b l q + 1). By induction on q, we can see that the code generated by a 3 x) has minimum distance b l 1 + 1)b l 2 + 1) b l q + 1). Thus, dc) = b l 1 +1)b l 2 +1) b l q +1). b) If t 3 has a p-adic length q non-zero expansion, we have t 3 = b l 1 p l 1 + b l 2 p l 2 + +b 1 p+b 0,b l q 1 = 0. Let r = b l q 2 p l q 2 +b l q 3 p l q b 1 p +b 0 and hx) = x 1) r = x pl q 2 1) b l q 2 x p l q 3 1) b l q 3 x p 1 1) b 1 x p0 1) b 0. Since r < p l q 1, we have p l q 1 = r +j for some non-zero j. Thus, x 1) pl q 1 j hx) = x pl q 1 1) C. Hence, the subcode generated by hx) has minimum distance 2. By Lemma 5.3, the subcode generated by x pl q 1) b l q hx) hasminimum distance 2b l q +1). Byinductiononq, we can see that the code generated by a 3 x) has minimum distance 2b l 1 +1)b l 2 + 1) b l q +1). Thus, dc) = 2b l 1 +1)b l 2 +1) b l q +1). 6. Examples Example 6.1. Cyclic codes of length 3 over R u 2,v 2,3 = Z 3 + uz 3 + vz 3 + uvz 3,u 2 = 0,v 2 = 0,uv = vu: We have x 3 1 = x 1) 3 over R u 2,v 2,3. Let g = x 1. The non-zero cyclic codes of length 3 over R u 2,v 2,3 with generator polynomial, rank and minimum distance are given in table below. Table 1. Non zero cyclic codes of length 3 over R u 2,v 2,3. Non-zero generator polynomials Rank dc) < uvg 2 > 1 3 < uvg > 2 2 < uv > 3 1 < vg 2 +uvc 0 g > 1 3 < vg 2 +uvc 0,uvg > 2 2 < vg 2,uv > 3 1 < vg +uvc 0 > 2 2 < vg,uv > 3 1 < v > 3 1 < ug 2 +vc 0 g 2 +uvc 1 g > 1 3 < ug 2 +vc 0 g 2 +uvc 1,uvg > 2 2 < ug 2 +vc 0 g 2,uv > 3 1 < ug 2 +uvc 0 g,vg 2 +uvc 1 g > 2 3 < ug 2 +vc 0 g +uvc 1,vg 2 +uvc 2,uvg >, c 0 c 2 = 0 3 2

12 12 P.K. Kewat, B. Ghosh and S. Patnayak Non-zero generator polynomials Rank dc) < ug 2 +vc 0 g,vg 2,uv > 4 1 < ug 2 +uvc 0,vg +uvc 1 > 3 2 < ug 2 +vc 0,vg,uv > 4 1 < ug 2,v > 4 1 < ug +vc 0 g +uvc 1 > 2 2 < ug +vc 0 g,uv > 3 1 < ug +vc 0 g +uvc 1,vg 2 +uvc 2 > 3 2 < ug +vc 0 x+c 1 ),vg 2,uv > 4 1 < ug +uvc 0,vg +uvc 1 > 4 2 < ug +vc 0,vg,uv > 5 1 < ug,v > 5 1 < u+vc 0 x 2 +c 1 x+c 2 ) > 3 1 < u+vc 0 x+c 1 ),vg 2 > 4 1 < u+vc 0,vg > 5 1 < u,v > 6 1 < g 2 +uc 0 g +vc 1 g +uvc 2 g > 1 3 < g 2 +uc 0 g +vc 1 g +uvc 2,uvg > 2 2 < g 2 +uc 0 g +vc 1 g,uv > 3 1 < g 2 +uc 0 g +vc 1 +uvc 2,vg +uvc 3 > 2 2 < g 2 +uc 0 g +vc 1,vg,uv > 3 1 < g 2 +uc 0 g,v > 3 1 < g 2 +uc 0 +vc 1 g +uvc 2,ug +vc 3 g +uvc 4 > 2 2 < g 2 +uc 0 +vc 1 g +c 0 c 2 ),ug +vc 2 g,uv > 3 1 < g 2 +uvc 0,ug +uvc 1,vg +uvc 2 > 3 2 < g 2 +uc 0 +vc 1,ug +vc 2,vg,uv >, c 0 c 2 = < g 2 +uc 0,ug,v > 4 1 < g 2 +vc 0 g,u+vc 1 x+c 2 ),uv > 4 1 < g 2 +vc 0,u+vc 1,vg > 4 1 < g 2,u,v > 5 1 < g +uc 0 +vc 1 +uvc 2 > 2 2 < g +uc 0 +vc 1,uv > 3 1 < g +uc 0,v > 3 1 < g +vc 0,u+vc 1 > 3 1 < g,u,v > 4 1 < 1 > 3 1 Remark 6.2. If C is a cyclic code over a principal ideal ring R of length n, then from [14], we know that the following inequality holds for the Hamming distance dc) of C: dc) n Rank C +1. Note That R u 2,v 2,p is a local ring but not principal ideal ring. From Table 1, it is clear that if n is not relatively prime to p, then the above inequality does not hold for R u 2,v 2,p. Hence, in general, the above inequality may not hold for

13 Cyclic codes over the ring R u 2,v 2,p 13 a local ring. It is good problem to establish analogous inequality for a local ring. In Table 2, we give examples of optimal ternary codes obtained as the Gray images of cyclic codes over R u 2,v 2,3. In Table 2, [. ] will denote that the ternary code is an optimal code. From Table 2, we can see that we have obtained all ternary optimal code except [12,2,9]. Table 2. Ternary images of some cyclic codes of length 3 over R u 2,v 2,3. Non-zero generator polynomials φ L C) < uvg 2 > [12,1,12] < vg 2 +uv2g > [12,2,8] < ug 2 +vg 2 +uv2g > [12,3,8] < ug 2 +vg 2 +uv,uvg > [12,4,6] < ug 2,vg 2,uvg > [12,5,6] < ug 2 +vg,vg 2,uvg > [12,6,6] < ug+vg,uv > [12,7,4] < g 2,ug,vg > [12,8,3] < g 2,ug,vg,uv > [12,9,3] < g 2,ug,v > [12,10,2] < g,u+2v > [12,11,2] 7. The images of cyclic codes over R u 2,v 2,p Let T be a cyclic shift operator defined as Tc 0,c 1,,c n 1 )) = c n 1,c 0,,c n 2 ). A linear code C of length n is said to be an l-quasi cyclic code if T l c 0,c 1,,c n )) C whenever c 0,c 1,,c n ) C. Let φ L be the Gray map on R u 2,v 2,p as defined in 2.2. We can prove the following lemma and theorem in a similar way to [21, Lemma 5.2, Theorem 5.3]. Lemma 7.1. If T is a cyclic shiftoperator on vectors of length n, then φ L T = T 4 φ L. By using this lemma it is easy to prove the following theorem: Theorem 7.2. If C is a cyclic code of length n over R u 2,v 2,p, then φ L C) is a 4-quasi cyclic code of length 4n over Z p. References [1] Taher Abualrub, Ali Ghrayeb, and Robert H. Oehmke. A mass formula and rank of Z 4 cyclic codes of length 2 e. IEEE Trans. Inform. Theory, 5012): , [2] Taher Abualrub and Robert Oehmke. On the generators of Z 4 cyclic codes of length 2 e. IEEE Trans. Inform. Theory, 499): , [3] Taher Abualrub and Irfan Siap. Cyclic codes over the rings Z 2 +uz 2 and Z 2 +uz 2 + u 2 Z 2. Des. Codes Cryptogr., 423): , [4] MohammedAl-AshkerandMohammedHamoudeh.CycliccodesoverZ 2 +uz 2 +u 2 Z 2 + +u k 1 Z 2. Turkish J. Math., 354): , 2011.

14 14 P.K. Kewat, B. Ghosh and S. Patnayak [5] Thomas Blackford. Cyclic codes over Z 4 of oddly even length. Discrete Appl. Math., 1281):27 46, International Workshop on Coding and CryptographyWCC 2001) Paris). [6] A. Bonnecaze and P. Udaya. Cyclic codes and self-dual codes over F 2 + uf 2. IEEE Trans. Inform. Theory, 454): , [7] A. R. Calderbank and N. J. A. Sloane. Modular and p-adic cyclic codes. Des. Codes Cryptogr., 61):21 35, [8] A. Robert Calderbank, Eric M. Rains, P. W. Shor, and Neil J. A. Sloane. Quantum error correction via codes over GF4). IEEE Trans. Inform. Theory, 444): , [9] J. H. Conway and N. J. A. Sloane. Self-dual codes over the integers modulo 4. J. Combin. Theory Ser. A, 621):30 45, [10] H. Q. Dinh. Constayclic codes of length p s over F p m + uf p m. Journal of Algebra, 3245): , [11] H. Q. Dinh and S. Lopez-Permouth. Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inform. Theory, 508): , [12] Steven T. Dougherty, Suat Karadeniz, and Bahattin Yildiz. Cyclic codes over R k. Des. Codes Cryptogr., 631): , [13] Steven T. Dougherty and Keisuke Shiromoto. Maximum distance codes over rings of order 4. IEEE Trans. Inform. Theory, 471): , [14] H. Horimoto and K. A. Shiromoto. A singleton bound for linear codes over quasifrobenius rings. Proceedings of the 13th International Symposium on Applied Algebra, Algebraic Algorithms, and Error-Correcting Codes, Hawaii USA), pages 51 52, [15] N. H. McCoy. Remarks on divisors of zero. Amer. Math. Monthly, 49: , [16] B. R. McDonald. Finite rings with identity. Pure and Applied Mathematics. New York: Marcel Dekker, 28, [17] Vera S. Pless and Zhongqiang Qian. Cyclic codes and quadratic residue codes over Z 4. IEEE Trans. Inform. Theory, 425): , [18] Abhay Kumar Singh and Pramod Kumar Kewat. Cyclic codes over Z p [u]/ u k. Des. Codes Cryptogr., /s , [19] Reza Sobhani and Maryam Molakarimi. Some results on cyclic codes over the ring R 2,m. Turkish J. Math., 37: , [20] J. H. van Lint. Repeated-root cyclic codes. IEEE Trans. Inform. Theory, 372): , [21] Bahattin Yildiz and Suat Karadeniz. Cyclic codes over F 2 + uf 2 + F 2 + uvf 2. Des. Codes Cryptogr., 583): , Department of Applied Mathematics, Indian School of Mines, Dhanbad , India address: kewat.pk.am@ismdhanbad.ac.in, bappaditya.ghosh86@gmail.com, sukhamoy88@gmail.com

Linear, Cyclic and Constacyclic Codes over S 4 = F 2 + uf 2 + u 2 F 2 + u 3 F 2

Linear, Cyclic and Constacyclic Codes over S 4 = F 2 + uf 2 + u 2 F 2 + u 3 F 2 Filomat 28:5 (2014), 897 906 DOI 10.2298/FIL1405897O Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Linear, Cyclic and Constacyclic

More information

+ μf 3. + υf 3. Quantum codes from cyclic codes over F 3. + μυ F 3. Journal of Physics: Conference Series. Recent citations PAPER OPEN ACCESS

+ μf 3. + υf 3. Quantum codes from cyclic codes over F 3. + μυ F 3. Journal of Physics: Conference Series. Recent citations PAPER OPEN ACCESS Journal of Physics: Conference Series PAPER OPEN ACCESS Quantum codes from cyclic codes over F 3 + μf 3 + υf 3 + μυ F 3 To cite this article: Mehmet Özen et al 2016 J. Phys.: Conf. Ser. 766 012020 Recent

More information

Skew Cyclic Codes Of Arbitrary Length

Skew Cyclic Codes Of Arbitrary Length Skew Cyclic Codes Of Arbitrary Length Irfan Siap Department of Mathematics, Adıyaman University, Adıyaman, TURKEY, isiap@adiyaman.edu.tr Taher Abualrub Department of Mathematics and Statistics, American

More information

Repeated Root Constacyclic Codes of Length mp s over F p r +uf p r +...+u e 1 F p r

Repeated Root Constacyclic Codes of Length mp s over F p r +uf p r +...+u e 1 F p r Repeated Root Constacyclic Codes of Length mp s over F p r +uf p r +...+u e 1 F p r arxiv:1211.7326v1 [cs.it] 30 Nov 2012 Kenza Guenda and T. Aaron Gulliver December 3, 2012 Abstract We give the structure

More information

arxiv: v4 [cs.it] 26 Apr 2015

arxiv: v4 [cs.it] 26 Apr 2015 On cyclic codes over Z q +uz q arxiv:1501.03924v4 [cs.it] 26 Apr 2015 Jian Gao 1, Fang-Wei Fu 2, Ling Xiao 1, Rama Krishna Bandi 3 1. School of Science, Shandong University of Technology Zibo, 255091,

More information

Linear and Cyclic Codes over direct product of Finite Chain Rings

Linear and Cyclic Codes over direct product of Finite Chain Rings Proceedings of the 16th International Conference on Computational and Mathematical Methods in Science and Engineering CMMSE 2016 4 8 July 2016 Linear and Cyclic Codes over direct product of Finite Chain

More information

LIFTED CODES OVER FINITE CHAIN RINGS

LIFTED CODES OVER FINITE CHAIN RINGS Math. J. Okayama Univ. 53 (2011), 39 53 LIFTED CODES OVER FINITE CHAIN RINGS Steven T. Dougherty, Hongwei Liu and Young Ho Park Abstract. In this paper, we study lifted codes over finite chain rings. We

More information

Nonlinear Cyclic Codes over Z 4 whose Nechaev-Gray Images are Binary Linear Cyclic Codes

Nonlinear Cyclic Codes over Z 4 whose Nechaev-Gray Images are Binary Linear Cyclic Codes International Mathematical Forum, 1, 2006, no. 17, 809-821 Nonlinear Cyclic Codes over Z 4 whose Nechaev-Gray Images are Binary Linear Cyclic Codes Gerardo Vega Dirección General de Servicios de Cómputo

More information

Polynomials. Chapter 4

Polynomials. Chapter 4 Chapter 4 Polynomials In this Chapter we shall see that everything we did with integers in the last Chapter we can also do with polynomials. Fix a field F (e.g. F = Q, R, C or Z/(p) for a prime p). Notation

More information

+ 1 3 x2 2x x3 + 3x 2 + 0x x x2 2x + 3 4

+ 1 3 x2 2x x3 + 3x 2 + 0x x x2 2x + 3 4 Math 4030-001/Foundations of Algebra/Fall 2017 Polynomials at the Foundations: Rational Coefficients The rational numbers are our first field, meaning that all the laws of arithmetic hold, every number

More information

Some Open Problems on Quasi-Twisted and Related Code Constructions and Good Quaternary Codes

Some Open Problems on Quasi-Twisted and Related Code Constructions and Good Quaternary Codes Some Open Problems on Quasi-Twisted and Related Code Constructions and Good Quaternary Codes Nuh Aydin and Tsvetan Asamov Department of Mathematics Kenyon College Gambier, OH 43022 {aydinn,asamovt}@kenyon.edu

More information

Self-dual Repeated Root Cyclic and Negacyclic Codes over Finite Fields

Self-dual Repeated Root Cyclic and Negacyclic Codes over Finite Fields Self-dual Repeated Root Cyclic and Negacyclic Codes over Finite Fields K. Guenda Faculty of Mathematics USTHB University of Sciences and Technology of Algiers B.P. 32 El Alia, Bab Ezzouar, Algiers, Algeria

More information

7.1 Definitions and Generator Polynomials

7.1 Definitions and Generator Polynomials Chapter 7 Cyclic Codes Lecture 21, March 29, 2011 7.1 Definitions and Generator Polynomials Cyclic codes are an important class of linear codes for which the encoding and decoding can be efficiently implemented

More information

Algebra Review 2. 1 Fields. A field is an extension of the concept of a group.

Algebra Review 2. 1 Fields. A field is an extension of the concept of a group. Algebra Review 2 1 Fields A field is an extension of the concept of a group. Definition 1. A field (F, +,, 0 F, 1 F ) is a set F together with two binary operations (+, ) on F such that the following conditions

More information

Rings in Coding Theory

Rings in Coding Theory Rings in Coding Theory Steven T. Dougherty July 3, 2013 Cyclic Codes Cyclic Codes were first studied by Prange in 1957. Prange, E. Cyclic error-correcting codes in two symbols. Technical Note TN-57-103,

More information

Repeated-Root Self-Dual Negacyclic Codes over Finite Fields

Repeated-Root Self-Dual Negacyclic Codes over Finite Fields Journal of Mathematical Research with Applications May, 2016, Vol. 36, No. 3, pp. 275 284 DOI:10.3770/j.issn:2095-2651.2016.03.004 Http://jmre.dlut.edu.cn Repeated-Root Self-Dual Negacyclic Codes over

More information

Construction of Cyclic Codes over F 2 +uf 2 for DNA Computing

Construction of Cyclic Codes over F 2 +uf 2 for DNA Computing Construction of Cyclic Codes over F 2 +uf 2 for DNA Computing arxiv:1207.3385v1 [cs.it] 14 Jul 2012 Kenza Guenda and T. Aaron Gulliver Abstract We construct codes over the ring F 2 +uf 2 with u 2 = 0.

More information

Handout - Algebra Review

Handout - Algebra Review Algebraic Geometry Instructor: Mohamed Omar Handout - Algebra Review Sept 9 Math 176 Today will be a thorough review of the algebra prerequisites we will need throughout this course. Get through as much

More information

Self-Dual Codes over Commutative Frobenius Rings

Self-Dual Codes over Commutative Frobenius Rings Self-Dual Codes over Commutative Frobenius Rings Steven T. Dougherty Department of Mathematics University of Scranton Scranton, PA 18510, USA Email: doughertys1@scranton.edu Jon-Lark Kim Department of

More information

Polynomial Rings. i=0

Polynomial Rings. i=0 Polynomial Rings 4-15-2018 If R is a ring, the ring of polynomials in x with coefficients in R is denoted R[x]. It consists of all formal sums a i x i. Here a i = 0 for all but finitely many values of

More information

Moreover this binary operation satisfies the following properties

Moreover this binary operation satisfies the following properties Contents 1 Algebraic structures 1 1.1 Group........................................... 1 1.1.1 Definitions and examples............................. 1 1.1.2 Subgroup.....................................

More information

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials Outline MSRI-UP 2009 Coding Theory Seminar, Week 2 John B. Little Department of Mathematics and Computer Science College of the Holy Cross Cyclic Codes Polynomial Algebra More on cyclic codes Finite fields

More information

ON QUANTUM CODES FROM CYCLIC CODES OVER A CLASS OF NONCHAIN RINGS

ON QUANTUM CODES FROM CYCLIC CODES OVER A CLASS OF NONCHAIN RINGS Bull Korean Math Soc 53 (2016), No 6, pp 1617 1628 http://dxdoiorg/104134/bkmsb150544 pissn: 1015-8634 / eissn: 2234-3016 ON QUANTUM CODES FROM CYCLIC CODES OVER A CLASS OF NONCHAIN RINGS Mustafa Sari

More information

1. Algebra 1.5. Polynomial Rings

1. Algebra 1.5. Polynomial Rings 1. ALGEBRA 19 1. Algebra 1.5. Polynomial Rings Lemma 1.5.1 Let R and S be rings with identity element. If R > 1 and S > 1, then R S contains zero divisors. Proof. The two elements (1, 0) and (0, 1) are

More information

Polynomial Rings. (Last Updated: December 8, 2017)

Polynomial Rings. (Last Updated: December 8, 2017) Polynomial Rings (Last Updated: December 8, 2017) These notes are derived primarily from Abstract Algebra, Theory and Applications by Thomas Judson (16ed). Most of this material is drawn from Chapters

More information

Abstract Algebra: Chapters 16 and 17

Abstract Algebra: Chapters 16 and 17 Study polynomials, their factorization, and the construction of fields. Chapter 16 Polynomial Rings Notation Let R be a commutative ring. The ring of polynomials over R in the indeterminate x is the set

More information

Computations/Applications

Computations/Applications Computations/Applications 1. Find the inverse of x + 1 in the ring F 5 [x]/(x 3 1). Solution: We use the Euclidean Algorithm: x 3 1 (x + 1)(x + 4x + 1) + 3 (x + 1) 3(x + ) + 0. Thus 3 (x 3 1) + (x + 1)(4x

More information

3. Coding theory 3.1. Basic concepts

3. Coding theory 3.1. Basic concepts 3. CODING THEORY 1 3. Coding theory 3.1. Basic concepts In this chapter we will discuss briefly some aspects of error correcting codes. The main problem is that if information is sent via a noisy channel,

More information

WHILE the algebraic theory of error-correcting codes

WHILE the algebraic theory of error-correcting codes 1728 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 8, AUGUST 2004 Cyclic Negacyclic Codes Over Finite Chain Rings Hai Quang Dinh Sergio R. López-Permouth Abstract The structures of cyclic negacyclic

More information

MTH310 EXAM 2 REVIEW

MTH310 EXAM 2 REVIEW MTH310 EXAM 2 REVIEW SA LI 4.1 Polynomial Arithmetic and the Division Algorithm A. Polynomial Arithmetic *Polynomial Rings If R is a ring, then there exists a ring T containing an element x that is not

More information

Cyclic Codes and Self-Dual Codes Over

Cyclic Codes and Self-Dual Codes Over 1250 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 4, MAY 1999 Cyclic Codes and Self-Dual Codes Over A. Bonnecaze and P. Udaya TABLE I MULTIPLICATION AND ADDITION TABLES FOR THE RING F 2 + uf 2

More information

Math 547, Exam 2 Information.

Math 547, Exam 2 Information. Math 547, Exam 2 Information. 3/19/10, LC 303B, 10:10-11:00. Exam 2 will be based on: Homework and textbook sections covered by lectures 2/3-3/5. (see http://www.math.sc.edu/ boylan/sccourses/547sp10/547.html)

More information

MDS and Self-dual Codes over Rings

MDS and Self-dual Codes over Rings MDS and Self-dual Codes over Rings Kenza Guenda and T. Aaron Gulliver arxiv:1207.3384v1 [cs.it] 14 Jul 2012 July 17, 2012 Abstract In this paper we give the structure of constacyclic codes over formal

More information

Section IV.23. Factorizations of Polynomials over a Field

Section IV.23. Factorizations of Polynomials over a Field IV.23 Factorizations of Polynomials 1 Section IV.23. Factorizations of Polynomials over a Field Note. Our experience with classical algebra tells us that finding the zeros of a polynomial is equivalent

More information

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x f(x) = q(x)h(x) + r(x),

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x f(x) = q(x)h(x) + r(x), Coding Theory Massoud Malek Linear Cyclic Codes Polynomial and Words A polynomial of degree n over IK is a polynomial p(x) = a 0 + a 1 + + a n 1 x n 1 + a n x n, where the coefficients a 1, a 2,, a n are

More information

The Homogeneous Weight for R k, Related Gray Map and New Binary Quasi-Cyclic Codes

The Homogeneous Weight for R k, Related Gray Map and New Binary Quasi-Cyclic Codes Filomat 31:4 (2017), 885 897 DOI 102298/FIL1704885Y Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://wwwpmfniacrs/filomat The Homogeneous Weight for R k,

More information

Open Questions in Coding Theory

Open Questions in Coding Theory Open Questions in Coding Theory Steven T. Dougherty July 4, 2013 Open Questions The following questions were posed by: S.T. Dougherty J.L. Kim P. Solé J. Wood Hilbert Style Problems Hilbert Style Problems

More information

U + V = (U V ) (V U), UV = U V.

U + V = (U V ) (V U), UV = U V. Solution of Some Homework Problems (3.1) Prove that a commutative ring R has a unique 1. Proof: Let 1 R and 1 R be two multiplicative identities of R. Then since 1 R is an identity, 1 R = 1 R 1 R. Since

More information

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35 Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35 1. Let R be a commutative ring with 1 0. (a) Prove that the nilradical of R is equal to the intersection of the prime

More information

THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS I

THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS I J Korean Math Soc 46 (009), No, pp 95 311 THE GROUP OF UNITS OF SOME FINITE LOCAL RINGS I Sung Sik Woo Abstract The purpose of this paper is to identify the group of units of finite local rings of the

More information

IRREDUCIBLES AND PRIMES IN COMPUTABLE INTEGRAL DOMAINS

IRREDUCIBLES AND PRIMES IN COMPUTABLE INTEGRAL DOMAINS IRREDUCIBLES AND PRIMES IN COMPUTABLE INTEGRAL DOMAINS LEIGH EVRON, JOSEPH R. MILETI, AND ETHAN RATLIFF-CRAIN Abstract. A computable ring is a ring equipped with mechanical procedure to add and multiply

More information

Further linear algebra. Chapter II. Polynomials.

Further linear algebra. Chapter II. Polynomials. Further linear algebra. Chapter II. Polynomials. Andrei Yafaev 1 Definitions. In this chapter we consider a field k. Recall that examples of felds include Q, R, C, F p where p is prime. A polynomial is

More information

A few exercises. 1. Show that f(x) = x 4 x 2 +1 is irreducible in Q[x]. Find its irreducible factorization in

A few exercises. 1. Show that f(x) = x 4 x 2 +1 is irreducible in Q[x]. Find its irreducible factorization in A few exercises 1. Show that f(x) = x 4 x 2 +1 is irreducible in Q[x]. Find its irreducible factorization in F 2 [x]. solution. Since f(x) is a primitive polynomial in Z[x], by Gauss lemma it is enough

More information

On Linear Codes over a non-chain extension of Z 4

On Linear Codes over a non-chain extension of Z 4 On Linear Codes over a non-chain extension of Z 4 Dr.Bahattin YILDIZ Department of Mathematics, Fatih University Istanbul-TURKEY Joint work with Dr Suat Karadeniz June 2012 Dr.Bahattin YILDIZ Department

More information

On Skew Cyclic and Quasi-cyclic Codes Over F 2 + uf 2 + u 2 F 2

On Skew Cyclic and Quasi-cyclic Codes Over F 2 + uf 2 + u 2 F 2 Palestine Journal of Mathematics Vol. 4 Spec. 1) 015), 540 546 Palestine Polytechnic University-PPU 015 On Skew Cyclic and Quasi-cyclic Codes Over F + uf + u F Abdullah Dertli, Yasemin Cengellenmis and

More information

Factorization in Integral Domains II

Factorization in Integral Domains II Factorization in Integral Domains II 1 Statement of the main theorem Throughout these notes, unless otherwise specified, R is a UFD with field of quotients F. The main examples will be R = Z, F = Q, and

More information

CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and

CHAPTER I. Rings. Definition A ring R is a set with two binary operations, addition + and CHAPTER I Rings 1.1 Definitions and Examples Definition 1.1.1. A ring R is a set with two binary operations, addition + and multiplication satisfying the following conditions for all a, b, c in R : (i)

More information

Local Fields. Chapter Absolute Values and Discrete Valuations Definitions and Comments

Local Fields. Chapter Absolute Values and Discrete Valuations Definitions and Comments Chapter 9 Local Fields The definition of global field varies in the literature, but all definitions include our primary source of examples, number fields. The other fields that are of interest in algebraic

More information

Rings. EE 387, Notes 7, Handout #10

Rings. EE 387, Notes 7, Handout #10 Rings EE 387, Notes 7, Handout #10 Definition: A ring is a set R with binary operations, + and, that satisfy the following axioms: 1. (R, +) is a commutative group (five axioms) 2. Associative law for

More information

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UFD. Therefore

More information

Homework 8 Solutions to Selected Problems

Homework 8 Solutions to Selected Problems Homework 8 Solutions to Selected Problems June 7, 01 1 Chapter 17, Problem Let f(x D[x] and suppose f(x is reducible in D[x]. That is, there exist polynomials g(x and h(x in D[x] such that g(x and h(x

More information

Negacyclic and Constacyclic codes over finite chain rings June 29, 2008

Negacyclic and Constacyclic codes over finite chain rings June 29, 2008 Negacyclic and Constacyclic rings codes over finite chain June 29, 2008 THE ISLAMIC UNIVERSITY OF GAZA DEANERY OF HIGHER STUDIES FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Negacyclic and Constacyclic

More information

12 16 = (12)(16) = 0.

12 16 = (12)(16) = 0. Homework Assignment 5 Homework 5. Due day: 11/6/06 (5A) Do each of the following. (i) Compute the multiplication: (12)(16) in Z 24. (ii) Determine the set of units in Z 5. Can we extend our conclusion

More information

Mathematical Olympiad Training Polynomials

Mathematical Olympiad Training Polynomials Mathematical Olympiad Training Polynomials Definition A polynomial over a ring R(Z, Q, R, C) in x is an expression of the form p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, a i R, for 0 i n. If a n 0,

More information

1/30: Polynomials over Z/n.

1/30: Polynomials over Z/n. 1/30: Polynomials over Z/n. Last time to establish the existence of primitive roots we rely on the following key lemma: Lemma 6.1. Let s > 0 be an integer with s p 1, then we have #{α Z/pZ α s = 1} = s.

More information

The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes

The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes C Designs, Codes and Cryptography, 24, 313 326, 2001 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes NUH AYDIN Department

More information

Subdirectly Irreducible Modes

Subdirectly Irreducible Modes Subdirectly Irreducible Modes Keith A. Kearnes Abstract We prove that subdirectly irreducible modes come in three very different types. From the description of the three types we derive the results that

More information

Polynomial Rings. i=0. i=0. n+m. i=0. k=0

Polynomial Rings. i=0. i=0. n+m. i=0. k=0 Polynomial Rings 1. Definitions and Basic Properties For convenience, the ring will always be a commutative ring with identity. Basic Properties The polynomial ring R[x] in the indeterminate x with coefficients

More information

Algebra Homework, Edition 2 9 September 2010

Algebra Homework, Edition 2 9 September 2010 Algebra Homework, Edition 2 9 September 2010 Problem 6. (1) Let I and J be ideals of a commutative ring R with I + J = R. Prove that IJ = I J. (2) Let I, J, and K be ideals of a principal ideal domain.

More information

MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions

MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions MATH 3030, Abstract Algebra Winter 2012 Toby Kenney Sample Midterm Examination Model Solutions Basic Questions 1. Give an example of a prime ideal which is not maximal. In the ring Z Z, the ideal {(0,

More information

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x Coding Theory Massoud Malek Linear Cyclic Codes Polynomial and Words A polynomial of degree n over IK is a polynomial p(x) = a 0 + a 1 x + + a n 1 x n 1 + a n x n, where the coefficients a 0, a 1, a 2,,

More information

How many units can a commutative ring have?

How many units can a commutative ring have? How many units can a commutative ring have? Sunil K. Chebolu and Keir Locridge Abstract. László Fuchs posed the following problem in 960, which remains open: classify the abelian groups occurring as the

More information

Math Introduction to Modern Algebra

Math Introduction to Modern Algebra Math 343 - Introduction to Modern Algebra Notes Field Theory Basics Let R be a ring. M is called a maximal ideal of R if M is a proper ideal of R and there is no proper ideal of R that properly contains

More information

QUADRATIC RESIDUE CODES OVER Z 9

QUADRATIC RESIDUE CODES OVER Z 9 J. Korean Math. Soc. 46 (009), No. 1, pp. 13 30 QUADRATIC RESIDUE CODES OVER Z 9 Bijan Taeri Abstract. A subset of n tuples of elements of Z 9 is said to be a code over Z 9 if it is a Z 9 -module. In this

More information

Codes and Rings: Theory and Practice

Codes and Rings: Theory and Practice Codes and Rings: Theory and Practice Patrick Solé CNRS/LAGA Paris, France, January 2017 Geometry of codes : the music of spheres R = a finite ring with identity. A linear code of length n over a ring R

More information

Contents. 4 Arithmetic and Unique Factorization in Integral Domains. 4.1 Euclidean Domains and Principal Ideal Domains

Contents. 4 Arithmetic and Unique Factorization in Integral Domains. 4.1 Euclidean Domains and Principal Ideal Domains Ring Theory (part 4): Arithmetic and Unique Factorization in Integral Domains (by Evan Dummit, 018, v. 1.00) Contents 4 Arithmetic and Unique Factorization in Integral Domains 1 4.1 Euclidean Domains and

More information

Codes over an infinite family of algebras

Codes over an infinite family of algebras J Algebra Comb Discrete Appl 4(2) 131 140 Received: 12 June 2015 Accepted: 17 February 2016 Journal of Algebra Combinatorics Discrete tructures and Applications Codes over an infinite family of algebras

More information

Groups, Rings, and Finite Fields. Andreas Klappenecker. September 12, 2002

Groups, Rings, and Finite Fields. Andreas Klappenecker. September 12, 2002 Background on Groups, Rings, and Finite Fields Andreas Klappenecker September 12, 2002 A thorough understanding of the Agrawal, Kayal, and Saxena primality test requires some tools from algebra and elementary

More information

4.4 Noetherian Rings

4.4 Noetherian Rings 4.4 Noetherian Rings Recall that a ring A is Noetherian if it satisfies the following three equivalent conditions: (1) Every nonempty set of ideals of A has a maximal element (the maximal condition); (2)

More information

Math 120 HW 9 Solutions

Math 120 HW 9 Solutions Math 120 HW 9 Solutions June 8, 2018 Question 1 Write down a ring homomorphism (no proof required) f from R = Z[ 11] = {a + b 11 a, b Z} to S = Z/35Z. The main difficulty is to find an element x Z/35Z

More information

2a 2 4ac), provided there is an element r in our

2a 2 4ac), provided there is an element r in our MTH 310002 Test II Review Spring 2012 Absractions versus examples The purpose of abstraction is to reduce ideas to their essentials, uncluttered by the details of a specific situation Our lectures built

More information

50 Algebraic Extensions

50 Algebraic Extensions 50 Algebraic Extensions Let E/K be a field extension and let a E be algebraic over K. Then there is a nonzero polynomial f in K[x] such that f(a) = 0. Hence the subset A = {f K[x]: f(a) = 0} of K[x] does

More information

3 Solutions of congruences

3 Solutions of congruences 3 Solutions of congruences 3.1 The Chinese Remainder Theorem revisited Let f(x) be a polynomial with coefficients in Z. A congruence equation is of the form f(x) 0 (mod m), where m is a positive integer.

More information

Chapter 4 Finite Fields

Chapter 4 Finite Fields Chapter 4 Finite Fields Introduction will now introduce finite fields of increasing importance in cryptography AES, Elliptic Curve, IDEA, Public Key concern operations on numbers what constitutes a number

More information

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples Chapter 3 Rings Rings are additive abelian groups with a second operation called multiplication. The connection between the two operations is provided by the distributive law. Assuming the results of Chapter

More information

MDS Codes over Finite Principal Ideal Rings

MDS Codes over Finite Principal Ideal Rings MDS Codes over Finite Principal Ideal Rings Steven T. Dougherty Department of Mathematics University of Scranton Scranton, PA 18510, USA Email: doughertys1@scranton.edu Jon-Lark Kim Department of Mathematics,

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings Throughout these notes, F denotes a field. 1 Long division with remainder We begin with some basic definitions. Definition 1.1. Let f, g F [x]. We say that f divides g,

More information

Finite Fields. Mike Reiter

Finite Fields. Mike Reiter 1 Finite Fields Mike Reiter reiter@cs.unc.edu Based on Chapter 4 of: W. Stallings. Cryptography and Network Security, Principles and Practices. 3 rd Edition, 2003. Groups 2 A group G, is a set G of elements

More information

Rings. Chapter 1. Definition 1.2. A commutative ring R is a ring in which multiplication is commutative. That is, ab = ba for all a, b R.

Rings. Chapter 1. Definition 1.2. A commutative ring R is a ring in which multiplication is commutative. That is, ab = ba for all a, b R. Chapter 1 Rings We have spent the term studying groups. A group is a set with a binary operation that satisfies certain properties. But many algebraic structures such as R, Z, and Z n come with two binary

More information

Places of Number Fields and Function Fields MATH 681, Spring 2018

Places of Number Fields and Function Fields MATH 681, Spring 2018 Places of Number Fields and Function Fields MATH 681, Spring 2018 From now on we will denote the field Z/pZ for a prime p more compactly by F p. More generally, for q a power of a prime p, F q will denote

More information

Algebra Qualifying Exam August 2001 Do all 5 problems. 1. Let G be afinite group of order 504 = 23 32 7. a. Show that G cannot be isomorphic to a subgroup of the alternating group Alt 7. (5 points) b.

More information

Informal Notes on Algebra

Informal Notes on Algebra Informal Notes on Algebra R. Boyer Contents 1 Rings 2 1.1 Examples and Definitions................................. 2 1.2 Integral Domains...................................... 3 1.3 Fields............................................

More information

ϕ : Z F : ϕ(t) = t 1 =

ϕ : Z F : ϕ(t) = t 1 = 1. Finite Fields The first examples of finite fields are quotient fields of the ring of integers Z: let t > 1 and define Z /t = Z/(tZ) to be the ring of congruence classes of integers modulo t: in practical

More information

Discrete valuation rings. Suppose F is a field. A discrete valuation on F is a function v : F {0} Z such that:

Discrete valuation rings. Suppose F is a field. A discrete valuation on F is a function v : F {0} Z such that: Discrete valuation rings Suppose F is a field. A discrete valuation on F is a function v : F {0} Z such that: 1. v is surjective. 2. v(ab) = v(a) + v(b). 3. v(a + b) min(v(a), v(b)) if a + b 0. Proposition:

More information

Finite Fields and Their Applications

Finite Fields and Their Applications Finite Fields and Their Applications 17 2011 205 219 Contents lists available at ScienceDirect Finite Fields and Their Applications www.elsevier.com/locate/ffa Codes over R k, Gray maps and their binary

More information

(Rgs) Rings Math 683L (Summer 2003)

(Rgs) Rings Math 683L (Summer 2003) (Rgs) Rings Math 683L (Summer 2003) We will first summarise the general results that we will need from the theory of rings. A unital ring, R, is a set equipped with two binary operations + and such that

More information

Part IX ( 45-47) Factorization

Part IX ( 45-47) Factorization Part IX ( 45-47) Factorization Satya Mandal University of Kansas, Lawrence KS 66045 USA January 22 45 Unique Factorization Domain (UFD) Abstract We prove evey PID is an UFD. We also prove if D is a UFD,

More information

s with the Extended Lee Weight

s with the Extended Lee Weight Filomat 30:2 (2016), 255 268 DOI 10.2298/FIL1602255O Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat On Codes over Z p s with the

More information

GEOMETRIC CONSTRUCTIONS AND ALGEBRAIC FIELD EXTENSIONS

GEOMETRIC CONSTRUCTIONS AND ALGEBRAIC FIELD EXTENSIONS GEOMETRIC CONSTRUCTIONS AND ALGEBRAIC FIELD EXTENSIONS JENNY WANG Abstract. In this paper, we study field extensions obtained by polynomial rings and maximal ideals in order to determine whether solutions

More information

CHAPTER 10: POLYNOMIALS (DRAFT)

CHAPTER 10: POLYNOMIALS (DRAFT) CHAPTER 10: POLYNOMIALS (DRAFT) LECTURE NOTES FOR MATH 378 (CSUSM, SPRING 2009). WAYNE AITKEN The material in this chapter is fairly informal. Unlike earlier chapters, no attempt is made to rigorously

More information

φ(xy) = (xy) n = x n y n = φ(x)φ(y)

φ(xy) = (xy) n = x n y n = φ(x)φ(y) Groups 1. (Algebra Comp S03) Let A, B and C be normal subgroups of a group G with A B. If A C = B C and AC = BC then prove that A = B. Let b B. Since b = b1 BC = AC, there are a A and c C such that b =

More information

: Error Correcting Codes. November 2017 Lecture 2

: Error Correcting Codes. November 2017 Lecture 2 03683072: Error Correcting Codes. November 2017 Lecture 2 Polynomial Codes and Cyclic Codes Amnon Ta-Shma and Dean Doron 1 Polynomial Codes Fix a finite field F q. For the purpose of constructing polynomial

More information

: Coding Theory. Notes by Assoc. Prof. Dr. Patanee Udomkavanich October 30, upattane

: Coding Theory. Notes by Assoc. Prof. Dr. Patanee Udomkavanich October 30, upattane 2301532 : Coding Theory Notes by Assoc. Prof. Dr. Patanee Udomkavanich October 30, 2006 http://pioneer.chula.ac.th/ upattane Chapter 1 Error detection, correction and decoding 1.1 Basic definitions and

More information

Skew Cyclic and Quasi-Cyclic Codes of Arbitrary Length over Galois Rings

Skew Cyclic and Quasi-Cyclic Codes of Arbitrary Length over Galois Rings International Journal of Algebra, Vol. 7, 2013, no. 17, 803-807 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2013.310100 Skew Cyclic and Quasi-Cyclic Codes of Arbitrary Length over Galois

More information

COMMUTATIVE RINGS. Definition 3: A domain is a commutative ring R that satisfies the cancellation law for multiplication:

COMMUTATIVE RINGS. Definition 3: A domain is a commutative ring R that satisfies the cancellation law for multiplication: COMMUTATIVE RINGS Definition 1: A commutative ring R is a set with two operations, addition and multiplication, such that: (i) R is an abelian group under addition; (ii) ab = ba for all a, b R (commutative

More information

Graduate Preliminary Examination

Graduate Preliminary Examination Graduate Preliminary Examination Algebra II 18.2.2005: 3 hours Problem 1. Prove or give a counter-example to the following statement: If M/L and L/K are algebraic extensions of fields, then M/K is algebraic.

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include PUTNAM TRAINING POLYNOMIALS (Last updated: December 11, 2017) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 6. Unique Factorization Domains

D-MATH Algebra I HS18 Prof. Rahul Pandharipande. Solution 6. Unique Factorization Domains D-MATH Algebra I HS18 Prof. Rahul Pandharipande Solution 6 Unique Factorization Domains 1. Let R be a UFD. Let that a, b R be coprime elements (that is, gcd(a, b) R ) and c R. Suppose that a c and b c.

More information

On the Hamming distance of linear codes over a finite chain ring

On the Hamming distance of linear codes over a finite chain ring Loughborough University Institutional Repository On the Hamming distance of linear codes over a finite chain ring This item was submitted to Loughborough University's Institutional Repository by the/an

More information

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008 ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008 A passing paper consists of four problems solved completely plus significant progress on two other problems; moreover, the set of problems solved completely

More information