Physical Chemistry I for Biochemists. Lecture 18 (2/23/11) Announcement

Size: px
Start display at page:

Download "Physical Chemistry I for Biochemists. Lecture 18 (2/23/11) Announcement"

Transcription

1 Physcal Chestry I or Bochests Che34 Lecture 18 (2/23/11) Yoshtaka Ish Ch & HW6 Revew o Ch. 5 or Quz 2 Announceent Quz 2 has a slar orat wth Quz1. e s the sae. ~2 ns. Answer or HW5 wll be uploaded ths aternoon. Study t well or Quz 2 Questons ro HW6 to be covered n Quz 2: P5.2, 5.5, 5.6, 5.7, 5.8, 5.13, 5.14, 5.2, 5.22, 5.3 & Q1- Q2, where questons n red wll be studed today & green were nshed n Lecture 17. 1

2 w & q n varous process or deal gas ype o work w q U Expanson or P = U= C & H= C ext V P const sother -P ext V -w adabatc -P ext V -P ext V U/C V Reversble expanson/ copresson sother -nr ln(v n /V n ) -w adabatc C v C v n {(V n /V n ) a -1)} a=1-c P /C V =1- ype o work Irreversble P ext = const S or deal gas or constant w q S Isother -P ext V -w nrln(v /V ) Adabatc -P ext V nrln(v /V ) +nc v ln( / ) = + w/c V Reversble P =P ext sother -nr ln(v /V ) -w nrln(v /V ) adabatc C v n {(V n /V n ) a -1)} a=1-c P /C V =1-2

3 Calculated Change n Enthalpy (contnued) Case 5 (reversble) & 5 (rreversble) process: (, V ) (, V ) By calculatng S or (, V ) (, V ) (, V ) S nr [Q1 ln( ] V / V ncv, ln( / Case 6 & 6 (, P ) (, P ) By calculatng S or (, P ) (, P ) (, P ) (P/P = V /V ) S nrln( V / V ) nc P, ln( / ) [Q2 nrln( ] P / P ) nc P, ln( / ) P5.22) One ole o an deal gas wth C V, = 3/2 R s transored ro an ntal state = 6. and P = 1. bar to a nal state = 25. and P = 4.5 bar. Calculate U, H, and S or ths process. ΔU n C [Q1 ] ΔH n (C V, [Q2 ] V, (25-6) R)(25-6) S [Q3 nr ] ln( P / P ) nc ln( / ) ( P, 3

4 S 5.8 Absolute Entropes and he hrd Law o herodynacs he entropy o an eleent or a copound s experentally deterned ro Dq reversble =C p d Molar Entropy or Gas Sold Cp d ' H ( ) S( ) ' b C d " H " Lqud p, gas " vaporzaton, Cp, b b uson, d "' "' hrd Law o therodynacs - What s S ()? he entropy o a pure, perectly crystallne substance (eleent or copound) s zero at. C p, or O 2 P5.14) he standard entropy S at o Pb(s) s 64.8 J 1 ol 1. Assue that the heat capacty o Pb(s) s gven by C P, Pb,s J ol he eltng pont s C and the heat o uson under these condtons s 477. J ol 1. Assue that the heat capacty o Pb(l) s gven by C P, Pb,l a. Calculate the standard entropy S o Pb(l) at 5 C. Sold 2 Lqud C[Q1] p [Q2] H, C[Q3] uson p, S( 2 ) S( 1 ) d ' d" ' " 1 b. Calculate H or transoraton Pb(s, 25 C) Pb(l, 5 C). Sold Lqud H ( 1 2 ) C d ' H, C, d" 1 p uson 2 2 J 1 ol p 4

5 Dependence o S C p, / > and S vaporzaton, S uson > S ncreases as ncreases he orgn o C p, and S or Solds Nuber o degrees o reedo or olecule ade o n atos. N : ranslatonal: 3 N R : Rotatonal: Ato, Lnear 2, Non-Lnear 3 N V : Vbratonal: 3n N N R C p, & S hgher or a olecule wth ore atos. 5

6 5.9 Standard States n Entropy Calculaton (P12 For enthalpy, we dened H,A or the ost stable pure eleents at ( ) and 1 bar (P ) as. We dene standard state o Entropy as S = S (P, ) What s the relatonshp between S (P) and S (1 bar)? S (1 bar P) = Rln(P/P ) S (P) = S (P ) Rln(P/P ) Molar Entropy S 5.1 Entropy Change n Checal Reacton At and 1 bar A + 2B 2C + D S reacton = 2S C, + S D, S A, 2S B, In general SR ( ) XSX, X A() + 2B() 2C() + D() For a constant pressure Cpd ' S( ) S( 298 ) ' Q. How uch s C p or the above reacton? 298 C p 2C p, C Cp, D Cp, A 2C p, B Cp XCp, X 6

7 P5.2) Consder the oraton o glucose ro carbon doxde and water, that s, the reacton o the ollowng photosynthetc process: 6CO 2 (g) + 6H 2 O(l) C 6 H 12 O 6 (s) + 6O 2 (g). he ollowng table o noraton wll be useul n workng ths proble: Calculate the entropy and enthalpy changes or ths checal syste at (a) = 298 and (b) = 33.. Calculate also the entropy o the surroundng and the unverse at both teperatures. (a) S R = X S X (b) Cpd ' S( ) S( 298 ) ' 298 C p XC px 5.2 Heat Engnes and the Second Law o herodyacs Isother rev.: -PdV = -(nr/v)dv a b: q ab = -w ab =nr hot ln(v b /V a )> c d: q cd = -w cd = nr cold ln(v d /V c )< Adabatc: q= da & bc: q cd = q bc = Carnot Cycle For Cycle: U = w cycle + q ab +q cd = w cycle = -(q ab +q cd )< ( q ab > q cd ) Ecency = w cycle / q ab = q ab +q cd / q ab = 1 cold / hot < 1 7

8 P5.2 Consder the reversble Carnot cycle shown n Fgure 5.2 wth 1 ol o an deal gas wth C V = 3/2R as the workng substance. he ntal sotheral expanson occurs at the hot reservor teperature o hot = 6 C ro an ntal volue o 3.5 L (V a ) to a volue o 1. L (V b ). he syste then undergoes an adabatc expanson untl the teperature alls to cold = 15. C. he syste then undergoes an sotheral copresson and a subsequent adabatc copresson untl the ntal state descrbed by a = 6. C and V a = 3.5 L s reached. a. Calculate V c and V d. (V c /V b ) 1- =( [Q1 c / b ]) V c = V b (x c [Q2 / b ) (1/1-) ] (V a /V d ) 1- = ( a / d ) b. Calculate w or each step n the cycle and or the total cycle. w ab = -nr [Q3 a ln(v ] b /V a ) w bc = U bc = C v ([Q4 c - b )] c. Calculate and the aount o heat that s extracted ro the hot reservor to do 1. kj o work n the surroundngs. = w / q ab 5.11 Rergerator, Heat Pup and Real Engnes Carnot Cycle: w cycle < & q cycle > Reversed Carnot cycle: w cycle >&q cycle < q ab > q ab < Hot snk heated q cd < q cd > Cold snk cooled 8

9 Carnot Cycle Rergerator q ab > q ab < q cd < q cd > Rergeraton ecency or a reversble Carnot rergerator r = q cold /w = cold /( hot cold ) Ex. cold =.9 hot =9 (1 J o work 9 J o coolng) cold =.8 hot = 4 Rergeraton ecency or a reversble Carnot heat pup hp = q hot /w = hot /( hot cold ) Ipossble Heat Pup Calculated Change n Enthalpy (contnued) Case3 (3 ). Reversble change n or a xed V Dq ncv, d reversble S ncv, ln( / Case4 (4 ) ). Reversble change n or a xed P Dq ncp, d reversble S ncp, ln( / Case 5 (reversble) & 5 (rreversble) process: (, V ) (, V ) By calculatng S or (, V ) (, V ) (, V ) S nr ln( V / V ncv, ln( / Case 6 & 6 (, P ) (, P ) By calculatng S or (, P ) (, P ) (, P ) (P/P = V /V ) S nrln( V / V ncp ln( / nrln( P / P nc, ln( / ), P 9

10 When Cp or Cv s not constant P5.6) One ole o N 2 at 2.5 C and 6. bar undergoes a transoraton to the state descrbed by 145 C and 2.75 bar. Calculate S C P, J ol ΔS n p p n 3 C p, 2.75 bar d n ln [Q2] 6 6. bar nr ln [Q1] R a b c 2 / d 3 d J 1 Equatons to be eorzed or deal gas () For constant C v, or C p, U = nc v, [1] H = nc P P, = n(c v v, + R) [2] (1) For a reversble sotheral process, U = H = S = nrln(v /V ) w = -q = -nrln(v /V ) (2) For a reversble adabatc process (or C p,, C v, const) V V 1 p p 1 Useul or H &U calc. n [1] & [2] S [Q1] S nr ln( V / V ncv, ln( / S nrln( P / P ncp, ln( / 1

11 P5.13) One ole o an deal gas wth C V, = 5/2 R undergoes the transoratons descrbed n the ollowng lst ro an ntal state descrbed by = 25. and P = 1. bar. Calculate q, w, U, H, and S or each process. a. he gas undergoes a reversble adabatc expanson untl the nal pressure s hal ts ntal value. (a) q rev =. ds = Dq rev / = [Q1] V V 1 1 p p 1 1 p p p p Use X a =Y b X =Y b/a 1 Obtan w = U = [Q2] nc v, ; H = nc [Q3] P, P5.3) Calculate S surroundngs and S total or the processes descrbed n parts (a) and (b) o Proble P5.13. Whch o the processes s a spontaneous process? he state o the surroundngs or each part s as ollows: a. 25.,.5 bar (a) Reversble adabatc expanson b. 3.,.5 bar (b) Adabatc expanson at constant P ext =.5 bar (a, b) q surroundngs = S surroundngs = (a) S syste = [Q1] 11

12 (3) For an deal gas n a reversble adabatc process or -dependent C v () or C p () (Meorze) U nc, ( d H ncp, ( ) d V ) ncc P, ( ) d S nr ln( P / P ) S nr ln( V nc / V ) V, ( ) d (4) For an deal gas n a rreversble adabatc process at a constant external pressure (Cv, Cp const) U n C V, n R pexternal w Solve ths or p p H nc P, S nrln( P / P ncp, ln( / Q. What are U, H, S or P ext =? S nr ln( V / V ncv, ln( / P5.6) One ole o N 2 at 2.5 C and 6. bar undergoes a transoraton to the state descrbed by 145 C and 2.75 bar. Calculate S C P, J ol ΔS n 3 p C p, 2.75 bar nr ln n d n ln R p 6 6. bar a b c 2 d 3 d J 1 12

13 P5.13) One ole o an deal gas wth C V, = 5/2 R undergoes the transoratons descrbed n the ollowng lst ro an ntal state descrbed by = 25. and P = 1. bar. Calculate q, w, U, H, and S or each process. b. he gas undergoes an adabatc expanson aganst a constant external pressure o.5 bar untl the nal pressure s hal ts ntal value. U n C V, H ncp, p p n R p w external S nrln( P / P ncp, ln( / Solve ths or Q. Whch equaton should we use or S? 13

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11)

Physical Chemistry I for Biochemists. Chem340. Lecture 16 (2/18/11) hyscal Chemstry I or Bochemsts Chem34 Lecture 16 (/18/11) Yoshtaka Ish Ch4.6, Ch5.1-5.5 & HW5 4.6 Derental Scannng Calormetry (Derental hermal Analyss) sample = C p, s d s + dh uson = ( s )Kdt, [1] where

More information

Chapter 5 rd Law of Thermodynamics

Chapter 5 rd Law of Thermodynamics Entropy and the nd and 3 rd Chapter 5 rd Law o hermodynamcs homas Engel, hlp Red Objectves Introduce entropy. Derve the condtons or spontanety. Show how S vares wth the macroscopc varables,, and. Chapter

More information

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit Problem Set #6 soluton, Chem 340, Fall 2013 Due Frday, Oct 11, 2013 Please show all work for credt To hand n: Atkns Chap 3 Exercses: 3.3(b), 3.8(b), 3.13(b), 3.15(b) Problems: 3.1, 3.12, 3.36, 3.43 Engel

More information

General Formulas applicable to ALL processes in an Ideal Gas:

General Formulas applicable to ALL processes in an Ideal Gas: Calormetrc calculatons: dq mcd or dq ncd ( specc heat) Q ml ( latent heat) General Formulas applcable to ALL processes n an Ideal Gas: P nr du dq dw dw Pd du nc d C R ( monoatomc) C C R P Specc Processes:

More information

Chapter One Mixture of Ideal Gases

Chapter One Mixture of Ideal Gases herodynacs II AA Chapter One Mxture of Ideal Gases. Coposton of a Gas Mxture: Mass and Mole Fractons o deterne the propertes of a xture, we need to now the coposton of the xture as well as the propertes

More information

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

Chapter 12 Lyes KADEM [Thermodynamics II] 2007 Chapter 2 Lyes KDEM [Therodynacs II] 2007 Gas Mxtures In ths chapter we wll develop ethods for deternng therodynac propertes of a xture n order to apply the frst law to systes nvolvng xtures. Ths wll be

More information

#64. ΔS for Isothermal Mixing of Ideal Gases

#64. ΔS for Isothermal Mixing of Ideal Gases #64 Carnot Heat Engne ΔS for Isothermal Mxng of Ideal Gases ds = S dt + S T V V S = P V T T V PV = nrt, P T ds = v T = nr V dv V nr V V = nrln V V = - nrln V V ΔS ΔS ΔS for Isothermal Mxng for Ideal Gases

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2013

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2013 Lecture 8/8/3 Unversty o Washngton Departent o Chestry Chestry 45/456 Suer Quarter 3 A. The Gbbs-Duhe Equaton Fro Lecture 7 and ro the dscusson n sectons A and B o ths lecture, t s clear that the actvty

More information

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A.

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Chapter 3 Gas Mxtures Study Gude n PowerPont to accopany Therodynacs: An Engneerng Approach, 5th edton by Yunus A. Çengel and Mchael A. Boles The dscussons n ths chapter are restrcted to nonreactve deal-gas

More information

Lecture 6. Entropy of an Ideal Gas (Ch. 3)

Lecture 6. Entropy of an Ideal Gas (Ch. 3) Lecture 6. Entropy o an Ideal Gas (Ch. oday we wll acheve an portant goal: we ll derve the equaton(s o state or an deal gas ro the prncples o statstcal echancs. We wll ollow the path outlned n the prevous

More information

Thermodynamics and Gases

Thermodynamics and Gases hermodynamcs and Gases Last tme Knetc heory o Gases or smple (monatomc) gases Atomc nature o matter Demonstrate deal gas law Atomc knetc energy nternal energy Mean ree path and velocty dstrbutons From

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

Thermodynamics Second Law Entropy

Thermodynamics Second Law Entropy Thermodynamcs Second Law Entropy Lana Sherdan De Anza College May 8, 2018 Last tme the Boltzmann dstrbuton (dstrbuton of energes) the Maxwell-Boltzmann dstrbuton (dstrbuton of speeds) the Second Law of

More information

3-1 Introduction: 3-2 Spontaneous (Natural) Process:

3-1 Introduction: 3-2 Spontaneous (Natural) Process: - Introducton: * Reversble & Irreversble processes * Degree of rreversblty * Entropy S a state functon * Reversble heat engne Carnot cycle (Engne) * Crteron for Eulbrum SU,=Smax - Spontaneous (Natural)

More information

Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0)

Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0) Summarizing, Key Point: An irreversible process is either spontaneous (ΔS universe > 0) or does not occur (ΔS universe < 0) Key Point: ΔS universe allows us to distinguish between reversible and irreversible

More information

Physics 123. Exam #1. October 11, 2006

Physics 123. Exam #1. October 11, 2006 hyscs Exa # October, 006 roble /0 roble /0 roble /0 roble 4 /0 roble 5 /0 roble 6 /0 roble 7 /0 roble 8 /0 roble 9 /0 roble 0 /0 Total /00 Free-Response robles: lease show all work n order to receve partal

More information

Physical Chemistry I for Biochemists Chem340. Lecture 26 (3/14/11)

Physical Chemistry I for Biochemists Chem340. Lecture 26 (3/14/11) Physical Cheistry I or Biocheists Che340 Lecture 26 (3/14/11) Yoshitaka Ishii Ch 7.2, 7.4-5, & 7.10 Announceent Exa 2 this Friday. Please be well prepared! HW average 80-85. You will probably have one

More information

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by ES 5 (phy 40). a) Wrte the zeroth law o thermodynamcs. b) What s thermal conductvty? c) Identyng all es, draw schematcally a P dagram o the arnot cycle. d) What s the ecency o an engne and what s the coecent

More information

Obtaining U and G based on A above arrow line: )

Obtaining U and G based on A above arrow line: ) Suary or ch,,3,4,5,6,7 (Here soe olar propertes wthout underlne) () he three laws o herodynacs - st law: otal energy o syste (SYS) plus surroundng (SUR) s conserved. - nd law: otal change o entropy o the

More information

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University

Physical Biochemistry. Kwan Hee Lee, Ph.D. Handong Global University Physical Biochemistry Kwan Hee Lee, Ph.D. Handong Global University Week 3 CHAPTER 2 The Second Law: Entropy of the Universe increases What is entropy Definition: measure of disorder The greater the disorder,

More information

PES 2130 Fall 2014, Spendier Lecture 7/Page 1

PES 2130 Fall 2014, Spendier Lecture 7/Page 1 PES 2130 Fall 2014, Spender Lecture 7/Page 1 Lecture today: Chapter 20 (ncluded n exam 1) 1) Entropy 2) Second Law o hermodynamcs 3) Statstcal Vew o Entropy Announcements: Next week Wednesday Exam 1! -

More information

Introduction to Statistical Methods

Introduction to Statistical Methods Introducton to Statstcal Methods Physcs 4362, Lecture #3 hermodynamcs Classcal Statstcal Knetc heory Classcal hermodynamcs Macroscopc approach General propertes of the system Macroscopc varables 1 hermodynamc

More information

Force = F Piston area = A

Force = F Piston area = A CHAPTER III Ths chapter s an mportant transton between the propertes o pure substances and the most mportant chapter whch s: the rst law o thermodynamcs In ths chapter, we wll ntroduce the notons o heat,

More information

A quote of the week (or camel of the week): There is no expedience to which a man will not go to avoid the labor of thinking. Thomas A.

A quote of the week (or camel of the week): There is no expedience to which a man will not go to avoid the labor of thinking. Thomas A. A quote of the week (or camel of the week): here s no expedence to whch a man wll not go to avod the labor of thnkng. homas A. Edson Hess law. Algorthm S Select a reacton, possbly contanng specfc compounds

More information

18. Heat Engine, Entropy and the second law of thermodynamics

18. Heat Engine, Entropy and the second law of thermodynamics 8. Heat Engne, Entropy and te seond law o terodynas In nature, ost o proesses are rreversble. due to te seond Law o terodynas Heat alwasys lows ro Hot to old. 8-. Heat Engne and te eond Law o erodynas

More information

Chapter 6 Second Law of Thermodynamics

Chapter 6 Second Law of Thermodynamics Capter 6 Second Law o Termodynamcs Te rst law o termodynamcs s an energy conservaton statement. It determnes weter or not a process can take place energetcally. It does not tell n wc drecton te process

More information

Review of Classical Thermodynamics

Review of Classical Thermodynamics Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 12 7/25/14 ERD: 7.1-7.5 Devoe: 8.1.1-8.1.2, 8.2.1-8.2.3, 8.4.1-8.4.3 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 2014 A. Free Energy and Changes n Composton: The

More information

Physics 240: Worksheet 30 Name:

Physics 240: Worksheet 30 Name: (1) One mole of an deal monatomc gas doubles ts temperature and doubles ts volume. What s the change n entropy of the gas? () 1 kg of ce at 0 0 C melts to become water at 0 0 C. What s the change n entropy

More information

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands The ChemSep Book Harry A. Koojman Consultant Ross Taylor Clarkson Unversty, Potsdam, New York Unversty of Twente, Enschede, The Netherlands Lbr Books on Demand www.bod.de Copyrght c 2000 by H.A. Koojman

More information

PHYS 1443 Section 002 Lecture #20

PHYS 1443 Section 002 Lecture #20 PHYS 1443 Secton 002 Lecture #20 Dr. Jae Condtons for Equlbru & Mechancal Equlbru How to Solve Equlbru Probles? A ew Exaples of Mechancal Equlbru Elastc Propertes of Solds Densty and Specfc Gravty lud

More information

Chemistry 163B Winter 2013 Clausius Inequality and ΔS ideal gas

Chemistry 163B Winter 2013 Clausius Inequality and ΔS ideal gas Chemistry 163B q rev, Clausius Inequality and calculating ΔS for ideal gas,, changes (HW#5) Challenged enmanship Notes 1 statements of the Second Law of hermodynamics 1. Macroscopic properties of an isolated

More information

THERMODYNAMICS of COMBUSTION

THERMODYNAMICS of COMBUSTION Internal Cobuston Engnes MAK 493E THERMODYNAMICS of COMBUSTION Prof.Dr. Ce Soruşbay Istanbul Techncal Unversty Internal Cobuston Engnes MAK 493E Therodynacs of Cobuston Introducton Proertes of xtures Cobuston

More information

NAME and Section No.

NAME and Section No. Chemstry 391 Fall 2007 Exam I KEY (Monday September 17) 1. (25 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). Defne the terms: open system, closed system and solated system

More information

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale.

Chapters 18 & 19: Themodynamics review. All macroscopic (i.e., human scale) quantities must ultimately be explained on the microscopic scale. Chapters 18 & 19: Themodynamcs revew ll macroscopc (.e., human scale) quanttes must ultmately be explaned on the mcroscopc scale. Chapter 18: Thermodynamcs Thermodynamcs s the study o the thermal energy

More information

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics *

Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics * tudy of the possblty of elnatng the Gbbs paradox wthn the fraework of classcal therodynacs * V. Ihnatovych Departent of Phlosophy, Natonal echncal Unversty of Ukrane Kyv Polytechnc Insttute, Kyv, Ukrane

More information

CHEMISTRY Midterm #2 answer key October 25, 2005

CHEMISTRY Midterm #2 answer key October 25, 2005 CHEMISTRY 123-01 Mdterm #2 answer key October 25, 2005 Statstcs: Average: 70 pts (70%); Hghest: 97 pts (97%); Lowest: 33 pts (33%) Number of students performng at or above average: 62 (63%) Number of students

More information

Recommended Reading. Entropy/Second law Thermodynamics

Recommended Reading. Entropy/Second law Thermodynamics Lecture 7. Entropy and the second law of therodynaics. Recoended Reading Entropy/econd law herodynaics http://en wikipedia http://en.wikipedia.org/wiki/entropy http://2ndlaw.oxy.edu/index.htl. his site

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 16 Chapter 9 Physcs I 11.06.2013 Lnear oentu. Center of ass. Course webste: http://faculty.ul.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.ul.edu/danylov2013/physcs1fall.htl

More information

Homework Problem Set 8 Solutions

Homework Problem Set 8 Solutions Chemistry 360 Dr. Jean M. Standard Homework roblem Set 8 Solutions. Starting from G = H S, derive the fundamental equation for G. o begin, we take the differential of G, dg = dh d( S) = dh ds Sd. Next,

More information

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2. Chemstry 360 Dr. Jean M. Standard Problem Set 9 Solutons. The followng chemcal reacton converts sulfur doxde to sulfur troxde. SO ( g) + O ( g) SO 3 ( l). (a.) Wrte the expresson for K eq for ths reacton.

More information

Linear Momentum. Center of Mass.

Linear Momentum. Center of Mass. Lecture 6 Chapter 9 Physcs I 03.3.04 Lnear omentum. Center of ass. Course webste: http://faculty.uml.edu/ndry_danylov/teachng/physcsi Lecture Capture: http://echo360.uml.edu/danylov03/physcssprng.html

More information

PHYSICS 212 MIDTERM II 19 February 2003

PHYSICS 212 MIDTERM II 19 February 2003 PHYSICS 1 MIDERM II 19 Feruary 003 Exam s losed ook, losed notes. Use only your formula sheet. Wrte all work and answers n exam ooklets. he aks of pages wll not e graded unless you so request on the front

More information

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1 Coordinator: xyz Sunday, June 28, 2015 Page: 1 Q1. A transverse sinusoidal wave propagating along a stretched string is described by the following equation: y (x,t) = 0.350 sin [1.25x + 99.6t], where x

More information

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we hermodynamcs, Statstcal hermodynamcs, and Knetcs 4 th Edton,. Engel & P. ed Ch. 6 Part Answers to Selected Problems Q6.. Q6.4. If ξ =0. mole at equlbrum, the reacton s not ery far along. hus, there would

More information

Irreversible Work of Separation and Heat-Driven Separation

Irreversible Work of Separation and Heat-Driven Separation J. Phys. Che. B 004, 08, 6035-604 6035 Irreversble Wor of Separaton and Heat-Drven Separaton Anatoly M. Tsrln and Vladr Kazaov*, Progra Syste Insttute, Russan Acadey of Scence, set. Botc, PerejaslaVl-Zalesy,

More information

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump Introducton to Terodynacs, Lecture -5 Pro. G. Cccarell (0 Applcaton o Control olue Energy Analyss Most terodynac devces consst o a seres o coponents operatng n a cycle, e.g., stea power plant Man coponents

More information

Thermodynamics General

Thermodynamics General Thermodynamcs General Lecture 1 Lecture 1 s devoted to establshng buldng blocks for dscussng thermodynamcs. In addton, the equaton of state wll be establshed. I. Buldng blocks for thermodynamcs A. Dmensons,

More information

V T for n & P = constant

V T for n & P = constant Pchem 365: hermodynamcs -SUMMARY- Uwe Burghaus, Fargo, 5 9 Mnmum requrements for underneath of your pllow. However, wrte your own summary! You need to know the story behnd the equatons : Pressure : olume

More information

Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum

Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum. Physics 3A: Linear Momentum Recall that there was ore to oton than just spee A ore coplete escrpton of oton s the concept of lnear oentu: p v (8.) Beng a prouct of a scalar () an a vector (v), oentu s a vector: p v p y v y p z v

More information

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform Ths chapter deals wth chemcal reactons (system) wth lttle or no consderaton on the surroundngs. Chemcal Equlbrum Chapter 6 Spontanety of eactve Mxtures (gases) eactants generatng products would proceed

More information

University Physics AI No. 10 The First Law of Thermodynamics

University Physics AI No. 10 The First Law of Thermodynamics Unversty hyscs I No he Frst Law o hermodynamcs lass Number Name Ihoose the orrect nswer Whch o the ollowng processes must volate the rst law o thermodynamcs? (here may be more than one answer!) (,B,D )

More information

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = "J j. k i.

,..., k N. , k 2. ,..., k i. The derivative with respect to temperature T is calculated by using the chain rule: & ( (5) dj j dt = J j. k i. Suppleentary Materal Dervaton of Eq. 1a. Assue j s a functon of the rate constants for the N coponent reactons: j j (k 1,,..., k,..., k N ( The dervatve wth respect to teperature T s calculated by usng

More information

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0)

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0) If Clausus Clapeyron fals ( ) dp dt pb =...Thermodynamcs l T (v 2 v 1 ) = 0/0 Second order phase transton ( S, v = 0) ( ) dp = c P,1 c P,2 dt Tv(β 1 β 2 ) Two phases ntermngled Ferromagnet (Excess spn-up

More information

Physics 207 Lecture 27

Physics 207 Lecture 27 hyscs 07 Lecture 7 hyscs 07, Lecture 7, Dec. 6 Agenda: h. 0, st Law o Thermodynamcs, h. st Law o thermodynamcs ( U Q + W du dq + dw ) Work done by an deal gas n a ston Introducton to thermodynamc cycles

More information

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F)

1.3 Hence, calculate a formula for the force required to break the bond (i.e. the maximum value of F) EN40: Dynacs and Vbratons Hoework 4: Work, Energy and Lnear Moentu Due Frday March 6 th School of Engneerng Brown Unversty 1. The Rydberg potental s a sple odel of atoc nteractons. It specfes the potental

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Name: SID: Dscusson Sesson: Chemcal Engneerng Thermodynamcs 141 -- Fall 007 Thursday, November 15, 007 Mdterm II SOLUTIONS - 70 mnutes 110 Ponts Total Closed Book and Notes (0 ponts) 1. Evaluate whether

More information

Outline. 9. The Second Law of Thermodynamics: Entropy. 10.Entropy and the Third law of thermodynamics 11.Spontaneous change: Free energy

Outline. 9. The Second Law of Thermodynamics: Entropy. 10.Entropy and the Third law of thermodynamics 11.Spontaneous change: Free energy hermochemistry opic 6. hermochemistry hermochemistry Outline. Getting Started: Some terminology. State functions 3. Pressure-Volume Work 4. he First Law of hermodynamics: Heat, work and enthalpy 5. Heat

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

PHYS 1441 Section 002 Lecture #15

PHYS 1441 Section 002 Lecture #15 PHYS 1441 Secton 00 Lecture #15 Monday, March 18, 013 Work wth rcton Potental Energy Gravtatonal Potental Energy Elastc Potental Energy Mechancal Energy Conservaton Announcements Mdterm comprehensve exam

More information

Chemistry 163B Absolute Entropies and Entropy of Mixing

Chemistry 163B Absolute Entropies and Entropy of Mixing Chemistry 163B Absolute Entropies and Entropy of Mixing 1 APPENDIX A: H f, G f, BUT S (no Δ, no sub f ) Hº f Gº f Sº 2 Third Law of Thermodynamics The entropy of any perfect crystalline substance approaches

More information

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM

SPONTANEOUS PROCESSES AND THERMODYNAMIC EQUILIBRIUM 13 CHAPER SPONANEOUS PROCESSES AND HERMODYNAMIC EQUILIBRIUM 13.1 he Nature of Spontaneous Processes 13.2 Entropy and Spontaneity: A Molecular Statistical Interpretation 13.3 Entropy and Heat: Macroscopic

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

Lecture 09 Systems of Particles and Conservation of Linear Momentum

Lecture 09 Systems of Particles and Conservation of Linear Momentum Lecture 09 Systes o Partcles and Conseraton o Lnear oentu 9. Lnear oentu and Its Conseraton 9. Isolated Syste lnear oentu: P F dp dt d( dt d dt a solated syste F ext 0 dp dp F, F dt dt dp dp d F F 0, 0

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Chem Lecture Notes 6 Fall 2013 Second law

Chem Lecture Notes 6 Fall 2013 Second law Chem 340 - Lecture Notes 6 Fall 2013 Second law In the first law, we determined energies, enthalpies heat and work for any process from an initial to final state. We could know if the system did work or

More information

Lecture 9. Heat engines. Pre-reading: 20.2

Lecture 9. Heat engines. Pre-reading: 20.2 Lecture 9 Heat engines Pre-reading: 20.2 Review Second law when all systems taking part in a process are included, the entropy remains constant or increases. No process is possible in which the total entropy

More information

Why? Chemistry Crunch #4.1 : Name: KEY Phase Changes. Success Criteria: Prerequisites: Vocabulary:

Why? Chemistry Crunch #4.1 : Name: KEY Phase Changes. Success Criteria: Prerequisites: Vocabulary: Chemstry Crunch #4.1 : Name: KEY Phase Changes Why? Most substances wll eventually go through a phase change when heated or cooled (sometmes they chemcally react nstead). Molecules of a substance are held

More information

Phys102 First Major-112 Zero Version Coordinator: Wednesday, March 07, 2012 Page: 1

Phys102 First Major-112 Zero Version Coordinator: Wednesday, March 07, 2012 Page: 1 Coordinator: Wednesday, March 07, 01 Page: 1 Q1. A transverse sinusoidal wave, travelling in the positive x direction along a string, has an aplitude of 0 c. The transverse position of an eleent of the

More information

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total).

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total). CHEMISTRY 123-07 Mdterm #2 answer key November 04, 2010 Statstcs: Average: 68 p (68%); Hghest: 91 p (91%); Lowest: 37 p (37%) Number of students performng at or above average: 58 (53%) Number of students

More information

Phys 22: Homework 10 Solutions W A = 5W B Q IN QIN B QOUT A = 2Q OUT 2 QOUT B QIN B A = 3Q IN = QIN B QOUT. e A = W A e B W B A Q IN.

Phys 22: Homework 10 Solutions W A = 5W B Q IN QIN B QOUT A = 2Q OUT 2 QOUT B QIN B A = 3Q IN = QIN B QOUT. e A = W A e B W B A Q IN. HRK 26.7 Summarizing the information given in the question One way of doing this is as follows. W A = 5W Q IN A = Q IN Q OU A = 2Q OU Use e A = W A Q IN = QIN A QOU Q IN A A A and e = W Q IN = QIN QOU

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Chapter 21 - The Kinetic Theory of Gases

Chapter 21 - The Kinetic Theory of Gases hapter 1 - he Knetc heory o Gases 1. Δv 8.sn 4. 8.sn 4. m s F Nm. 1 kg.94 N Δ t. s F A 1.7 N m 1.7 a N mv 1.6 Use the equaton descrbng the knetc-theory account or pressure:. hen mv Kav where N nna NA N

More information

G4023 Mid-Term Exam #1 Solutions

G4023 Mid-Term Exam #1 Solutions Exam1Solutons.nb 1 G03 Md-Term Exam #1 Solutons 1-Oct-0, 1:10 p.m to :5 p.m n 1 Pupn Ths exam s open-book, open-notes. You may also use prnt-outs of the homework solutons and a calculator. 1 (30 ponts,

More information

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16

10/24/2013. PHY 113 C General Physics I 11 AM 12:15 PM TR Olin 101. Plan for Lecture 17: Review of Chapters 9-13, 15-16 0/4/03 PHY 3 C General Physcs I AM :5 PM T Oln 0 Plan or Lecture 7: evew o Chapters 9-3, 5-6. Comment on exam and advce or preparaton. evew 3. Example problems 0/4/03 PHY 3 C Fall 03 -- Lecture 7 0/4/03

More information

Solutions for Homework #9

Solutions for Homework #9 Solutons for Hoewor #9 PROBEM. (P. 3 on page 379 n the note) Consder a sprng ounted rgd bar of total ass and length, to whch an addtonal ass s luped at the rghtost end. he syste has no dapng. Fnd the natural

More information

Chemistry 163B. q rev, Clausius Inequality and calculating ΔS for ideal gas P,V,T changes (HW#6) Challenged Penmanship Notes

Chemistry 163B. q rev, Clausius Inequality and calculating ΔS for ideal gas P,V,T changes (HW#6) Challenged Penmanship Notes Chemistry 163B q rev, Clausius Inequality and calculating ΔS for ideal gas P,V, changes (HW#6) Challenged Penmanship Notes 1 statements of the Second Law of hermodynamics 1. Macroscopic properties of an

More information

NAME and Section No. it is found that 0.6 mol of O

NAME and Section No. it is found that 0.6 mol of O NAME and Secton No. Chemstry 391 Fall 7 Exam III KEY 1. (3 Ponts) ***Do 5 out of 6***(If 6 are done only the frst 5 wll be graded)*** a). In the reacton 3O O3 t s found that.6 mol of O are consumed. Fnd

More information

Chemistry 163B Free Energy and Equilibrium E&R ( ch 6)

Chemistry 163B Free Energy and Equilibrium E&R ( ch 6) Chemstry 163B Free Energy and Equlbrum E&R ( ch 6) 1 ΔG reacton and equlbrum (frst pass) 1. ΔG < spontaneous ( natural, rreversble) ΔG = equlbrum (reversble) ΔG > spontaneous n reverse drecton. ΔG = ΔHΔS

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Physics 123 Thermodynamics Review

Physics 123 Thermodynamics Review Physics 3 Thermodynamics Review I. Definitions & Facts thermal equilibrium ideal gas thermal energy internal energy heat flow heat capacity specific heat heat of fusion heat of vaporization phase change

More information

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class.

I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade F for the class. Chem340 Physical Chemistry for Biochemists Exam Mar 16, 011 Your Name _ I affirm that I have never given nor received aid on this examination. I understand that cheating in the exam will result in a grade

More information

Classical Physics I. PHY131 Lecture 36 Entropy and the Second Law of Thermodynamics. Lecture 36 1

Classical Physics I. PHY131 Lecture 36 Entropy and the Second Law of Thermodynamics. Lecture 36 1 Classical Physics I PHY131 Lecture 36 Entropy and the Second Law of Thermodynamics Lecture 36 1 Recap: (Ir)reversible( Processes Reversible processes are processes that occur under quasi-equilibrium conditions:

More information

First Law of Thermodynamics

First Law of Thermodynamics Frst Law of Thermodynamcs Readng: Chapter 18, Sectons 18-7 to 18-11 Heat and Work When the pston s dsplaced by ds, force exerted by the gas = F = pa, work done by the gas: dw Fds ( pa)( ds) p( Ads) p d.

More information

Chemistry 163B Absolute Entropies and Entropy of Mixing

Chemistry 163B Absolute Entropies and Entropy of Mixing Chemstry 163 Wnter 1 Hndouts for hrd Lw nd Entropy of Mxng (del gs, dstngushle molecules) PPENDIX : H f, G f, U S (no Δ, no su f ) Chemstry 163 solute Entropes nd Entropy of Mxng Hº f Gº f Sº 1 hrd Lw

More information

MAE 110A. Homework 6: Solutions 11/9/2017

MAE 110A. Homework 6: Solutions 11/9/2017 MAE 110A Hoework 6: Solutions 11/9/2017 H6.1: Two kg of H2O contained in a piston-cylinder assebly, initially at 1.0 bar and 140 C undergoes an internally ersible, isotheral copression to 25 bar. Given

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 10 - Phase Equilibria and Polymer Blends February 7, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 10 - Phase Equilibria and Polymer Blends February 7, 2001 Checal Engneerng 60/60 Polyer Scence and Engneerng Lecture 0 - Phase Equlbra and Polyer Blends February 7, 00 Therodynacs of Polyer Blends: Part Objectves! To develop the classcal Flory-Huggns theory for

More information

Applied Mathematics Letters

Applied Mathematics Letters Appled Matheatcs Letters 2 (2) 46 5 Contents lsts avalable at ScenceDrect Appled Matheatcs Letters journal hoepage: wwwelseverco/locate/al Calculaton of coeffcents of a cardnal B-splne Gradr V Mlovanovć

More information

The Story of Spontaneity and Energy Dispersal. You never get what you want: 100% return on investment

The Story of Spontaneity and Energy Dispersal. You never get what you want: 100% return on investment The Story of Spontaneity and Energy Dispersal You never get what you want: 100% return on investment Spontaneity Spontaneous process are those that occur naturally. Hot body cools A gas expands to fill

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

w = -nrt hot ln(v 2 /V 1 ) nrt cold ln(v 1 /V 2 )[sincev/v 4 3 = V 1 /V 2 ]

w = -nrt hot ln(v 2 /V 1 ) nrt cold ln(v 1 /V 2 )[sincev/v 4 3 = V 1 /V 2 ] Chemistry 433 Lecture 9 Entropy and the Second Law NC State University Spontaneity of Chemical Reactions One might be tempted based on the results of thermochemistry to predict that all exothermic reactions

More information

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e. SSTEM MODELLIN In order to solve a control syste proble, the descrptons of the syste and ts coponents ust be put nto a for sutable for analyss and evaluaton. The followng ethods can be used to odel physcal

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , CT 1 THERMODYNAMICS 6.1 Thermodynamcs Terms : Q. Defne system and surroundngs. Soluton : A system n thermodynamcs refers to that part of unverse n whch observatons are made and remanng unverse consttutes

More information

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017 EXAMPLES of THEORETICAL PROBLEMS n the COURSE MMV03 HEAT TRANSFER, verson 207 a) What s eant by sotropc ateral? b) What s eant by hoogeneous ateral? 2 Defne the theral dffusvty and gve the unts for the

More information

Fermi-Dirac statistics

Fermi-Dirac statistics UCC/Physcs/MK/EM/October 8, 205 Fer-Drac statstcs Fer-Drac dstrbuton Matter partcles that are eleentary ostly have a type of angular oentu called spn. hese partcles are known to have a agnetc oent whch

More information

Homework Chapter 21 Solutions!!

Homework Chapter 21 Solutions!! Homework Chapter 1 Solutons 1.7 1.13 1.17 1.19 1.6 1.33 1.45 1.51 1.71 page 1 Problem 1.7 A mole sample of oxygen gas s confned to a 5 lter vessel at a pressure of 8 atm. Fnd the average translatonal knetc

More information

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian

Chapter 20. Heat Engines, Entropy and the Second Law of Thermodynamics. Dr. Armen Kocharian Chapter 20 Heat Engines, Entropy and the Second Law of Thermodynamics Dr. Armen Kocharian First Law of Thermodynamics Review Review: The first law states that a change in internal energy in a system can

More information

Second Law of Thermodynamics

Second Law of Thermodynamics Dr. Alain Brizard College Physics II (PY 211) Second Law of Thermodynamics Textbook Reference: Chapter 20 sections 1-4. Second Law of Thermodynamics (Clausius) Heat flows naturally from a hot object to

More information

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD Ákos Jósef Lengyel, István Ecsed Assstant Lecturer, Professor of Mechancs, Insttute of Appled Mechancs, Unversty of Mskolc, Mskolc-Egyetemváros,

More information

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling Overhead Sldes for Chapter 18, Part 1 of Fundamentals of Atmospherc Modelng by Mark Z. Jacobson Department of Cvl & Envronmental Engneerng Stanford Unversty Stanford, CA 94305-4020 January 30, 2002 Types

More information