Activity 8: Eigenvectors and Linear Transformations

Size: px
Start display at page:

Download "Activity 8: Eigenvectors and Linear Transformations"

Transcription

1 Activity 8: Eigenvectors and Linear Transformations MATH 20, Fall 2010 November 1, 2010 Names: In this activity, we will explore the effects of matrix diagonalization on the associated linear transformation. We start by considering a diagonal matrix and the coordinate system associated to the standard basis of n. 1. Let A and let x x y be an arbitrary vector in 2. a) What is the standard basis for 2? b) How would you write x as a linear combination of the standard basis vectors of 2? c) Now write A x as a linear combination of the standard basis vectors of 2. Notice that multiplication by A is the same as scaling the e 1 -component of x by 3 and the e 2 -component by 2. d) Let k be a positive integer. How would you write A k x as a linear combination of the standard basis vectors of 2? 2 v 1, v 2 v v v 1 v 2 2

2 2 Eigenvectors and linear transformations.nb u 1 u u 4 v 1 1 v 2 w w v 1 v 2 x x y x a b x 4 v 1 1 v 2 p p v 1 v 2 v 1 x 4 v For problems 3-, let A , and let T : 2 2 be the linear transformation given by Tx A x. 3. a) Find the eigenvalues Λ 1 and Λ 2 of A. Assume Λ 1 Λ 2. b) Find a basis for the eigenspace of A associated to Λ 1. c) Find a basis for the eigenspace of A associated to Λ 2. Clear denominators if needed so that your basis vector has integer entries. d) Do the vectors found in parts b) and c) form a basis for 2? 4. a) Diagonalize A. That is, find an invertible matrix P and a diagonal matrix D so that A P D P 1. P ; Diag ; b) Find P 1. Pinv ;

3 Eigenvectors and linear transformations.nb 3 c) Letting b 1, b 2 be the eigenvector basis for 2 that you found in parts b) and c), find Tb 1 and Tb 2. d) What are Tb 1 and Tb 2? e) How does your answer to part d) relate to the diagonal matrix you found in part a)? We call D the -matrix for the transformation Tx A x, because in the -coordinate system with basis vectors b 1 and b 2, the transformation T can be written as multiplication by D. The notation for this is T D, or Tx Tb 1 Tb 2 x Dx.. Let P be the matrix you found in 4.a). P 1 1? a) Write 1 as a linear combination of b 1 and b 2 (Compare to problem 2.b)). What is b) Notice that an arbitrary vector x could be written as Px x., where P is the matrix you found in 4.a). What is P 1 x? c) Using part b), 4.e), and the notation above problem., write Tx in terms of D and P 1. d) Simplify PTx. (See part b) of this problem.) Putting this all together, we see that diagonalizing a matrix A has the following effect: i) Multiplication by P 1 takes the vector x into the eigenvector coordinate system. ii) Multiplication by D then scales the component in the b i -direction by the eigenvalue Λ i. iii) Multiplication by P finally sends the vector back to the original coordinate system: the standard basis of n. Written in symbols, A x P D P 1 x P Dx PTx Tx.

4 4 Eigenvectors and linear transformations.nb 6. Consider the matrix A The eigenvalues of A are 2 and 3, with respective in the - eigenvectors b and b The diagram below depicts the vector v 2 3 coordinate system, where 3 2, 1 1. P 3 1 ; ShowPlot2, x, 1, 10, PlotRange 1, 10, AspectRatio Automatic, GraphicsTableGray, Dashed, LineP.0 k, 10, P.0 k, 20, k, 20, 20, TableGray, Dashed, LineP.10, 0 k, P.20, 0 k, k, 20, 20, GraphicsBlue, Thick, Arrow0, 0, 2,

5 Eigenvectors and linear transformations.nb a) What are the -coordinates of v 2 3? 2 3 b) Using the fact that the eigenvalues of A are 2 and 3, respectively, what are the coordinates of A 2 v? (Remember that multiplication by A means scaling the b 1 -component of the vector by 2 and the b 2 -component by 3.) A 2 v 7. a) Find A 2 v. (Recall that Px x, where P 3 1 A 2 v, the matrix of eigenvectors.) b) Check to see that your answer makes sense by graphing it as an arrow in the coordinate system below: (Fill in the standard basis coordinates for the missing red vector.) P 3 1 ; Show Plot2, x, 1, 20, PlotRange 1, 20, AspectRatio Automatic, GraphicsTableGray, Dashed, LineP.0 k, 10, P.0 k, 20, k, 20, 20, TableGray, Dashed, LineP.10, 0 k, P.20, 0 k, k, 20, 20, Graphics Red, Thick, Dashed, Line0, 0, P.2^2, 0, P.2^2, 3^2, Blue, Thick, Arrow0, 0, 2, 3, Red, Thick, Arrow0, 0,, Recap of problems 6 and 7: i) In 6.a), we applied P 1 to v. ii) In 6.b), we applied the diagonal matrix D 2 to the previous result. iii) In 7.a), we applied P to that result. iv) Overall effect: P D 2 P 1 v A 2 v. 8. Check your results by using Mathematica to compute A 2 v, with A and v as in problem 6.

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful

More information

From Lay, 5.4. If we always treat a matrix as defining a linear transformation, what role does diagonalisation play?

From Lay, 5.4. If we always treat a matrix as defining a linear transformation, what role does diagonalisation play? Overview Last week introduced the important Diagonalisation Theorem: An n n matrix A is diagonalisable if and only if there is a basis for R n consisting of eigenvectors of A. This week we ll continue

More information

MATH 221, Spring Homework 10 Solutions

MATH 221, Spring Homework 10 Solutions MATH 22, Spring 28 - Homework Solutions Due Tuesday, May Section 52 Page 279, Problem 2: 4 λ A λi = and the characteristic polynomial is det(a λi) = ( 4 λ)( λ) ( )(6) = λ 6 λ 2 +λ+2 The solutions to the

More information

Homework Set 5 Solutions

Homework Set 5 Solutions MATH 672-010 Vector Spaces Prof. D. A. Edwards Due: Oct. 7, 2014 Homework Set 5 Solutions 1. Let S, T L(V, V finite-dimensional. (a (5 points Prove that ST and T S have the same eigenvalues. Solution.

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

Dimension. Eigenvalue and eigenvector

Dimension. Eigenvalue and eigenvector Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, rank-nullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,

More information

Practice Final Exam Solutions

Practice Final Exam Solutions MAT 242 CLASS 90205 FALL 206 Practice Final Exam Solutions The final exam will be cumulative However, the following problems are only from the material covered since the second exam For the material prior

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Property The eigenvalues

More information

Solutions Problem Set 8 Math 240, Fall

Solutions Problem Set 8 Math 240, Fall Solutions Problem Set 8 Math 240, Fall 2012 5.6 T/F.2. True. If A is upper or lower diagonal, to make det(a λi) 0, we need product of the main diagonal elements of A λi to be 0, which means λ is one of

More information

Homework sheet 4: EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION (with solutions) Year ? Why or why not? 6 9

Homework sheet 4: EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION (with solutions) Year ? Why or why not? 6 9 Bachelor in Statistics and Business Universidad Carlos III de Madrid Mathematical Methods II María Barbero Liñán Homework sheet 4: EIGENVALUES AND EIGENVECTORS DIAGONALIZATION (with solutions) Year - Is

More information

PROBLEM SET. Problems on Eigenvalues and Diagonalization. Math 3351, Fall Oct. 20, 2010 ANSWERS

PROBLEM SET. Problems on Eigenvalues and Diagonalization. Math 3351, Fall Oct. 20, 2010 ANSWERS PROBLEM SET Problems on Eigenvalues and Diagonalization Math 335, Fall 2 Oct. 2, 2 ANSWERS i Problem. In each part, find the characteristic polynomial of the matrix and the eigenvalues of the matrix by

More information

Problems for M 10/26:

Problems for M 10/26: Math, Lesieutre Problem set # November 4, 25 Problems for M /26: 5 Is λ 2 an eigenvalue of 2? 8 Why or why not? 2 A 2I The determinant is, which means that A 2I has 6 a nullspace, and so there is an eigenvector

More information

(the matrix with b 1 and b 2 as columns). If x is a vector in R 2, then its coordinate vector [x] B relative to B satisfies the formula.

(the matrix with b 1 and b 2 as columns). If x is a vector in R 2, then its coordinate vector [x] B relative to B satisfies the formula. 4 Diagonalization 4 Change of basis Let B (b,b ) be an ordered basis for R and let B b b (the matrix with b and b as columns) If x is a vector in R, then its coordinate vector x B relative to B satisfies

More information

Recall : Eigenvalues and Eigenvectors

Recall : Eigenvalues and Eigenvectors Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector

More information

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix

DIAGONALIZATION. In order to see the implications of this definition, let us consider the following example Example 1. Consider the matrix DIAGONALIZATION Definition We say that a matrix A of size n n is diagonalizable if there is a basis of R n consisting of eigenvectors of A ie if there are n linearly independent vectors v v n such that

More information

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix.

Quadratic forms. Here. Thus symmetric matrices are diagonalizable, and the diagonalization can be performed by means of an orthogonal matrix. Quadratic forms 1. Symmetric matrices An n n matrix (a ij ) n ij=1 with entries on R is called symmetric if A T, that is, if a ij = a ji for all 1 i, j n. We denote by S n (R) the set of all n n symmetric

More information

Definition (T -invariant subspace) Example. Example

Definition (T -invariant subspace) Example. Example Eigenvalues, Eigenvectors, Similarity, and Diagonalization We now turn our attention to linear transformations of the form T : V V. To better understand the effect of T on the vector space V, we begin

More information

Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. Chapter 3 Differentiation ü 3.1 The Derivative Students should read Sections 3.1-3.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. ü 3.1.1 Slope of Tangent

More information

Math 113 Homework 5 Solutions (Starred problems) Solutions by Guanyang Wang, with edits by Tom Church.

Math 113 Homework 5 Solutions (Starred problems) Solutions by Guanyang Wang, with edits by Tom Church. Math 113 Homework 5 Solutions (Starred problems) Solutions by Guanyang Wang, with edits by Tom Church. Exercise 5.C.1 Suppose T L(V ) is diagonalizable. Prove that V = null T range T. Proof. Let v 1,...,

More information

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write

We use the overhead arrow to denote a column vector, i.e., a number with a direction. For example, in three-space, we write 1 MATH FACTS 11 Vectors 111 Definition We use the overhead arrow to denote a column vector, ie, a number with a direction For example, in three-space, we write The elements of a vector have a graphical

More information

Computationally, diagonal matrices are the easiest to work with. With this idea in mind, we introduce similarity:

Computationally, diagonal matrices are the easiest to work with. With this idea in mind, we introduce similarity: Diagonalization We have seen that diagonal and triangular matrices are much easier to work with than are most matrices For example, determinants and eigenvalues are easy to compute, and multiplication

More information

Definition: An n x n matrix, "A", is said to be diagonalizable if there exists a nonsingular matrix "X" and a diagonal matrix "D" such that X 1 A X

Definition: An n x n matrix, A, is said to be diagonalizable if there exists a nonsingular matrix X and a diagonal matrix D such that X 1 A X DIGONLIZTION Definition: n n x n matrix, "", is said to be diagonalizable if there exists a nonsingular matrix "X" and a diagonal matrix "D" such that X X D. Theorem: n n x n matrix, "", is diagonalizable

More information

MAT 1302B Mathematical Methods II

MAT 1302B Mathematical Methods II MAT 1302B Mathematical Methods II Alistair Savage Mathematics and Statistics University of Ottawa Winter 2015 Lecture 19 Alistair Savage (uottawa) MAT 1302B Mathematical Methods II Winter 2015 Lecture

More information

Jordan normal form notes (version date: 11/21/07)

Jordan normal form notes (version date: 11/21/07) Jordan normal form notes (version date: /2/7) If A has an eigenbasis {u,, u n }, ie a basis made up of eigenvectors, so that Au j = λ j u j, then A is diagonal with respect to that basis To see this, let

More information

The Jordan Normal Form and its Applications

The Jordan Normal Form and its Applications The and its Applications Jeremy IMPACT Brigham Young University A square matrix A is a linear operator on {R, C} n. A is diagonalizable if and only if it has n linearly independent eigenvectors. What happens

More information

Math 315: Linear Algebra Solutions to Assignment 7

Math 315: Linear Algebra Solutions to Assignment 7 Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

Homework 3 Solutions Math 309, Fall 2015

Homework 3 Solutions Math 309, Fall 2015 Homework 3 Solutions Math 39, Fall 25 782 One easily checks that the only eigenvalue of the coefficient matrix is λ To find the associated eigenvector, we have 4 2 v v 8 4 (up to scalar multiplication)

More information

Math 205 A B Final Exam page 1 12/12/2012 Name

Math 205 A B Final Exam page 1 12/12/2012 Name Math 205 A B Final Exam page 1 12/12/2012 Name 1. Let F be the vector space of continuous functions f : R R that we have been using in class. Let H = {f F f has the same y-coordinate at x = 1 as it does

More information

Problem 1: Solving a linear equation

Problem 1: Solving a linear equation Math 38 Practice Final Exam ANSWERS Page Problem : Solving a linear equation Given matrix A = 2 2 3 7 4 and vector y = 5 8 9. (a) Solve Ax = y (if the equation is consistent) and write the general solution

More information

= main diagonal, in the order in which their corresponding eigenvectors appear as columns of E.

= main diagonal, in the order in which their corresponding eigenvectors appear as columns of E. 3.3 Diagonalization Let A = 4. Then and are eigenvectors of A, with corresponding eigenvalues 2 and 6 respectively (check). This means 4 = 2, 4 = 6. 2 2 2 2 Thus 4 = 2 2 6 2 = 2 6 4 2 We have 4 = 2 0 0

More information

Final Exam - Take Home Portion Math 211, Summer 2017

Final Exam - Take Home Portion Math 211, Summer 2017 Final Exam - Take Home Portion Math 2, Summer 207 Name: Directions: Complete a total of 5 problems. Problem must be completed. The remaining problems are categorized in four groups. Select one problem

More information

MATH The Derivative as a Function - Section 3.2. The derivative of f is the function. f x h f x. f x lim

MATH The Derivative as a Function - Section 3.2. The derivative of f is the function. f x h f x. f x lim MATH 90 - The Derivative as a Function - Section 3.2 The derivative of f is the function f x lim h 0 f x h f x h for all x for which the limit exists. The notation f x is read "f prime of x". Note that

More information

Math 205, Summer I, Week 4b: Continued. Chapter 5, Section 8

Math 205, Summer I, Week 4b: Continued. Chapter 5, Section 8 Math 205, Summer I, 2016 Week 4b: Continued Chapter 5, Section 8 2 5.8 Diagonalization [reprint, week04: Eigenvalues and Eigenvectors] + diagonaliization 1. 5.8 Eigenspaces, Diagonalization A vector v

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

First of all, the notion of linearity does not depend on which coordinates are used. Recall that a map T : R n R m is linear if

First of all, the notion of linearity does not depend on which coordinates are used. Recall that a map T : R n R m is linear if 5 Matrices in Different Coordinates In this section we discuss finding matrices of linear maps in different coordinates Earlier in the class was the matrix that multiplied by x to give ( x) in standard

More information

Linear Systems. Class 27. c 2008 Ron Buckmire. TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5.4

Linear Systems. Class 27. c 2008 Ron Buckmire. TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5.4 Linear Systems Math Spring 8 c 8 Ron Buckmire Fowler 9 MWF 9: am - :5 am http://faculty.oxy.edu/ron/math//8/ Class 7 TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5. Summary

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - 4 (Alberto Bressan, Spring 27) Review of complex numbers In this chapter we shall need to work with complex numbers z C These can be written in the form z = a+ib,

More information

Math 205, Summer I, Week 4b:

Math 205, Summer I, Week 4b: Math 205, Summer I, 2016 Week 4b: Chapter 5, Sections 6, 7 and 8 (5.5 is NOT on the syllabus) 5.6 Eigenvalues and Eigenvectors 5.7 Eigenspaces, nondefective matrices 5.8 Diagonalization [*** See next slide

More information

Systems of Second Order Differential Equations Cayley-Hamilton-Ziebur

Systems of Second Order Differential Equations Cayley-Hamilton-Ziebur Systems of Second Order Differential Equations Cayley-Hamilton-Ziebur Characteristic Equation Cayley-Hamilton Cayley-Hamilton Theorem An Example Euler s Substitution for u = A u The Cayley-Hamilton-Ziebur

More information

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by MATH 110 - SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER 2009 GSI: SANTIAGO CAÑEZ 1. Given vector spaces V and W, V W is the vector space given by V W = {(v, w) v V and w W }, with addition and scalar

More information

1. In this problem, if the statement is always true, circle T; otherwise, circle F.

1. In this problem, if the statement is always true, circle T; otherwise, circle F. Math 1553, Extra Practice for Midterm 3 (sections 45-65) Solutions 1 In this problem, if the statement is always true, circle T; otherwise, circle F a) T F If A is a square matrix and the homogeneous equation

More information

Diagonalization. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Diagonalization. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Diagonalization MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Motivation Today we consider two fundamental questions: Given an n n matrix A, does there exist a basis

More information

Math 113 Homework 5. Bowei Liu, Chao Li. Fall 2013

Math 113 Homework 5. Bowei Liu, Chao Li. Fall 2013 Math 113 Homework 5 Bowei Liu, Chao Li Fall 2013 This homework is due Thursday November 7th at the start of class. Remember to write clearly, and justify your solutions. Please make sure to put your name

More information

Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION

Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION Section 7.3: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION When you are done with your homework you should be able to Recognize, and apply properties of, symmetric matrices Recognize, and apply properties

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 5. Eigenvectors & Eigenvalues Math 233 Linear Algebra 5. Eigenvectors & Eigenvalues Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu,

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Eigenvalues and Eigenvectors Fall 2015 1 / 14 Introduction We define eigenvalues and eigenvectors. We discuss how to

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Spring 2019 Exam 2 3/27/19 Time Limit: / Problem Points Score. Total: 280

Spring 2019 Exam 2 3/27/19 Time Limit: / Problem Points Score. Total: 280 Math 307 Spring 2019 Exam 2 3/27/19 Time Limit: / Name (Print): Problem Points Score 1 15 2 20 3 35 4 30 5 10 6 20 7 20 8 20 9 20 10 20 11 10 12 10 13 10 14 10 15 10 16 10 17 10 Total: 280 Math 307 Exam

More information

V 1 V 2. r 3. r 6 r 4. Math 2250 Lab 12 Due Date : 4/25/2017 at 6:00pm

V 1 V 2. r 3. r 6 r 4. Math 2250 Lab 12 Due Date : 4/25/2017 at 6:00pm Math 50 Lab 1 Name: Due Date : 4/5/017 at 6:00pm 1. In the previous lab you considered the input-output model below with pure water flowing into the system, C 1 = C 5 =0. r 1, C 1 r 5, C 5 r r V 1 V r

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

Eigenvectors. Prop-Defn

Eigenvectors. Prop-Defn Eigenvectors Aim lecture: The simplest T -invariant subspaces are 1-dim & these give rise to the theory of eigenvectors. To compute these we introduce the similarity invariant, the characteristic polynomial.

More information

Math 308 Practice Final Exam Page and vector y =

Math 308 Practice Final Exam Page and vector y = Math 308 Practice Final Exam Page Problem : Solving a linear equation 2 0 2 5 Given matrix A = 3 7 0 0 and vector y = 8. 4 0 0 9 (a) Solve Ax = y (if the equation is consistent) and write the general solution

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 203 Outline

More information

MAT1302F Mathematical Methods II Lecture 19

MAT1302F Mathematical Methods II Lecture 19 MAT302F Mathematical Methods II Lecture 9 Aaron Christie 2 April 205 Eigenvectors, Eigenvalues, and Diagonalization Now that the basic theory of eigenvalues and eigenvectors is in place most importantly

More information

Generalized Eigenvectors and Jordan Form

Generalized Eigenvectors and Jordan Form Generalized Eigenvectors and Jordan Form We have seen that an n n matrix A is diagonalizable precisely when the dimensions of its eigenspaces sum to n. So if A is not diagonalizable, there is at least

More information

Final A. Problem Points Score Total 100. Math115A Nadja Hempel 03/23/2017

Final A. Problem Points Score Total 100. Math115A Nadja Hempel 03/23/2017 Final A Math115A Nadja Hempel 03/23/2017 nadja@math.ucla.edu Name: UID: Problem Points Score 1 10 2 20 3 5 4 5 5 9 6 5 7 7 8 13 9 16 10 10 Total 100 1 2 Exercise 1. (10pt) Let T : V V be a linear transformation.

More information

For each problem, place the letter choice of your answer in the spaces provided on this page.

For each problem, place the letter choice of your answer in the spaces provided on this page. Math 6 Final Exam Spring 6 Your name Directions: For each problem, place the letter choice of our answer in the spaces provided on this page...... 6. 7. 8. 9....... 6. 7. 8. 9....... B signing here, I

More information

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. #07 Jordan Canonical Form Cayley Hamilton Theorem (Refer Slide Time:

More information

Jordan Canonical Form Homework Solutions

Jordan Canonical Form Homework Solutions Jordan Canonical Form Homework Solutions For each of the following, put the matrix in Jordan canonical form and find the matrix S such that S AS = J. [ ]. A = A λi = λ λ = ( λ) = λ λ = λ =, Since we have

More information

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues

Lecture Notes: Eigenvalues and Eigenvectors. 1 Definitions. 2 Finding All Eigenvalues Lecture Notes: Eigenvalues and Eigenvectors Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Definitions Let A be an n n matrix. If there

More information

Math 20F Final Exam(ver. c)

Math 20F Final Exam(ver. c) Name: Solutions Student ID No.: Discussion Section: Math F Final Exam(ver. c) Winter 6 Problem Score /48 /6 /7 4 /4 5 /4 6 /4 7 /7 otal / . (48 Points.) he following are rue/false questions. For this problem

More information

Designing Information Devices and Systems I Discussion 4B

Designing Information Devices and Systems I Discussion 4B Last Updated: 29-2-2 9:56 EECS 6A Spring 29 Designing Information Devices and Systems I Discussion 4B Reference Definitions: Matrices and Linear (In)Dependence We ve seen that the following statements

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2013 Outline

More information

Math 110 Linear Algebra Midterm 2 Review October 28, 2017

Math 110 Linear Algebra Midterm 2 Review October 28, 2017 Math 11 Linear Algebra Midterm Review October 8, 17 Material Material covered on the midterm includes: All lectures from Thursday, Sept. 1st to Tuesday, Oct. 4th Homeworks 9 to 17 Quizzes 5 to 9 Sections

More information

REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION

REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION REVIEW FOR EXAM III The exam covers sections 4.4, the portions of 4. on systems of differential equations and on Markov chains, and..4. SIMILARITY AND DIAGONALIZATION. Two matrices A and B are similar

More information

Diagonalization of Matrix

Diagonalization of Matrix of Matrix King Saud University August 29, 2018 of Matrix Table of contents 1 2 of Matrix Definition If A M n (R) and λ R. We say that λ is an eigenvalue of the matrix A if there is X R n \ {0} such that

More information

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors LECTURE 3 Eigenvalues and Eigenvectors Definition 3.. Let A be an n n matrix. The eigenvalue-eigenvector problem for A is the problem of finding numbers λ and vectors v R 3 such that Av = λv. If λ, v are

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

80 min. 65 points in total. The raw score will be normalized according to the course policy to count into the final score.

80 min. 65 points in total. The raw score will be normalized according to the course policy to count into the final score. This is a closed book, closed notes exam You need to justify every one of your answers unless you are asked not to do so Completely correct answers given without justification will receive little credit

More information

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS

LINEAR ALGEBRA 1, 2012-I PARTIAL EXAM 3 SOLUTIONS TO PRACTICE PROBLEMS LINEAR ALGEBRA, -I PARTIAL EXAM SOLUTIONS TO PRACTICE PROBLEMS Problem (a) For each of the two matrices below, (i) determine whether it is diagonalizable, (ii) determine whether it is orthogonally diagonalizable,

More information

A Relationship Between Minimum Bending Energy and Degree Elevation for Bézier Curves

A Relationship Between Minimum Bending Energy and Degree Elevation for Bézier Curves A Relationship Between Minimum Bending Energy and Degree Elevation for Bézier Curves David Eberly, Geometric Tools, Redmond WA 9852 https://www.geometrictools.com/ This work is licensed under the Creative

More information

Announcements Monday, November 06

Announcements Monday, November 06 Announcements Monday, November 06 This week s quiz: covers Sections 5 and 52 Midterm 3, on November 7th (next Friday) Exam covers: Sections 3,32,5,52,53 and 55 Section 53 Diagonalization Motivation: Difference

More information

MATCHING. Match the correct vocabulary word with its definition

MATCHING. Match the correct vocabulary word with its definition Name Algebra I Block UNIT 2 STUDY GUIDE Ms. Metzger MATCHING. Match the correct vocabulary word with its definition 1. Whole Numbers 2. Integers A. A value for a variable that makes an equation true B.

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors MAT 67L, Laboratory III Contents Instructions (1) Read this document. (2) The questions labeled Experiments are not graded, and should not be turned in. They are designed for

More information

Math Assignment 3 - Linear Algebra

Math Assignment 3 - Linear Algebra Math 216 - Assignment 3 - Linear Algebra Due: Tuesday, March 27. Nothing accepted after Thursday, March 29. This is worth 15 points. 10% points off for being late. You may work by yourself or in pairs.

More information

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization

Eigenvalues for Triangular Matrices. ENGI 7825: Linear Algebra Review Finding Eigenvalues and Diagonalization Eigenvalues for Triangular Matrices ENGI 78: Linear Algebra Review Finding Eigenvalues and Diagonalization Adapted from Notes Developed by Martin Scharlemann The eigenvalues for a triangular matrix are

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Math 24 Calculus III Summer 25, Session II. Determine whether the given set is a vector space. If not, give at least one axiom that is not satisfied. Unless otherwise stated,

More information

Math 24 Spring 2012 Sample Homework Solutions Week 8

Math 24 Spring 2012 Sample Homework Solutions Week 8 Math 4 Spring Sample Homework Solutions Week 8 Section 5. (.) Test A M (R) for diagonalizability, and if possible find an invertible matrix Q and a diagonal matrix D such that Q AQ = D. ( ) 4 (c) A =.

More information

Eigenvalues and Eigenvectors 7.1 Eigenvalues and Eigenvecto

Eigenvalues and Eigenvectors 7.1 Eigenvalues and Eigenvecto 7.1 November 6 7.1 Eigenvalues and Eigenvecto Goals Suppose A is square matrix of order n. Eigenvalues of A will be defined. Eigenvectors of A, corresponding to each eigenvalue, will be defined. Eigenspaces

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors MATH 307 Eigenvalues and Eigenvectors Dr. Neal, WKU Let T : R n R n be a linear transformation with n n matrix representation A. A non-zero vector x R n is called an eigenvector of T if there exists a

More information

Section 4.1 The Power Method

Section 4.1 The Power Method Section 4.1 The Power Method Key terms Dominant eigenvalue Eigenpair Infinity norm and 2-norm Power Method Scaled Power Method Power Method for symmetric matrices The notation used varies a bit from that

More information

Eigenvectors and Hermitian Operators

Eigenvectors and Hermitian Operators 7 71 Eigenvalues and Eigenvectors Basic Definitions Let L be a linear operator on some given vector space V A scalar λ and a nonzero vector v are referred to, respectively, as an eigenvalue and corresponding

More information

Section 29: What s an Inverse?

Section 29: What s an Inverse? Section 29: What s an Inverse? Our investigations in the last section showed that all of the matrix operations had an identity element. The identity element for addition is, for obvious reasons, called

More information

MATH 115A: SAMPLE FINAL SOLUTIONS

MATH 115A: SAMPLE FINAL SOLUTIONS MATH A: SAMPLE FINAL SOLUTIONS JOE HUGHES. Let V be the set of all functions f : R R such that f( x) = f(x) for all x R. Show that V is a vector space over R under the usual addition and scalar multiplication

More information

Lecture 1: Systems of linear equations and their solutions

Lecture 1: Systems of linear equations and their solutions Lecture 1: Systems of linear equations and their solutions Course overview Topics to be covered this semester: Systems of linear equations and Gaussian elimination: Solving linear equations and applications

More information

Mon Mar matrix eigenspaces. Announcements: Warm-up Exercise:

Mon Mar matrix eigenspaces. Announcements: Warm-up Exercise: Math 227-4 Week notes We will not necessarily finish the material from a given day's notes on that day We may also add or subtract some material as the week progresses, but these notes represent an in-depth

More information

Multiplying matrices by diagonal matrices is faster than usual matrix multiplication.

Multiplying matrices by diagonal matrices is faster than usual matrix multiplication. 7-6 Multiplying matrices by diagonal matrices is faster than usual matrix multiplication. The following equations generalize to matrices of any size. Multiplying a matrix from the left by a diagonal matrix

More information

Linear Algebra II Lecture 13

Linear Algebra II Lecture 13 Linear Algebra II Lecture 13 Xi Chen 1 1 University of Alberta November 14, 2014 Outline 1 2 If v is an eigenvector of T : V V corresponding to λ, then v is an eigenvector of T m corresponding to λ m since

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

Homogeneous Linear Systems of Differential Equations with Constant Coefficients

Homogeneous Linear Systems of Differential Equations with Constant Coefficients Objective: Solve Homogeneous Linear Systems of Differential Equations with Constant Coefficients dx a x + a 2 x 2 + + a n x n, dx 2 a 2x + a 22 x 2 + + a 2n x n,. dx n = a n x + a n2 x 2 + + a nn x n.

More information

Math 1553 Worksheet 5.3, 5.5

Math 1553 Worksheet 5.3, 5.5 Math Worksheet, Answer yes / no / maybe In each case, A is a matrix whose entries are real a) If A is a matrix with characteristic polynomial λ(λ ), then the - eigenspace is -dimensional b) If A is an

More information

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N.

The value of a problem is not so much coming up with the answer as in the ideas and attempted ideas it forces on the would be solver I.N. Math 410 Homework Problems In the following pages you will find all of the homework problems for the semester. Homework should be written out neatly and stapled and turned in at the beginning of class

More information

Constructing and (some) classification of integer matrices with integer eigenvalues

Constructing and (some) classification of integer matrices with integer eigenvalues Constructing and (some) classification of integer matrices with integer eigenvalues Chris Towse* and Eric Campbell Scripps College Pomona College January 6, 2017 The question An example Solve a linear

More information

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

More information

Math Final December 2006 C. Robinson

Math Final December 2006 C. Robinson Math 285-1 Final December 2006 C. Robinson 2 5 8 5 1 2 0-1 0 1. (21 Points) The matrix A = 1 2 2 3 1 8 3 2 6 has the reduced echelon form U = 0 0 1 2 0 0 0 0 0 1. 2 6 1 0 0 0 0 0 a. Find a basis for the

More information

Background on Linear Algebra - Lecture 2

Background on Linear Algebra - Lecture 2 Background on Linear Algebra - Lecture September 6, 01 1 Introduction Recall from your math classes the notion of vector spaces and fields of scalars. We shall be interested in finite dimensional vector

More information

235 Final exam review questions

235 Final exam review questions 5 Final exam review questions Paul Hacking December 4, 0 () Let A be an n n matrix and T : R n R n, T (x) = Ax the linear transformation with matrix A. What does it mean to say that a vector v R n is an

More information