CHAPTER 4 STATE FEEDBACK AND OUTPUT FEEDBACK CONTROLLERS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CHAPTER 4 STATE FEEDBACK AND OUTPUT FEEDBACK CONTROLLERS"

Transcription

1 54 CHAPTER 4 STATE FEEDBACK AND OUTPUT FEEDBACK CONTROLLERS 4.1 INTRODUCTION In control theory, a controller is a device which monitors and affects the operational conditions of a given dynamic system. The operational conditions are referred to as output variables of the system which can be affected by adjusting certain input variable. The desired output of a system is called the reference. When one or more output variables of a system need to follow a certain reference over time, a controller manipulates the inputs to a system to obtain the desired effect on the output of the system. Control systems are designed to perform specific tasks. The requirements imposed are usually called performance specifications. The specifications may be transient response requirement (maximum overshoot, settling time) and steady state requirements (steady state error). Figure 4.1 Block diagram for control system

2 55 In Figure 4.1, block diagram for control system is shown. The two fundamental concepts of control systems are controllability and observability. Controllability deals with the problem of whether it is possible to move a system from a given initial state to an arbitrary state. If a system is said to be controllable, it is possible to transfer the system from any initial state to any other state in a finite number of sampling periods by means of the unbounded control vector. Thus the concept of controllability is concerned with the existence of a control vector that can cause the system state to reach some arbitrary state. If any state variable is independent of the control signal, then it is impossible to control this state variable and therefore the system is uncontrollable. The solution to an optimal control problem may not exist if the system considered is not controllable. Observability deals with the problem of determining the state of a dynamic system from observations of the output and control vectors in a finite number of sampling periods. If a system is said to be observable, it is possible to determine the initial state from the observation of the output and the control vectors over a finite number of sampling periods. The concept of observability is useful in solving the problem of reconstructing unmeasured state variables. 4.2 REVIEW ON STATE FEEDBACK CONTROLLER The main design approach for systems described in state space form is the use of state feedback. In state feedback controller, the states of the system are considered. The control signal is determined by an instantaneous state. Such a scheme is called state feedback. State feedback control can be realized by two methods. 1. Pole placement technique. 2. Linear Quadratic Regulator.

3 Pole placement Technique Pole placement is a method employed in feedback control system to place the closed-loop poles of a plant in pre-determined locations. Placing poles is desirable because the location of the poles corresponds directly to the Eigen values of the system which controls the behavior of the system. Assume that all state variables are measurable and available for feedback. In this technique, if the system is completely state controllable, then the desired poles are chosen by means of state-feedback through an appropriate state feedback gain matrix. This technique ensures both transient and frequency response requirements and also the steady-state requirements. In conventional design approach, only the dominant closed loop poles are specified whereas pole-placement approach specifies all closed-loop poles. Since it specifies all closed-loop poles, all state variables can be measured or else state observer is needed to estimate the states. There are three methods to determine the required state feedback gain matrix 1. Transformation matrix method 2. Direct substitution method 3. Ackermann s method Figure 4.2 State feedback control system

4 57 The gain matrix is not unique for a given system but depends on the desired closed-loop pole locations selected, which determines the speed and damping of the response. The selection of the desired closed-loop poles or the desired characteristic equation is a compromise between the rapidity of the response of the error vector and the sensitivity to disturbances and measurement noises. A State feedback controller is shown in Figure State Observer In pole placement technique, an assumption is made that all state variables are available for feedback to design the control system. In practice, all states are not available for measurement. So the unmeasured states are estimated by designing an observer or estimator. A device that estimates or observes the states is known as state observer. r u x y K r H Z -1 C Process G L ŷ H Z -1 xˆ - C G Observer - K Figure 4.3 Observer based State feedback control system

5 58 A state observer as in Figure 4.3 estimates the state variables based on the measurement of the outputs and the control variables and it should be designed only if the observability conditions are satisfied Effects of the Addition of an Observer to State Feedback In the pole placement design process, it is assumed that the actual state is available for feedback. In practice, the actual state may not be measurable, so it is necessary to design a state observer. Therefore the design process involves a two stage process. First stage includes determination of the feedback gain matrix to yield the desired characteristic equation and the second stage involves the determination of the observer gain matrix to yield the desired observer characteristic equation. The closed loop poles of the observed-state feedback control system consist of the poles due to the poleplacement design and the poles due to the observer design. If the order of the plant is n, then the observer is also n th order and the resulting characteristic equation for the entire closed-loop system becomes the order of 2n. The desired closed-loop poles to be generated by state feedback are chosen in such a way that the system satisfies the performance requirements. The poles of the observer are usually chosen so that the observer response is much faster than system response. A rule of thumb is to choose an observer response at least two to five times faster than system response. The maximum speed of the observer is limited only by the noise and sensitivity problem involved in the control system. Since the observer poles are placed left of the desired closedloop poles in the pole placement process, the closed loop poles will dominate the response. 4.3 MULTIRATE OUTPUT FEEDBACK (MROF) If the states are available for measurement state feedback provides a simplest way of designing a controller. Some times the state feedback

6 59 becomes inevitable due to incomplete state information. In reality most of the states are observable but they are immeasurable. So it is essential to find a controller based on the system output which is always measurable. The state feedback control law requires the design of state observer i.e. the dynamic compensators. This increases the implementation cost and reduces the reliability of the control system. More over in observer based design, even slight variation of the model parameters from their nominal value may result insignificant degradation of closed loop stability. The other problem with observer based controller is that the state feedback and state estimation cannot be separated in face of uncertainty (Werner and Furuta 1995b). Assuming that a simultaneously stabilizing state feedback gain has been found, it is possible to use an algorithm to search for a simultaneously stabilizing full order observer gain, but this depends on the state feedback gain previously obtained. Instead of searching for the dynamic compensator parameters, the problem can be transformed into an equivalent static output feedback problem. Hence it is desirable to go for an output feedback design. The static output feedback problem is the most important open question in control theory (Kimura 1994). It is not appreciated for single input system as it is essential to match the number of inputs to the number of poles of the system i.e. it needs n-outputs to assign all the n-poles of the system. So the static output feedback has no real significance. As in most cases the number of outputs is less than the system order, the static output feedback would not be a correct option for single input single output system. The static output feedback is one of the most investigated problems in control theory. It is the simplest closed loop control but it will not guarantee the closed loop stability (Syrmos et al 1997). Jinhui Zhang and Yuanqing Xia (2010) states that static output feedback controller have less computational and hardware overheads than an observer based approach.

7 60 Hence the dynamic output feedback comes into picture. In dynamic output feedback, the feedback function is a transfer function rather than a constant vector. In this both, the poles and zeros of the systems are matched using a dynamic compensator. The order of the dynamic compensator would be very large. If the system has n-poles and m-zeros, the compensator would be of the order (m+n). Moreover since the emphasis here is on pole placement, the dynamic output feedback method used should place 2n-poles of the closed loop system. The dynamic output feedback involves more dynamics and complex design. External Input E Plant B x x C y A Z -1 [ ] Unit Delay State Computation Output Stacker Control Input Controller Figure 4.4 Block Diagram for Fast Output Sampling Controller In recent past, multirate output feedback controllers were applied for large scale systems and systems with incomplete state information. Multirate controllers can outperform single rate linear time invariant controllers due to their time varying nature. If the digital controller is so

8 61 designed that the control signal and sensor output are sampled at different rates, then such a control is called as multirate control (Kranc 1957). To assure the stability and performance, the multirate output feedback is introduced which also maintains the simplicity of the static output feedback. Multirate output feedback technique is different from the observer based technique in the sense that the system states are computed exactly just after one sampling interval as opposed to infinite time taken by an observer. Further the time delay required for control law implementation is avoided as present outputs or control inputs are used to compute the states. In case of multirate output feedback the error between the computed state and the actual state of the system goes to zero once a multirate sampled measurement is available, where as in observer, the error between the estimated and actual system state goes to zero only at infinite time (Datatreya Reddy et al 2007). In Multirate output feedback, the system output and the control input are sampled at a rate faster than the other and only the system outputs and past control inputs are used to compute the control input. An attractive feature of MROF controller is that they allow a simultaneous design for a family of models. Multirate output feedback can be realized using Fast Output Sampling (FOS) or by Periodic Output Feedback (POF). Block diagram for FOS controller is shown in Figure 4.4. In fast output sampling, the system output is sampled faster than the control input and vice versa in periodic output feedback. For any controllable and observable system, it is possible to realize the performance of a state feedback controller by using only the system output with multirate output feedback (Bandyopadhyay et al 2006). Unlike the static output feedback, fast output sampling feedback always guarantees the stability of the closed loop system (Sharma et al 2003).

9 62 Patient s tolerance considerations, limit the number of thermocouples that can be inserted into the body. So hyperthermia system is a system with incomplete state information, this demands the need for estimator design. Hence it is rather desirable to go for an output feedback design. The output feedback needs only the measurement of system output unlike the state feedback which requires the knowledge of the states or a state estimator. This chapter summarizes the merits and demerits of state feedback and output feedback controller.this also gives information on effect of adding an observer to a system. Finally it presents the advantages of multirate output feedback controller and justifies the need for using multirate output feedback controller for hyperthermia system.

CHAPTER 6 FAST OUTPUT SAMPLING CONTROL TECHNIQUE

CHAPTER 6 FAST OUTPUT SAMPLING CONTROL TECHNIQUE 80 CHAPTER 6 FAST OUTPUT SAMPLING CONTROL TECHNIQUE 6.1 GENERAL In this chapter a control strategy for hyperthermia system is developed using fast output sampling feedback control law which is a type of

More information

Control Systems. State Estimation.

Control Systems. State Estimation. State Estimation chibum@seoultech.ac.kr Outline Dominant pole design Symmetric root locus State estimation We are able to place the CLPs arbitrarily by feeding back all the states: u = Kx. But these may

More information

The output voltage is given by,

The output voltage is given by, 71 The output voltage is given by, = (3.1) The inductor and capacitor values of the Boost converter are derived by having the same assumption as that of the Buck converter. Now the critical value of the

More information

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities. 19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that

More information

Linear State Feedback Controller Design

Linear State Feedback Controller Design Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

More information

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang CBE507 LECTURE III Controller Design Using State-space Methods Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University Korea University III -1 Overview States What

More information

Closed-loop system 2/1/2016. Generally MIMO case. Two-degrees-of-freedom (2 DOF) control structure. (2 DOF structure) The closed loop equations become

Closed-loop system 2/1/2016. Generally MIMO case. Two-degrees-of-freedom (2 DOF) control structure. (2 DOF structure) The closed loop equations become Closed-loop system enerally MIMO case Two-degrees-of-freedom (2 DOF) control structure (2 DOF structure) 2 The closed loop equations become solving for z gives where is the closed loop transfer function

More information

PID Control. Objectives

PID Control. Objectives PID Control Objectives The objective of this lab is to study basic design issues for proportional-integral-derivative control laws. Emphasis is placed on transient responses and steady-state errors. The

More information

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

State Observers and the Kalman filter

State Observers and the Kalman filter Modelling and Control of Dynamic Systems State Observers and the Kalman filter Prof. Oreste S. Bursi University of Trento Page 1 Feedback System State variable feedback system: Control feedback law:u =

More information

(Refer Slide Time: 1:42)

(Refer Slide Time: 1:42) Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 21 Basic Principles of Feedback Control (Contd..) Friends, let me get started

More information

Goodwin, Graebe, Salgado, Prentice Hall Chapter 11. Chapter 11. Dealing with Constraints

Goodwin, Graebe, Salgado, Prentice Hall Chapter 11. Chapter 11. Dealing with Constraints Chapter 11 Dealing with Constraints Topics to be covered An ubiquitous problem in control is that all real actuators have limited authority. This implies that they are constrained in amplitude and/or rate

More information

SECTION 5: ROOT LOCUS ANALYSIS

SECTION 5: ROOT LOCUS ANALYSIS SECTION 5: ROOT LOCUS ANALYSIS MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Introduction 3 Consider a general feedback system: Closed loop transfer function is 1 is the forward path

More information

RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing

RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44-101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl

More information

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 7 Interconnected

More information

Linear Control Systems

Linear Control Systems Linear Control Systems Project session 3: Design in state-space 6 th October 2017 Kathleen Coutisse kathleen.coutisse@student.ulg.ac.be 1 Content 1. Closed loop system 2. State feedback 3. Observer 4.

More information

IC6501 CONTROL SYSTEMS

IC6501 CONTROL SYSTEMS DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical

More information

QFT Framework for Robust Tuning of Power System Stabilizers

QFT Framework for Robust Tuning of Power System Stabilizers 45-E-PSS-75 QFT Framework for Robust Tuning of Power System Stabilizers Seyyed Mohammad Mahdi Alavi, Roozbeh Izadi-Zamanabadi Department of Control Engineering, Aalborg University, Denmark Correspondence

More information

Outline. Classical Control. Lecture 1

Outline. Classical Control. Lecture 1 Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

More information

IMPROVED TECHNIQUE OF MULTI-STAGE COMPENSATION. K. M. Yanev A. Obok Opok

IMPROVED TECHNIQUE OF MULTI-STAGE COMPENSATION. K. M. Yanev A. Obok Opok IMPROVED TECHNIQUE OF MULTI-STAGE COMPENSATION K. M. Yanev A. Obok Opok Considering marginal control systems, a useful technique, contributing to the method of multi-stage compensation is suggested. A

More information

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching

I. D. Landau, A. Karimi: A Course on Adaptive Control Adaptive Control. Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 1 Adaptive Control Part 9: Adaptive Control with Multiple Models and Switching I. D. Landau, A. Karimi: A Course on Adaptive Control - 5 2 Outline

More information

The Applicability of Adaptive Control Theory to QoS Design: Limitations and Solutions

The Applicability of Adaptive Control Theory to QoS Design: Limitations and Solutions The Applicability of Adaptive Control Theory to QoS Design: Limitations and Solutions Keqiang Wu David J. Lilja Haowei Bai Electrical and Computer Engineering University of Minnesota Minneapolis, MN 55455,

More information

Design via Root Locus

Design via Root Locus Design via Root Locus I 9 Chapter Learning Outcomes J After completing this chapter the student will be able to: Use the root locus to design cascade compensators to improve the steady-state error (Sections

More information

Design via Root Locus

Design via Root Locus Design via Root Locus 9 Chapter Learning Outcomes After completing this chapter the student will be able to: Use the root locus to design cascade compensators to improve the steady-state error (Sections

More information

Proportional plus Integral (PI) Controller

Proportional plus Integral (PI) Controller Proportional plus Integral (PI) Controller 1. A pole is placed at the origin 2. This causes the system type to increase by 1 and as a result the error is reduced to zero. 3. Originally a point A is on

More information

Dynamic Compensation using root locus method

Dynamic Compensation using root locus method CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the

More information

Performance assessment of MIMO systems under partial information

Performance assessment of MIMO systems under partial information Performance assessment of MIMO systems under partial information H Xia P Majecki A Ordys M Grimble Abstract Minimum variance (MV) can characterize the most fundamental performance limitation of a system,

More information

Due Wednesday, February 6th EE/MFS 599 HW #5

Due Wednesday, February 6th EE/MFS 599 HW #5 Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unity-feedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]

More information

Internal Model Control of A Class of Continuous Linear Underactuated Systems

Internal Model Control of A Class of Continuous Linear Underactuated Systems Internal Model Control of A Class of Continuous Linear Underactuated Systems Asma Mezzi Tunis El Manar University, Automatic Control Research Laboratory, LA.R.A, National Engineering School of Tunis (ENIT),

More information

YTÜ Mechanical Engineering Department

YTÜ Mechanical Engineering Department YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Report

More information

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Robust Internal Model Control for Impulse Elimination of Singular Systems

Robust Internal Model Control for Impulse Elimination of Singular Systems International Journal of Control Science and Engineering ; (): -7 DOI:.59/j.control.. Robust Internal Model Control for Impulse Elimination of Singular Systems M. M. Share Pasandand *, H. D. Taghirad Department

More information

Department of Electronics and Instrumentation Engineering M. E- CONTROL AND INSTRUMENTATION ENGINEERING CL7101 CONTROL SYSTEM DESIGN Unit I- BASICS AND ROOT-LOCUS DESIGN PART-A (2 marks) 1. What are the

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

SECTION 4: STEADY STATE ERROR

SECTION 4: STEADY STATE ERROR SECTION 4: STEADY STATE ERROR MAE 4421 Control of Aerospace & Mechanical Systems 2 Introduction Steady State Error Introduction 3 Consider a simple unity feedback system The error is the difference between

More information

Control Design Techniques in Power Electronics Devices

Control Design Techniques in Power Electronics Devices Hebertt Sira-Ramfrez and Ramön Silva-Ortigoza Control Design Techniques in Power Electronics Devices With 202 Figures < } Spri inger g< Contents 1 Introduction 1 Part I Modelling 2 Modelling of DC-to-DC

More information

B1-1. Closed-loop control. Chapter 1. Fundamentals of closed-loop control technology. Festo Didactic Process Control System

B1-1. Closed-loop control. Chapter 1. Fundamentals of closed-loop control technology. Festo Didactic Process Control System B1-1 Chapter 1 Fundamentals of closed-loop control technology B1-2 This chapter outlines the differences between closed-loop and openloop control and gives an introduction to closed-loop control technology.

More information

MODERN CONTROL DESIGN

MODERN CONTROL DESIGN CHAPTER 8 MODERN CONTROL DESIGN The classical design techniques of Chapters 6 and 7 are based on the root-locus and frequency response that utilize only the plant output for feedback with a dynamic controller

More information

Problem Value Score Total 100/105

Problem Value Score Total 100/105 RULES This is a closed book, closed notes test. You are, however, allowed one piece of paper (front side only) for notes and definitions, but no sample problems. The top half is the same as from the first

More information

YTÜ Mechanical Engineering Department

YTÜ Mechanical Engineering Department YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Date: Lab

More information

Chapter 3. State Feedback - Pole Placement. Motivation

Chapter 3. State Feedback - Pole Placement. Motivation Chapter 3 State Feedback - Pole Placement Motivation Whereas classical control theory is based on output feedback, this course mainly deals with control system design by state feedback. This model-based

More information

Experiment # 5 5. Coupled Water Tanks

Experiment # 5 5. Coupled Water Tanks Experiment # 5 5. Coupled Water Tanks 5.. Objectives The Coupled-Tank plant is a Two-Tank module consisting of a pump with a water basin and two tanks. The two tanks are mounted on the front plate such

More information

9. Two-Degrees-of-Freedom Design

9. Two-Degrees-of-Freedom Design 9. Two-Degrees-of-Freedom Design In some feedback schemes we have additional degrees-offreedom outside the feedback path. For example, feed forwarding known disturbance signals or reference signals. In

More information

Acceleration Feedback

Acceleration Feedback Acceleration Feedback Mechanical Engineer Modeling & Simulation Electro- Mechanics Electrical- Electronics Engineer Sensors Actuators Computer Systems Engineer Embedded Control Controls Engineer Mechatronic

More information

Pole placement control: state space and polynomial approaches Lecture 2

Pole placement control: state space and polynomial approaches Lecture 2 : state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

More information

Chapter 7. Digital Control Systems

Chapter 7. Digital Control Systems Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steady-state error, and transient response for computer-controlled systems. Transfer functions,

More information

(Continued on next page)

(Continued on next page) (Continued on next page) 18.2 Roots of Stability Nyquist Criterion 87 e(s) 1 S(s) = =, r(s) 1 + P (s)c(s) where P (s) represents the plant transfer function, and C(s) the compensator. The closedloop characteristic

More information

Design of Nonlinear Control Systems with the Highest Derivative in Feedback

Design of Nonlinear Control Systems with the Highest Derivative in Feedback SERIES ON STAB1UTY, VIBRATION AND CONTROL OF SYSTEMS SeriesA Volume 16 Founder & Editor: Ardeshir Guran Co-Editors: M. Cloud & W. B. Zimmerman Design of Nonlinear Control Systems with the Highest Derivative

More information

Advanced Control Theory

Advanced Control Theory State Feedback Control Design chibum@seoultech.ac.kr Outline State feedback control design Benefits of CCF 2 Conceptual steps in controller design We begin by considering the regulation problem the task

More information

Classify a transfer function to see which order or ramp it can follow and with which expected error.

Classify a transfer function to see which order or ramp it can follow and with which expected error. Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,

More information

Unit 8: Part 2: PD, PID, and Feedback Compensation

Unit 8: Part 2: PD, PID, and Feedback Compensation Ideal Derivative Compensation (PD) Lead Compensation PID Controller Design Feedback Compensation Physical Realization of Compensation Unit 8: Part 2: PD, PID, and Feedback Compensation Engineering 5821:

More information

Digital Control Engineering Analysis and Design

Digital Control Engineering Analysis and Design Digital Control Engineering Analysis and Design M. Sami Fadali Antonio Visioli AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

Chapter 13 Digital Control

Chapter 13 Digital Control Chapter 13 Digital Control Chapter 12 was concerned with building models for systems acting under digital control. We next turn to the question of control itself. Topics to be covered include: why one

More information

EEE 188: Digital Control Systems

EEE 188: Digital Control Systems EEE 88: Digital Control Systems Lecture summary # the controlled variable. Example: cruise control. In feedback control, sensors and measurements play an important role. In discrete time systems, the control

More information

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation

Control Design. Lecture 9: State Feedback and Observers. Two Classes of Control Problems. State Feedback: Problem Formulation Lecture 9: State Feedback and s [IFAC PB Ch 9] State Feedback s Disturbance Estimation & Integral Action Control Design Many factors to consider, for example: Attenuation of load disturbances Reduction

More information

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies. SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..

More information

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

More information

Compensator Design to Improve Transient Performance Using Root Locus

Compensator Design to Improve Transient Performance Using Root Locus 1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning

More information

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?

Step input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system? IC6501 CONTROL SYSTEM UNIT-II TIME RESPONSE PART-A 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April

More information

Inverted Pendulum: State-Space Methods for Controller Design

Inverted Pendulum: State-Space Methods for Controller Design 1 de 12 18/10/2015 22:45 Tips Effects TIPS ABOUT BASICS HARDWARE INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SYSTEM MODELING ANALYSIS Inverted Pendulum: State-Space Methods for Controller

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #24 Wednesday, March 10, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Remedies We next turn to the question

More information

Root Locus Design Example #4

Root Locus Design Example #4 Root Locus Design Example #4 A. Introduction The plant model represents a linearization of the heading dynamics of a 25, ton tanker ship under empty load conditions. The reference input signal R(s) is

More information

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 7 Control 7.1 Classical Control Part 1 1 7.1 Classical Control Outline 7.1.1 Introduction 7.1.2 Virtual Spring Damper 7.1.3 Feedback Control 7.1.4 Model Referenced and Feedforward Control Summary

More information

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10) Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

More information

Digital Control: Part 2. ENGI 7825: Control Systems II Andrew Vardy

Digital Control: Part 2. ENGI 7825: Control Systems II Andrew Vardy Digital Control: Part 2 ENGI 7825: Control Systems II Andrew Vardy Mapping the s-plane onto the z-plane We re almost ready to design a controller for a DT system, however we will have to consider where

More information

AN INTRODUCTION TO THE CONTROL THEORY

AN INTRODUCTION TO THE CONTROL THEORY Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

More information

Seul Jung, T. C. Hsia and R. G. Bonitz y. Robotics Research Laboratory. University of California, Davis. Davis, CA 95616

Seul Jung, T. C. Hsia and R. G. Bonitz y. Robotics Research Laboratory. University of California, Davis. Davis, CA 95616 On Robust Impedance Force Control of Robot Manipulators Seul Jung, T C Hsia and R G Bonitz y Robotics Research Laboratory Department of Electrical and Computer Engineering University of California, Davis

More information

Dr Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

CYBER EXPLORATION LABORATORY EXPERIMENTS

CYBER EXPLORATION LABORATORY EXPERIMENTS CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)

More information

ECE 388 Automatic Control

ECE 388 Automatic Control Lead Compensator and PID Control Associate Prof. Dr. of Mechatronics Engineeering Çankaya University Compulsory Course in Electronic and Communication Engineering Credits (2/2/3) Course Webpage: http://ece388.cankaya.edu.tr

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 4G - Signals and Systems Laboratory Lab 9 PID Control Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 April, 04 Objectives: Identify the

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR. Ryszard Gessing

A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR. Ryszard Gessing A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44-101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl

More information

Chapter 15 - Solved Problems

Chapter 15 - Solved Problems Chapter 5 - Solved Problems Solved Problem 5.. Contributed by - Alvaro Liendo, Universidad Tecnica Federico Santa Maria, Consider a plant having a nominal model given by G o (s) = s + 2 The aim of the

More information

EC6405 - CONTROL SYSTEM ENGINEERING Questions and Answers Unit - I Control System Modeling Two marks 1. What is control system? A system consists of a number of components connected together to perform

More information

Motor Controller. A block diagram for the motor with a feedback controller is shown below

Motor Controller. A block diagram for the motor with a feedback controller is shown below Motor Controller A block diagram for the motor with a feedback controller is shown below A few things to note 1. In this modeling problem, there is no established method or set of criteria for selecting

More information

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller Pole-placement by state-space methods Control Design To be considered in controller design * Compensate the effect of load disturbances * Reduce the effect of measurement noise * Setpoint following (target

More information

Multi-Input Multi-output (MIMO) Processes CBE495 LECTURE III CONTROL OF MULTI INPUT MULTI OUTPUT PROCESSES. Professor Dae Ryook Yang

Multi-Input Multi-output (MIMO) Processes CBE495 LECTURE III CONTROL OF MULTI INPUT MULTI OUTPUT PROCESSES. Professor Dae Ryook Yang Multi-Input Multi-output (MIMO) Processes CBE495 LECTURE III CONTROL OF MULTI INPUT MULTI OUTPUT PROCESSES Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University

More information

ECE317 : Feedback and Control

ECE317 : Feedback and Control ECE317 : Feedback and Control Lecture : Steady-state error Dr. Richard Tymerski Dept. of Electrical and Computer Engineering Portland State University 1 Course roadmap Modeling Analysis Design Laplace

More information

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-2, Issue-11, November- 2016]

International Journal of Engineering Research & Science (IJOER) ISSN: [ ] [Vol-2, Issue-11, November- 2016] Synthesis of Discrete Steady-State Error Free Modal State Controller Based on Predefined Pole Placement Area and Measurable State Variables Mariela Alexandrova Department of Automation, Technical University

More information

Outline. Classical Control. Lecture 5

Outline. Classical Control. Lecture 5 Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?

More information

Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach

Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach Ufuk Bakirdogen*, Matthias Liermann** *Institute for Fluid Power Drives and Controls (IFAS),

More information

inputs. The velocity form is used in the digital implementation to avoid wind-up [7]. The unified LQR scheme has been developed due to several reasons

inputs. The velocity form is used in the digital implementation to avoid wind-up [7]. The unified LQR scheme has been developed due to several reasons A LQR Scheme for SCR Process in Combined-Cycle Thermal Power Plants Santo Wijaya 1 Keiko Shimizu 1 and Masashi Nakamoto 2 Abstract The paper presents a feedback control of Linear Quadratic Regulator (LQR)

More information

Model Predictive Controller of Boost Converter with RLE Load

Model Predictive Controller of Boost Converter with RLE Load Model Predictive Controller of Boost Converter with RLE Load N. Murali K.V.Shriram S.Muthukumar Nizwa College of Vellore Institute of Nizwa College of Technology Technology University Technology Ministry

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii

1 An Overview and Brief History of Feedback Control 1. 2 Dynamic Models 23. Contents. Preface. xiii Contents 1 An Overview and Brief History of Feedback Control 1 A Perspective on Feedback Control 1 Chapter Overview 2 1.1 A Simple Feedback System 3 1.2 A First Analysis of Feedback 6 1.3 Feedback System

More information

and Mixed / Control of Dual-Actuator Hard Disk Drive via LMIs

and Mixed / Control of Dual-Actuator Hard Disk Drive via LMIs and Mixed / Control of Dual-Actuator Hard Disk Drive via LMIs Nasser Mohamad Zadeh Electrical Engineering Department Tarbiat Modares University Tehran, Iran mohamadzadeh@ieee.org Ramin Amirifar Electrical

More information

SECTION 2: BLOCK DIAGRAMS & SIGNAL FLOW GRAPHS

SECTION 2: BLOCK DIAGRAMS & SIGNAL FLOW GRAPHS SECTION 2: BLOCK DIAGRAMS & SIGNAL FLOW GRAPHS MAE 4421 Control of Aerospace & Mechanical Systems 2 Block Diagram Manipulation Block Diagrams 3 In the introductory section we saw examples of block diagrams

More information

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive Nazeer Ahammad S1, Sadik Ahamad Khan2, Ravi Kumar Reddy P3, Prasanthi M4 1*Pursuing M.Tech in the field of Power Electronics 2*Working

More information

Control Systems. University Questions

Control Systems. University Questions University Questions UNIT-1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write

More information

Evaluation Performance of PID, LQR, Pole Placement Controllers for Heat Exchanger

Evaluation Performance of PID, LQR, Pole Placement Controllers for Heat Exchanger Evaluation Performance of PID, LQR, Pole Placement Controllers for Heat Exchanger Mohamed Essahafi, Mustapha Ait Lafkih Abstract In industrial environments, the heat exchanger is a necessary component

More information

Positioning Servo Design Example

Positioning Servo Design Example Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

FEEDBACK CONTROL SYSTEMS

FEEDBACK CONTROL SYSTEMS FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

More information

Design of a Lead Compensator

Design of a Lead Compensator Design of a Lead Compensator Dr. Bishakh Bhattacharya Professor, Department of Mechanical Engineering IIT Kanpur Joint Initiative of IITs and IISc - Funded by MHRD The Lecture Contains Standard Forms of

More information

ME 132, Fall 2017, UC Berkeley, A. Packard 317. G 1 (s) = 3 s + 6, G 2(s) = s + 2

ME 132, Fall 2017, UC Berkeley, A. Packard 317. G 1 (s) = 3 s + 6, G 2(s) = s + 2 ME 132, Fall 2017, UC Berkeley, A. Packard 317 Be sure to check that all of your matrix manipulations have the correct dimensions, and that the concatenations have compatible dimensions (horizontal concatenations

More information

R10. IV B.Tech II Semester Regular Examinations, April/May DIGITAL CONTROL SYSTEMS JNTUK

R10. IV B.Tech II Semester Regular Examinations, April/May DIGITAL CONTROL SYSTEMS JNTUK Set No. 1 1 a) Explain about the shifting and scaling operator. b) Discuss briefly about the linear time invariant and causal systems. 2 a) Write the mapping points between S-Plane and Z-plane. b) Find

More information