Shafts. Fig.(4.1) Dr. Salah Gasim Ahmed YIC 1

Size: px
Start display at page:

Download "Shafts. Fig.(4.1) Dr. Salah Gasim Ahmed YIC 1"

Transcription

1 Shafts. Power transmission shafting Continuous mechanical power is usually transmitted along and etween rotating shafts. The transfer etween shafts is accomplished y gears, elts, chains or other similar means for matching the torque/speed characteristics of the interconnected shafts, e.g. a car needs gears etween the engine crankshaft and drive wheel half-shafts. Shafts rotating only at constant speed N (rev/s) are considered here. Power = force ( N) linear velocity ( m/s) in translational applications and Power = torque ( Nm) angular velocity ( = π N rad/s) in rotational applications, then it follows that torque is a major load component in power transmitting rotating shafts.. Torque transmission Torque may e transferred to or from the end of one shaft y a second coaxial shaft - this is a pure torque, a twist aout the shaft axis. The transfer is carried out y a shaft coupling, see fig.(.). Torque may e transferred also at any point along a shaft y a gear, elt pulley, or chain sprocket for example, mounted on the shaft. These common elements apply forces offset from the shaft axis, and therefore the torque (T) is accompanied y a radial load which results in ending A spur gear and a elt pulley are Fig.(.) sketched in fig.(.), each sujected to loading tangential to its effective or pitch diameter D. The load on the spur gear arises from inter-tooth contact with its mating gear and comprises two components, the useful tangential component F t and the unwanted ut unavoidale radial component F r (commonly 0.6 F t ). Gear forms other than spur give rise also to a load component parallel to the shaft axis - ut for all gears, shifting the offset force as aove, T = F t D/. See fig. (.) A elt, eing flexile, cannot withstand compression - the pulley is therefore sujected to two strand tensions F max and F min oth of which must exceed zero. The net torque T = ( F max - F min ) D/ is clockwise here. A chain sprocket is similar though the minimum tension may drop to zero due to the positive drive not relying on friction. Dr. Salah Gasim Ahmed YIC

2 Fig. (.). Design of shafts under various types of loading The following equations can e used to otain the size of the shaft under various types of loadings Shafts under torsion only: 5.K T t D B (.) Ss 000K P S N s Shafts under pure ending 0.K M S Shafts under ending and torsion: D When using power When using power t D B (.) m D B (.) 5. B ( KmM ) ( KtT ) (.a) pt K P D ( p N t Short shafts under transverse shear only t B ( K M ) (.) m.7v D (.) S s When using metric system then equation (.) ecomes.7k P t D B (.5) S N s And equation (.) ecomes ) Dr. Salah Gasim Ahmed YIC

3 K P D B ( ) (.6) N t ( KmM ) pt Where, D = external diameter of shaft in inch D = internal diameter of shaft in inch K = D (for hollow shafts) D B ( K ) K m = comined factor of shock and fatigue under ending K t = comined factor of shock and fatigue under torsion M = maximum ending moment (in l) T = maximum torque (in l) N = rotational speed (rpm) P = Power (hp) p t = maximum allowale shear stress under comined load of ending and torsion (psi) S =maximum allowale ending stress (psi) S s =maximum allowale shear stress (psi) V =maximum allowale transverse shear stress (psi) Tale (.) Comined Shock and Fatigue Factors for Various Types of Load Type of load Constant loads without shocks Stationary shafts K m K t.0.0 Rotating shafts K m K t.5.0 Sudden loads with light shocks Sudden loads with heavy shocks Tale (.) Recommended Maximum Allowale Stresses for Shafts Under Various Types of Loads Material Type of load Bending only Torsion only Torsion + ending Commercial steel Without key way S=6000 psi (0 N/mm ) S s = 000 psi (55 N/mm ) p t = 000 psi (55 N/mm ) Commercial steel With key way S = 000 psi ( N/mm ) S s = 6000 psi ( N/mm ) p t = 6000 psi ( N/mm ) Steel with specific properties Note(a) Note() Note() (a) S= 60% of elastic limit in tension and not more than 6% of ultimate tensile strength Dr. Salah Gasim Ahmed YIC

4 () S s and p t = 0% of elastic limit in tension and not more than % of ultimate tensile strength Tale (.) Values of the Factor B Corresponding to Various Values of K for Hollow Shafts K D D K B ( ) Example A shaft carrying two pulleys is shown in fig.(.).the shafts transmits a torque of 00 in.l. and carries sudden loads at A and B equivalent to 50 l and 50 l. respectively, with minor shocks. The two pulleys are fixed to the shaft through rectangular keys. The hu length of pulley A is inch and that of pulley B is inch. If total length of the shaft is 0 inch and it is made of commercial steel find the proper diameter of the shaft in all sections. Pulley A Fig.(.) Pulley B Dr. Salah Gasim Ahmed YIC

5 Dr. Salah Gasim Ahmed YIC 5

6 Dr. Salah Gasim Ahmed YIC 6

7 General guidelines:. Make the shaft as short as possile while locating the earings as close as possile to the loads. This reduces ending moments and deformation and increases critical speed.. Eliminate stress raisers near highly stresses areas if possile otherwise use large filets and improve surface finish. Also cold rolling and shot peening can e used to improve the mechanical properties of the material at these areas.. If deformation is the main design factor using expensive steel does not solve the prolem as all steels have almost the same modulus of elasticity. If the weight of the shaft is an important factor the using hollow shafts may give satisfactory solution, eg shaft propeller in cars Dr. Salah Gasim Ahmed YIC 7

8 Exercises:. Figure (.6) shows the loads acting on a shaft. The shaft caries two pulleys a and. The loads on shaft are 00 l at pulley A and 00 l at pulley B and a maximum torque of 50 in l. The shaft is made of steel SAE 00 with Elastic limit of 000 psi and shear strength of 0000 psi. If the shaft drives a compressor and the.5 thick pulley are fixed to the shaft through keys, find the suitale diameters at all sections of the shaft. Take factor of safety =.5. A shaft carries a single gear and transmits a power of.5 kw at a speed of 500 rpm. The gear exerts a tangential load of 500 N and a radial load of 0 N on the shaft. The total length of the shaft is 50 mm and it is carried y two earings at its ends while the gear is fixed at its centre with a square key. The shaft is connected to a centrifugal pump at one of its ends. Determine suitale diameters for the shaft at its sections. Find the diameters of a transmission shaft connected to a six-cylinder 00 hp oil engine through a elt drive, see fig,(.7). The shaft is driving a woodworking and metalworking machinery and runs at 5 rpm. The torque transmitted through the shaft is divided equally etween the working machinery. Take a safety factor of.5 6 in A 00 l 00 l 0 in Fig. (.6) B in Metal working machine pulley 000N Wood working machine pulley 00N 00 N Engine pulley 00 mm 00 mm 00 mm 00 mm Fig. (.7) Dr. Salah Gasim Ahmed YIC

9 5. A geared industrial roll shown in fig.(.) is driven at 00 rpm y a force F acting on a in diameter pitch circle as shown. The roll exerts a normal force of 0 l/in of roll length on the material eing pulled through. The material passes under the roll. The coefficient of friction is 0.. Develop the moment and shear diagrams for the shaft modelling the roll force as: a) a concentrated force at the centre of the roll and, ) a uniformly distriuted force along the roll. Select material and determine dimensions of the shaft if the roll is fitted to the shaft through a square key F in F 0 0 in in in in Gear in PCD Fig. (.) Dr. Salah Gasim Ahmed YIC 9

10 Keys and pins 5. Types of keys The main function of a key is to transmit torque etween a shaft and a machine part assemled to it. In most cases keys prevent relative motion, oth rotary and axial. In some construction they allow axial motion etween the shaft and the hu; such keys are called feather keys or spline keys. Keys can e classified according to their shape into straight, and tapered, rectangular, square, round, and dovetail. h / Square Rectangular shallow Tapered Two width Dovetailed Woodruff Flat Saddle Fig. (5.) Shaft keys for light and medium duty Keys are also classified according to their intended duty as:. Light duty keys, square: rectangular key, shallow key. See fig. (5.). Medium duty: taper key.. Heavy duty keys: round tapered key, Barth key. See fig. (5.) Taper /6 in per ft = d/ 90 0 Taper / in per ft h= / = d/5 to d/ = d/6 Fig. (5.) Heavy duty keys Dr. Salah Gasim Ahmed YIC 0

11 5. Design of square keys: When torque is transmitted through keys, they are sujected to shear and compressive crushing stresses. See fig. (5.) Shearing Crushing Crushing strength: Since a hu is always much more rigid than a shaft, the shaft will e twisted y the torque whereas the hu will remain practically undistorted. As a result the pressure along the key will vary and it will e minimum at the free end of the shaft and maximum on the other side. The maximum pressure can e denoted y P while the minimum pressure P and the pressure at any point along the key y P. So at a distance L o the pressure equals to zero (see fig (5.). The pressure can e expressed y the equation: P P L tan (5.) Where ( P P ) P tan (5.) L L 0 Fig.(5.) h D P P L P L L 0 =.5 D Fig. (5.) Dr. Salah Gasim Ahmed YIC

12 Torque transmitted dt PxdLx D (5.) Sustituting the value of P from equation (5.) into equation (5.) and integrating etween the limits L = 0 to L = L yields: T P DL DL tan (5.) The pressure /unit length equals the crushing stress x the area of unit length of the key side, (S x0.5hx) then, P 0.5Sh Experiments showed that length of key greater than.5d is not effective. So we can consider that the pressure at L=.5D equals zero and hence, P Sh tan (5.5) L0.5D And the torque transmitted can e expressed y, hl T S hdl S (5.6) The length of the key can e determined from equation (5.6). If the outcome is negative value then one key is not enough, ut if L< D then take L = D. Shear strength The strength of the key can e represented y a diagram similar to fig.(5.) and with P = S s where S s is the maximum shear at the end of the key and hence P Ssh tan (5.7) L0.5D And the torque transmitted can e expressed y: T SSDL L 9 SS (5.) From equation (5.) T SS (5.9) L ( 0.5D 0.L ) Based on the diameter of the shaft the standard dimensions of a square can e determined from tale (5.a) or tale (5.) The maximum length of the key should not exceed.5 D as the extra length, practically, will e useless Dr. Salah Gasim Ahmed YIC

13 Diameter of Shaft inclusive (mm) Tale (5.a) Standard dimensions of straight key (metric) Key Dimensions (mm) Diameter of Key Dimensions (mm) Shaft inclusive Width Thickness h Width Thickness h (mm) Diameter of shaft D (in) (Inclusive) Tale (5.) Standard dimensions of straight keys (inch) Width 6 5 Key dimensions (in) Thickness Standard h 6 5 Flat h Diameter of shaft D (in) (Inclusive) Width 7 Key dimensions (in) Thickness Standard h 7 Flat h 5 7 Dr. Salah Gasim Ahmed YIC

14 Material Tale (5.) Mechanical Properties of Metals (Inch system) Ultimate tensile strength (kpsi) Tensile (kpsi) Elastic limit Compressive (kpsi) Shear (kpsi) Young s Modulus (kpsi) Modulus of rigidity (kpsi) Steel casting SAE Steel casting SAE Steel casting SAE Alloy steel casting SAE 090, ASTM A- Stainless steel: C 0.0, Cr, Ni Stainless steel: C 0.0, Mn 0., Si 0.5, Cr, Ni 0.6 Stainless steel: SAE Caron steel SAE Caron steel SAE00 Caron steel SAE00 Caron steel SAE00 Caron steel SAE050 Caron steel SAE095 Caron steel SAE Nickel steel SAE Nickel steel SAE Cr-Ni steel SAE Cr-Ni steel SAE Cr-V steel SAE Cr-Ni-V steel Nitraalloy Steel Wrought iron Dr. Salah Gasim Ahmed YIC

15 Tale (5.) Mechanical Properties of Metals (Metric system) Material Ultimate tensile strength Elastic limit )MN/m ( Tensile Compressive Shear Young s Modulus )GN/m ( Modulus of rigidity )GN/m ( Steel casting SAE Steel casting SAE Steel casting SAE Alloy steel casting SAE 090, ASTM A- Stainless steel: C 0.0, Cr, Ni Stainless steel: C 0.0, Mn 0., Si 0.5, Cr, Ni 0.6 Stainless steel: SAE Caron steel SAE Caron steel SAE Caron steel SAE Caron steel SAE Caron steel SAE Caron steel SAE Caron steel SAE Nickel steel SAE Nickel steel SAE Cr-Ni steel SAE 0, Cr-Ni steel SAE 0, Cr-V steel SAE 650,00,00, Cr-Ni-V steel, Nitraalloy Steel Wrought iron Dr. Salah Gasim Ahmed YIC 5

16 Example: 7 Find suitale dimensions of a square key to fit into 6 inch diameter shaft. The shaft transmits 95 hp at a speed of 00 rpm. The key is made of steel SAE 00. Take safety factor of.5 and stress concentration factor k =.6 Solution: Dr. Salah Gasim Ahmed YIC 6

17 Dr. Salah Gasim Ahmed YIC 7

18 Exercises:. A shaft transmits a torque of 50 Nm to a pulley through a square key. The key is made of steel SAE 00. Taking a safety factor of determine suitale dimension for the key if the diameter of the shaft is 50 mm.. A power of 0 kw is transmitted from a 0 mm diameter shaft to a spur gear through a square key. The shaft rotates at 000 rpm. Select a suitale material for the key and determine its dimensions. Take factor of safety =.5. A shaft transmits a torque of 00 lin. to a pulley through a square key. The. Taking a safety factor of select a suitale material and determine dimension for the key if the diameter of the shaft is in. Dr. Salah Gasim Ahmed YIC

12/25/ :27 PM. Chapter 14. Spur and Helical Gears. Mohammad Suliman Abuhaiba, Ph.D., PE

12/25/ :27 PM. Chapter 14. Spur and Helical Gears. Mohammad Suliman Abuhaiba, Ph.D., PE Chapter 14 Spur and Helical Gears 1 2 The Lewis Bending Equation Equation to estimate bending stress in gear teeth in which tooth form entered into the formulation: 3 The Lewis Bending Equation Assume

More information

Torsion Stresses in Tubes and Rods

Torsion Stresses in Tubes and Rods Torsion Stresses in Tubes and Rods This initial analysis is valid only for a restricted range of problem for which the assumptions are: Rod is initially straight. Rod twists without bending. Material is

More information

Shafts Introduction. Shafts 509

Shafts Introduction. Shafts 509 Shafts 509 C H A P T E R 14 Shafts 1. Introduction.. Material Used for Shafts.. Manufacturing of Shafts. 4. Types of Shafts. 5. Standard Sizes of Transmission Shafts. 6. Stresses in Shafts. 7. Maximum

More information

Mechanical Design. Design of Shaft

Mechanical Design. Design of Shaft Mechanical Design Design of Shaft Outline Practical information Shaft design Definition of shaft? It is a rotating member, in general, has a circular cross-section and is used to transmit power. The shaft

More information

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21

[7] Torsion. [7.1] Torsion. [7.2] Statically Indeterminate Torsion. [7] Torsion Page 1 of 21 [7] Torsion Page 1 of 21 [7] Torsion [7.1] Torsion [7.2] Statically Indeterminate Torsion [7] Torsion Page 2 of 21 [7.1] Torsion SHEAR STRAIN DUE TO TORSION 1) A shaft with a circular cross section is

More information

CHAPTER 17 FLEXIBLE MECHANICAL ELEMENTS LECTURE NOTES DR. HAFTIRMAN

CHAPTER 17 FLEXIBLE MECHANICAL ELEMENTS LECTURE NOTES DR. HAFTIRMAN CHAPTER 17 LEXIBLE MECHANICAL ELEMENTS LECTURE NOTES DR. HATIRMAN lexible Mechanical Elements Belts Roller chains Wire rope lexible shafts lexible Mechanical Elements Belts, ropes, chains, and other similar

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE

Tuesday, February 11, Chapter 3. Load and Stress Analysis. Dr. Mohammad Suliman Abuhaiba, PE 1 Chapter 3 Load and Stress Analysis 2 Chapter Outline Equilibrium & Free-Body Diagrams Shear Force and Bending Moments in Beams Singularity Functions Stress Cartesian Stress Components Mohr s Circle for

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling.

SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. SOLUTION (17.3) Known: A simply supported steel shaft is connected to an electric motor with a flexible coupling. Find: Determine the value of the critical speed of rotation for the shaft. Schematic and

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

MEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys

MEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys MEMS 029 Project 2 Assignment Design of a Shaft to Transmit Torque Between Two Pulleys Date: February 5, 206 Instructor: Dr. Stephen Ludwick Product Definition Shafts are incredibly important in order

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 3 Torsion Introduction Stress and strain in components subjected to torque T Circular Cross-section shape Material Shaft design Non-circular

More information

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS

QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State Hooke s law. 3. Define modular ratio,

More information

2. Polar moment of inertia As stated above, the polar second moment of area, J is defined as. Sample copy

2. Polar moment of inertia As stated above, the polar second moment of area, J is defined as. Sample copy GATE PATHSHALA - 91. Polar moment of inertia As stated above, the polar second moment of area, is defined as z π r dr 0 R r π R π D For a solid shaft π (6) QP 0 π d Solid shaft π d Hollow shaft, " ( do

More information

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there? High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

More information

CHAPTER 8 SCREWS, FASTENERS, NONPERMANENT JOINTS

CHAPTER 8 SCREWS, FASTENERS, NONPERMANENT JOINTS CHAPTER 8 SCREWS, FASTENERS, NONPERMANENT JOINTS This chapter deals with the design and analysis of nonpermanent fasteners such as bolts, power screws, cap screws, setscrews, eys and pins. 8- Standards

More information

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support 4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

More information

Flexible Mechanical Elements

Flexible Mechanical Elements lexible Mechanical Elements INTRODUCTION Belts, ropes, chains, and other similar elastic or flexible machine elements are used in conveying systems and in the transmission of power over comparatively long

More information

The example of shafts; a) Rotating Machinery; Propeller shaft, Drive shaft b) Structural Systems; Landing gear strut, Flap drive mechanism

The example of shafts; a) Rotating Machinery; Propeller shaft, Drive shaft b) Structural Systems; Landing gear strut, Flap drive mechanism TORSION OBJECTIVES: This chapter starts with torsion theory in the circular cross section followed by the behaviour of torsion member. The calculation of the stress stress and the angle of twist will be

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 2009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes:

More information

The problem of transmitting a torque or rotary motion from one plane to another is frequently encountered in machine design.

The problem of transmitting a torque or rotary motion from one plane to another is frequently encountered in machine design. CHAPER ORSION ORSION orsion refers to the twisting of a structural member when it is loaded by moments/torques that produce rotation about the longitudinal axis of the member he problem of transmitting

More information

2014 MECHANICS OF MATERIALS

2014 MECHANICS OF MATERIALS R10 SET - 1 II. Tech I Semester Regular Examinations, March 2014 MEHNIS OF MTERILS (ivil Engineering) Time: 3 hours Max. Marks: 75 nswer any FIVE Questions ll Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~

More information

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS)

BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) BE Semester- I ( ) Question Bank (MECHANICS OF SOLIDS) All questions carry equal marks(10 marks) Q.1 (a) Write the SI units of following quantities and also mention whether it is scalar or vector: (i)

More information

Endurance Strength Pg 274

Endurance Strength Pg 274 [Pg / 8] Fatigue Analysis Pg 257 The Units used as standard: in, kip, kpsi, sec, hp in, kip, kpsi, sec/min, hp Endurance Strength Pg 274 Fatigue failure occurs when a machine element is sujected to fluctuating

More information

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

More information

SECOND ENGINEER REG. III/2 APPLIED MECHANICS

SECOND ENGINEER REG. III/2 APPLIED MECHANICS SECOND ENGINEER REG. III/2 APPLIED MECHANICS LIST OF TOPICS Static s Friction Kinematics Dynamics Machines Strength of Materials Hydrostatics Hydrodynamics A STATICS 1 Solves problems involving forces

More information

STRESS, STRAIN AND DEFORMATION OF SOLIDS

STRESS, STRAIN AND DEFORMATION OF SOLIDS VELAMMAL COLLEGE OF ENGINEERING AND TECHNOLOGY, MADURAI 625009 DEPARTMENT OF CIVIL ENGINEERING CE8301 STRENGTH OF MATERIALS I -------------------------------------------------------------------------------------------------------------------------------

More information

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR

CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR CE6306 STRENGTH OF MATERIALS TWO MARK QUESTIONS WITH ANSWERS ACADEMIC YEAR 2014-2015 UNIT - 1 STRESS, STRAIN AND DEFORMATION OF SOLIDS PART- A 1. Define tensile stress and tensile strain. The stress induced

More information

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK

PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK PERIYAR CENTENARY POLYTECHNIC COLLEGE PERIYAR NAGAR - VALLAM - 613 403 - THANJAVUR. DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Sub : Strength of Materials Year / Sem: II / III Sub Code : MEB 310

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information

Members Subjected to Torsional Loads

Members Subjected to Torsional Loads Members Subjected to Torsional Loads Torsion of circular shafts Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d applied in a plane perpendicular

More information

Note: Read section (12-1) objective of this chapter (Page 532)

Note: Read section (12-1) objective of this chapter (Page 532) References: Machine Elements in Mechanical Design by Robert L. Mott, P.E. (Chapter 12 Note: Read section (12-1 objective of this chapter (Page 532 Page 1 of 29 Shaft Design Procedure (Sec. 12-2, Page 532

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT STRESS ANALYSIS ES-2502, C 2012 Lecture 17: 10 February 2012 General information Instructor: Cosme Furlong HL-151 (508) 831-5126 cfurlong@wpi.edu

More information

CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion

CIVL222 STRENGTH OF MATERIALS. Chapter 6. Torsion CIVL222 STRENGTH OF MATERIALS Chapter 6 Torsion Definition Torque is a moment that tends to twist a member about its longitudinal axis. Slender members subjected to a twisting load are said to be in torsion.

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING QUESTION BANK FOR THE MECHANICS OF MATERIALS-I 1. A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kn. If the modulus

More information

SECTION A. 8 kn/m. C 3 m 3m

SECTION A. 8 kn/m. C 3 m 3m SECTION Question 1 150 m 40 kn 5 kn 8 kn/m C 3 m 3m D 50 ll dimensions in mm 15 15 Figure Q1(a) Figure Q1(b) The horizontal beam CD shown in Figure Q1(a) has a uniform cross-section as shown in Figure

More information

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A

R13. II B. Tech I Semester Regular Examinations, Jan MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) PART-A SET - 1 II B. Tech I Semester Regular Examinations, Jan - 2015 MECHANICS OF SOLIDS (Com. to ME, AME, AE, MTE) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

Chapter 3. Load and Stress Analysis. Lecture Slides

Chapter 3. Load and Stress Analysis. Lecture Slides Lecture Slides Chapter 3 Load and Stress Analysis 2015 by McGraw Hill Education. This is proprietary material solely for authorized instructor use. Not authorized for sale or distribution in any manner.

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

SIZING AND SELECTION. According to DIN 740 part 2 SIZING

SIZING AND SELECTION. According to DIN 740 part 2 SIZING SIZING SIZING AND SELECTION According to DIN 740 part 2 RW-AMERICA.COM 7 SIZING AND SELECTION SAFETY COUPLINGS ST SYMBOLS T AR = Disengagement torque of the coupling (Nm) K = Service factor T max = Maximum

More information

This equation of motion may be solved either by differential equation method or by graphical method as discussed below:

This equation of motion may be solved either by differential equation method or by graphical method as discussed below: 2.15. Frequency of Under Damped Forced Vibrations Consider a system consisting of spring, mass and damper as shown in Fig. 22. Let the system is acted upon by an external periodic (i.e. simple harmonic)

More information

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation.

UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. UNIT 1 STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define stress. When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The magnitude

More information

3 Hours/100 Marks Seat No.

3 Hours/100 Marks Seat No. *17304* 17304 14115 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full

More information

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5

COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4017 COURSE CATEGORY : A PERIODS/WEEK : 6 PERIODS/ SEMESTER : 108 CREDITS : 5 TIME SCHEDULE MODULE TOPICS PERIODS 1 Simple stresses

More information

3.5 STRESS AND STRAIN IN PURE SHEAR. The next element is in a state of pure shear.

3.5 STRESS AND STRAIN IN PURE SHEAR. The next element is in a state of pure shear. 3.5 STRESS AND STRAIN IN PURE SHEAR The next element is in a state of pure shear. Fig. 3-20 Stresses acting on a stress element cut from a bar in torsion (pure shear) Stresses on inclined planes Fig. 3-21

More information

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE

: APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE COURSE TITLE : APPLIED MECHANICS & STRENGTH OF MATERIALS COURSE CODE : 4021 COURSE CATEGORY : A PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIODS 1 Simple stresses

More information

Helical Gears n A Textbook of Machine Design

Helical Gears n A Textbook of Machine Design 1066 n A Textbook of Machine Design C H A P T E R 9 Helical Gears 1. Introduction.. Terms used in Helical Gears. 3. Face Width of Helical Gears. 4. Formative or Equivalent Number of Teeth for Helical Gears.

More information

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure.

18.Define the term modulus of resilience. May/June Define Principal Stress. 20. Define Hydrostatic Pressure. CE6306 STREGNTH OF MATERIALS Question Bank Unit-I STRESS, STRAIN, DEFORMATION OF SOLIDS PART-A 1. Define Poison s Ratio May/June 2009 2. What is thermal stress? May/June 2009 3. Estimate the load carried

More information

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE

March 24, Chapter 4. Deflection and Stiffness. Dr. Mohammad Suliman Abuhaiba, PE Chapter 4 Deflection and Stiffness 1 2 Chapter Outline Spring Rates Tension, Compression, and Torsion Deflection Due to Bending Beam Deflection Methods Beam Deflections by Superposition Strain Energy Castigliano

More information

MECHANICAL ENGINEERING» COURSE:

MECHANICAL ENGINEERING» COURSE: PROGRAMME: «BSc in MECHANICAL ENGINEERING» COURSE: Machine Elements I - AMEM 316 ACADEMIC YEAR: 20013-14 INSTRUCTOR: Dr. Antonios Lontos DATE: 06/12/2013 Assignment 1: «SHAFT DESIGN» Prepared by: Aaaa

More information

Sub. Code:

Sub. Code: Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. ) The model answer and the answer written by candidate may

More information

Lab Exercise #3: Torsion

Lab Exercise #3: Torsion Lab Exercise #3: Pre-lab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round

More information

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS Unit 2: Unit code: QCF Level: 4 Credit value: 15 Engineering Science L/601/1404 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS 1. Be able to determine the behavioural characteristics of elements of static engineering

More information

(48) CHAPTER 3: TORSION

(48) CHAPTER 3: TORSION (48) CHAPTER 3: TORSION Introduction: In this chapter structural members and machine parts that are in torsion will be considered. More specifically, you will analyze the stresses and strains in members

More information

API 11E - Specification for Pumping Units

API 11E - Specification for Pumping Units API 11E - Specification for Pumping Units 5 Beam Pump Structure Requirements 5.1 General Requirements for beam pump structures are specified in the following sections. Only loads imposed on the structure

More information

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)?

2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at A and supported at B by rod (1). What is the axial force in rod (1)? IDE 110 S08 Test 1 Name: 1. Determine the internal axial forces in segments (1), (2) and (3). (a) N 1 = kn (b) N 2 = kn (c) N 3 = kn 2. Rigid bar ABC supports a weight of W = 50 kn. Bar ABC is pinned at

More information

Dimensions of propulsion shafts and their permissible torsional vibration stresses

Dimensions of propulsion shafts and their permissible torsional vibration stresses (Feb 2005) (orr.1 Mar 2012) (orr.2 Nov 2012) Dimensions of propulsion shafts and their permissible torsional vibration stresses.1 Scope This UR applies to propulsion shafts such as intermediate and propeller

More information

TIMING PULLEYS & BELTS Timing Belts and Pulleys

TIMING PULLEYS & BELTS Timing Belts and Pulleys Timing Belts and Pulleys Z e d o1 F U1 v n1 d k1 z 1 a = Centre distance (mm) M B = Acceleration torque (Nm) t B = Acceleration time (s) d = Bore (mm) r = Density (kg/dm 3 ) M = Torque (Nm) n = RPM d k

More information

Page 1 of 11 Disclaimer: The information on this page has not been checked by an independent person. Use this information at your own risk. ROYMECH Torque Measurement Complete solutions from 0.02Nm to

More information

Static Failure (pg 206)

Static Failure (pg 206) Static Failure (pg 06) All material followed Hookeʹs law which states that strain is proportional to stress applied, until it exceed the proportional limits. It will reach and exceed the elastic limit

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

Sample Question Paper

Sample Question Paper Scheme I Sample Question Paper Program Name : Mechanical Engineering Program Group Program Code : AE/ME/PG/PT/FG Semester : Third Course Title : Strength of Materials Marks : 70 Time: 3 Hrs. Instructions:

More information

Torsion of shafts with circular symmetry

Torsion of shafts with circular symmetry orsion of shafts with circular symmetry Introduction Consider a uniform bar which is subject to a torque, eg through the action of two forces F separated by distance d, hence Fd orsion is the resultant

More information

Matlab Sheet 2. Arrays

Matlab Sheet 2. Arrays Matlab Sheet 2 Arrays 1. a. Create the vector x having 50 logarithmically spaced values starting at 10 and ending at 1000. b. Create the vector x having 20 logarithmically spaced values starting at 10

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

LECTURE NOTES ENT345 MECHANICAL COMPONENTS DESIGN Lecture 6, 7 29/10/2015 SPUR AND HELICAL GEARS

LECTURE NOTES ENT345 MECHANICAL COMPONENTS DESIGN Lecture 6, 7 29/10/2015 SPUR AND HELICAL GEARS LECTURE NOTES ENT345 MECHANICAL COMPONENTS DESIGN Lecture 6, 7 29/10/2015 SPUR AND HELICAL GEARS Dr. HAFTIRMAN MECHANICAL ENGINEEERING PROGRAM SCHOOL OF MECHATRONIC ENGINEERING UniMAP COPYRIGHT RESERVED

More information

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA

SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA SRI CHANDRASEKHARENDRA SARASWATHI VISWA MAHAVIDHYALAYA (Declared as Deemed-to-be University under Section 3 of the UGC Act, 1956, Vide notification No.F.9.9/92-U-3 dated 26 th May 1993 of the Govt. of

More information

1 of 12. Given: Law of Cosines: C. Law of Sines: Stress = E = G

1 of 12. Given: Law of Cosines: C. Law of Sines: Stress = E = G ES230 STRENGTH OF MATERIALS FINAL EXAM: WEDNESDAY, MAY 15 TH, 4PM TO 7PM, AEC200 Closed book. Calculator and writing supplies allowed. Protractor and compass required. 180 Minute Time Limit You must have

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -00 04 CIVIL ENGINEERING QUESTION BANK Course Name : STRENGTH OF MATERIALS II Course Code : A404 Class : II B. Tech II Semester Section

More information

FME461 Engineering Design II

FME461 Engineering Design II FME461 Engineering Design II Dr.Hussein Jama Hussein.jama@uobi.ac.ke Office 414 Lecture: Mon 8am -10am Tutorial Tue 3pm - 5pm 10/1/2013 1 Semester outline Date Week Topics Reference Reading 9 th Sept 1

More information

CLUTCHES AND BRAKES. Square-jaw clutch

CLUTCHES AND BRAKES. Square-jaw clutch Clutches: CLUTCHES AND BRAKES A Clutch is a mechanical device which is used to connect or disconnect the source of power from the remaining parts so the power transmission system at the will of the operator.

More information

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2

UNIT-I STRESS, STRAIN. 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 UNIT-I STRESS, STRAIN 1. A Member A B C D is subjected to loading as shown in fig determine the total elongation. Take E= 2 x10 5 N/mm 2 Young s modulus E= 2 x10 5 N/mm 2 Area1=900mm 2 Area2=400mm 2 Area3=625mm

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

Design against fluctuating load

Design against fluctuating load Design against fluctuating load In many applications, the force acting on the spring is not constants but varies in magnitude with time. The valve springs of automotive engine subjected to millions of

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

Automobile manual transmission

Automobile manual transmission Design of Shaft A shaft is a rotating member usually of circular crosssection (soli or hollow), which is use to transmit power an rotational motion. Axles are non rotating member. Elements such as gears,

More information

PRECISION GEARS Spur Gears

PRECISION GEARS Spur Gears Spur Gears Description Symbol Unit Equation Normal Module m n Transverse Module m t = m n Normal Pressure Angle a n degrees = 2 Transverse Pressure Angle a t degrees = a n Number of Teeth z Profile Shift

More information

Lesson of Mechanics and Machines done in the 5th A-M, by the teacher Pietro Calicchio. THE GEARS CYLINDRICAL STRAIGHT TEETH GEARS

Lesson of Mechanics and Machines done in the 5th A-M, by the teacher Pietro Calicchio. THE GEARS CYLINDRICAL STRAIGHT TEETH GEARS MESA PROJECT Lesson of Mechanics and Machines done in the 5th A-M, 2012-2013 by the teacher Pietro Calicchio. THE GEARS To transmit high power are usually used gear wheels. In this case, the transmission

More information

Failure from static loading

Failure from static loading Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials Notation: a = acceleration = area (net = with holes, bearing = in contact, etc...) SD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e = change

More information

N = Shear stress / Shear strain

N = Shear stress / Shear strain UNIT - I 1. What is meant by factor of safety? [A/M-15] It is the ratio between ultimate stress to the working stress. Factor of safety = Ultimate stress Permissible stress 2. Define Resilience. [A/M-15]

More information

Public Service Commission, West Bengal

Public Service Commission, West Bengal Public Service Commission, West Bengal Syllabus for the Written Test for recruitment to the posts of ASSISTANT ENGINEER (Agri - Mechanical) in West Bengal Service of Agricultural Engineers Mechanical Engineering

More information

NAME: Given Formulae: Law of Cosines: Law of Sines:

NAME: Given Formulae: Law of Cosines: Law of Sines: NME: Given Formulae: Law of Cosines: EXM 3 PST PROBLEMS (LESSONS 21 TO 28) 100 points Thursday, November 16, 2017, 7pm to 9:30, Room 200 You are allowed to use a calculator and drawing equipment, only.

More information

2 Axially Loaded Numbers

2 Axially Loaded Numbers xially oaded Numers hanges in engths of xially oaded Memers rolem.-1 The T-shaped arm shown in the figure lies in a vertical plane and pivots aout a horizontal pin at. The arm has constant cross-sectional

More information

Donald P. Shiley School of Engineering ME 328 Machine Design, Spring 2019 Assignment 1 Review Questions

Donald P. Shiley School of Engineering ME 328 Machine Design, Spring 2019 Assignment 1 Review Questions Donald P. Shiley School of Engineering ME 328 Machine Design, Spring 2019 Assignment 1 Review Questions Name: This is assignment is in workbook format, meaning you may fill in the blanks (you do not need

More information

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Chapter 8 Structural Design and Analysis 1 Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Normal Stress Stress is a state when a material is loaded. For normal forces

More information

Solid Mechanics Chapter 1: Tension, Compression and Shear

Solid Mechanics Chapter 1: Tension, Compression and Shear Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics

More information

UNIT 3 Friction and Belt Drives 06ME54. Structure

UNIT 3 Friction and Belt Drives 06ME54. Structure UNIT 3 Friction and Belt Drives 06ME54 Structure Definitions Types of Friction Laws of friction Friction in Pivot and Collar Bearings Belt Drives Flat Belt Drives Ratio of Belt Tensions Centrifugal Tension

More information

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS Unit 2: Unit code: QCF Level: Credit value: 15 Engineering Science L/601/10 OUTCOME 1 - TUTORIAL COLUMNS 1. Be able to determine the behavioural characteristics of elements of static engineering systems

More information

UNIT-I (FORCE ANALYSIS)

UNIT-I (FORCE ANALYSIS) DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEACH AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK ME2302 DYNAMICS OF MACHINERY III YEAR/ V SEMESTER UNIT-I (FORCE ANALYSIS) PART-A (2 marks)

More information

MECHANICS OF SOLIDS Credit Hours: 6

MECHANICS OF SOLIDS Credit Hours: 6 MECHANICS OF SOLIDS Credit Hours: 6 Teaching Scheme Theory Tutorials Practical Total Credit Hours/week 4 0 6 6 Marks 00 0 50 50 6 A. Objective of the Course: Objectives of introducing this subject at second

More information

P R E C I S I O N G E A R S Spur Gears

P R E C I S I O N G E A R S Spur Gears Spur Gears Description Symbol Unit Equation Normal Module m n Transverse Module m t = m n Normal Pressure Angle α n degrees = 2 Transverse Pressure Angle α t degrees = α n Number of Teeth z Profile Shift

More information

Automated Spur Gear Designing Using MATLAB

Automated Spur Gear Designing Using MATLAB Kalpa Publications in Engineering Volume 1, 2017, Pages 493 498 ICRISET2017. International Conference on Research and Innovations in Science, Engineering &Technology. Selected Papers in Engineering Automated

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

3 Shearing stress. 3.1 Introduction

3 Shearing stress. 3.1 Introduction 3 Shearing stress 3.1 Introduction In Chapter 1 we made a study of tensile and compressive stresses, which we called direct stresses. There is another type of stress which plays a vital role in the behaviour

More information

Lab Exercise #5: Tension and Bending with Strain Gages

Lab Exercise #5: Tension and Bending with Strain Gages Lab Exercise #5: Tension and Bending with Strain Gages Pre-lab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material

More information