PHYS 705: Classical Mechanics. Small Oscillations: Example A Linear Triatomic Molecule

Size: px
Start display at page:

Download "PHYS 705: Classical Mechanics. Small Oscillations: Example A Linear Triatomic Molecule"

Transcription

1 PHYS 75: Clssicl echnics Sll Oscilltions: Exple A Liner Tritoic olecule

2 A Liner Tritoic olecule x b b x x3 x Experientlly, one ight be interested in the rdition resulted fro the intrinsic oscilltion odes fro these tritoic olecule. The potentil energy for the two springs is, V x xb x3 x b

3 3 A Liner Tritoic olecule x b b x x3 x Now, we will introduce generlized coordintes reltive to their x, x, x equilibriu positions, : 3 x x j j j j,, 3 Note: x x x3 x b

4 4 A Liner Tritoic olecule Expnding the potentil energy bout its equilibriu position, we hve: V 3 ultiplying the squres out, we hve: x x b x x x x x x xx V 3 3 V V V j j In trix for, this qudrtic for hs this for: V

5 5 A Liner Tritoic olecule Direct ethod to evlute using Recll, we hve V V j V j qjq V x xb x3 x b By ting the prtil derivtives directly nd evluting t, x j x j V V qq V : x xb nd q V : V q nd x x b x3 x b V qq V

6 6 A Liner Tritoic olecule The inetic energy for the three ss is given by: T x x x 3 Substituting our generlized coordintes or, x x j j j x j j T 3 T T j j In trix for, this qudrtic for hs this for: T

7 7 A Liner Tritoic olecule Cobining these two qudrtic fors into the chrcteristic eqution, VT V T Explicitly evluting this deterinnt, we hve the following eqution, 4

8 8 A Liner Tritoic olecule And, this hs three distinct solutions (eigenfrequencies): 3 Note: The solution ens tht the corresponding norl coordinte will hve the following trivil ODE: j or (unifor trnsltionl otion) The entire olecule will siply ove uniforly to the right or left; no oscilltions (not quite interesting otion by itself)

9 9 A Liner Tritoic olecule Now, we find the eigenvectors for ech solved eigenvlues using: V r T r r r r r r 3r Norl ode #: r 3 3

10 A Liner Tritoic olecule Norl ode #: r Solving st nd 3 rd equtions, we hve nd Putting the together, we hve 3 (Note tht the solution lso stisfies the nd eqution.) 3 So, the eigenvector for is:

11 A Liner Tritoic olecule Norl ode #: r The eigenvector needs to be norlized with respect to T: This gives: T Finlly, we hve the norlized eignvector for :

12 A Liner Tritoic olecule Norl ode #: r 3 3 3

13 3 A Liner Tritoic olecule Norl ode #: r 3 Agin, we need to norlized with respect to T: T This gives:

14 4 A Liner Tritoic olecule Norl ode #3: r First, let try to siply the trix eleents first: 3 3

15 5 A Liner Tritoic olecule Norl ode #3: r 3 Putting these vlues bc into the trix, we hve

16 6 A Liner Tritoic olecule Norl ode #3: r Agin, we need to norlized with respect to T: T 3 3 3

17 7 A Liner Tritoic olecule Norl ode #3: r This gives: 3 4 3

18 8 A Liner Tritoic olecule Then, our generl solution is given by: j jr r nd Ce Ce irt * irt r r r (the coplex coefficient will be deterined by IC) C r

19 9 Longitudinl Norl odes So, if single norl ode is ctive, the otion of the three generlized j r coordintes will loos lie the following,,, 3 :,, :,, 3: n,, 3 3 3

20 Longitudinl Norl odes nd Anitions for the two non-rigid-trnsltionl odes: 3 inole/linole.htl (fro Polytechnics Institute of NY Univ: K. ing Leung)

21 Sury. Pic generlized coordintes nd find nd. Expnd T nd V bout equilibriu q j Tq ( ) V( q j ) This gives two rel syetric qudrtic fors: with q q j j j j T ( ) V ( ) 3. Clculte eigenfrequencies fro chrcteristic eqution r det Vj r Tj 4. Clculte eigenvectors for ech eigenfrequencies using 5. Norlize eigenvectors with respect to T: 6. Generl solutions re in ters of the norl odes r * 7. Originl coordintes re relted bc through t C e C e r i t irt r r r Tjjrr j j j j V T j r j jr C deterined by IC r j jr r

PHYS 601 HW3 Solution

PHYS 601 HW3 Solution 3.1 Norl force using Lgrnge ultiplier Using the center of the hoop s origin, we will describe the position of the prticle with conventionl polr coordintes. The Lgrngin is therefore L = 1 2 ṙ2 + 1 2 r2

More information

PHY 5246: Theoretical Dynamics, Fall Assignment # 5, Solutions. θ = l mr 2 = l

PHY 5246: Theoretical Dynamics, Fall Assignment # 5, Solutions. θ = l mr 2 = l PHY 546: Theoreticl Dynics, Fll 15 Assignent # 5, Solutions 1 Grded Probles Proble 1 (1.) Using the eqution of the orbit or force lw d ( 1 dθ r)+ 1 r = r F(r), (1) l with r(θ) = ke αθ one finds fro which

More information

OXFORD H i g h e r E d u c a t i o n Oxford University Press, All rights reserved.

OXFORD H i g h e r E d u c a t i o n Oxford University Press, All rights reserved. Renshw: Mths for Econoics nswers to dditionl exercises Exercise.. Given: nd B 5 Find: () + B + B 7 8 (b) (c) (d) (e) B B B + B T B (where 8 B 6 B 6 8 B + B T denotes the trnspose of ) T 8 B 5 (f) (g) B

More information

The Spring. Consider a spring, which we apply a force F A to either stretch it or compress it

The Spring. Consider a spring, which we apply a force F A to either stretch it or compress it The Spring Consider spring, which we pply force F A to either stretch it or copress it F A - unstretched -F A 0 F A k k is the spring constnt, units of N/, different for different terils, nuber of coils

More information

Matrix Eigenvalues and Eigenvectors September 13, 2017

Matrix Eigenvalues and Eigenvectors September 13, 2017 Mtri Eigenvlues nd Eigenvectors September, 7 Mtri Eigenvlues nd Eigenvectors Lrry Cretto Mechnicl Engineering 5A Seminr in Engineering Anlysis September, 7 Outline Review lst lecture Definition of eigenvlues

More information

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY YIFEI PAN, MEI WANG, AND YU YAN ABSTRACT We estblish soe uniqueness results ner 0 for ordinry differentil equtions of the

More information

Second degree generalized gauss-seidel iteration method for solving linear system of equations. ABSTRACT

Second degree generalized gauss-seidel iteration method for solving linear system of equations. ABSTRACT Ethiop. J. Sci. & Technol. 7( 5-, 0 5 Second degree generlized guss-seidel itertion ethod for solving liner syste of equtions Tesfye Keede Bhir Dr University, College of Science, Deprtent of Mthetics tk_ke@yhoo.co

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 7.9, 8. Fll 6 Problem 7.9.33 Show tht for ny constnts M,, nd, the function yt) = )) t ) M + tnh stisfies the logistic eqution: y SOLUTION. Let Then nd Finlly, y = y M

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY YIFEI PAN, MEI WANG, AND YU YAN ABSTRACT We study ordinry differentil equtions of the type u n t = fut with initil conditions

More information

Chapter 1. Linear Algebra

Chapter 1. Linear Algebra Liner lger - hpter. Liner lger.. Introduction The solution of lgeric equtions pervdes science nd engineering. Therodynics is n re rife ith eples ecuse of the uiquitous presence of equiliriu constrints.

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

Best Approximation in the 2-norm

Best Approximation in the 2-norm Jim Lmbers MAT 77 Fll Semester 1-11 Lecture 1 Notes These notes correspond to Sections 9. nd 9.3 in the text. Best Approximtion in the -norm Suppose tht we wish to obtin function f n (x) tht is liner combintion

More information

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 2-5pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of

More information

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions Quntum Mechnics Qulifying Exm - August 016 Notes nd Instructions There re 6 problems. Attempt them ll s prtil credit will be given. Write on only one side of the pper for your solutions. Write your lis

More information

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in

More information

Section 7.1 Integration by Substitution

Section 7.1 Integration by Substitution Section 7. Integrtion by Substitution Evlute ech of the following integrls. Keep in mind tht using substitution my not work on some problems. For one of the definite integrls, it is not possible to find

More information

dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω. Chpter 8 Stility theory We discuss properties of solutions of first order two dimensionl system, nd stility theory for specil clss of liner systems. We denote the independent vrile y t in plce of x, nd

More information

Chapter 2. Determinants

Chapter 2. Determinants Chpter Determinnts The Determinnt Function Recll tht the X mtrix A c b d is invertible if d-bc0. The expression d-bc occurs so frequently tht it hs nme; it is clled the determinnt of the mtrix A nd is

More information

Formulae For. Standard Formulae Of Integrals: x dx k, n 1. log. a dx a k. cosec x.cot xdx cosec. e dx e k. sec. ax dx ax k. 1 1 a x.

Formulae For. Standard Formulae Of Integrals: x dx k, n 1. log. a dx a k. cosec x.cot xdx cosec. e dx e k. sec. ax dx ax k. 1 1 a x. Forule For Stndrd Forule Of Integrls: u Integrl Clculus By OP Gupt [Indir Awrd Winner, +9-965 35 48] A B C D n n k, n n log k k log e e k k E sin cos k F cos sin G tn log sec k OR log cos k H cot log sin

More information

Chapter 1 COUPLED ONE-DIMENSIONAL OSCILLATORS

Chapter 1 COUPLED ONE-DIMENSIONAL OSCILLATORS Chpter COUPLED ONE-DIMENSIONAL OSCILLATORS. Introduction Much of the interesting vibrtionl behvior of periodic systes is reveled by the clssicl oscilltions of chins of sses connected by springs tht obey

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr Lecture #1 Progrm 1. Bloch solutions. Reciprocl spce 3. Alternte derivtion of Bloch s theorem 4. Trnsforming the serch for egenfunctions nd eigenvlues from solving PDE to finding the e-vectors nd e-vlues

More information

If deg(num) deg(denom), then we should use long-division of polynomials to rewrite: p(x) = s(x) + r(x) q(x), q(x)

If deg(num) deg(denom), then we should use long-division of polynomials to rewrite: p(x) = s(x) + r(x) q(x), q(x) Mth 50 The method of prtil frction decomposition (PFD is used to integrte some rtionl functions of the form p(x, where p/q is in lowest terms nd deg(num < deg(denom. q(x If deg(num deg(denom, then we should

More information

1 2-D Second Order Equations: Separation of Variables

1 2-D Second Order Equations: Separation of Variables Chpter 12 PDEs in Rectngles 1 2-D Second Order Equtions: Seprtion of Vribles 1. A second order liner prtil differentil eqution in two vribles x nd y is A 2 u x + B 2 u 2 x y + C 2 u y + D u 2 x + E u +

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

Laplace s equation in Cylindrical Coordinates

Laplace s equation in Cylindrical Coordinates Prof. Dr. I. Ner Phy 571, T-131 -Oct-13 Lplce eqution in Cylindricl Coordinte 1- Circulr cylindricl coordinte The circulr cylindricl coordinte (, φ, z ) re relted to the rectngulr Crtein coordinte ( x,

More information

UCSD Phys 4A Intro Mechanics Winter 2016 Ch 4 Solutions

UCSD Phys 4A Intro Mechanics Winter 2016 Ch 4 Solutions USD Phys 4 Intro Mechnics Winter 06 h 4 Solutions 0. () he 0.0 k box restin on the tble hs the free-body dir shown. Its weiht 0.0 k 9.80 s 96 N. Since the box is t rest, the net force on is the box ust

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 2 solutions

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 2 solutions Mth 1102: Clculus I (Mth/Sci mjors) MWF 3pm, Fulton Hll 230 Homework 2 solutions Plese write netly, nd show ll work. Cution: An nswer with no work is wrong! Do the following problems from Chpter III: 6,

More information

PHYS 4390: GENERAL RELATIVITY LECTURE 6: TENSOR CALCULUS

PHYS 4390: GENERAL RELATIVITY LECTURE 6: TENSOR CALCULUS PHYS 4390: GENERAL RELATIVITY LECTURE 6: TENSOR CALCULUS To strt on tensor clculus, we need to define differentition on mnifold.a good question to sk is if the prtil derivtive of tensor tensor on mnifold?

More information

CSCI 5525 Machine Learning

CSCI 5525 Machine Learning CSCI 555 Mchine Lerning Some Deini*ons Qudrtic Form : nn squre mtri R n n : n vector R n the qudrtic orm: It is sclr vlue. We oten implicitly ssume tht is symmetric since / / I we write it s the elements

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

AMS 212A Applied Mathematical Methods I Lecture 06 Copyright by Hongyun Wang, UCSC. ( ), v (that is, 1 ( ) L i

AMS 212A Applied Mathematical Methods I Lecture 06 Copyright by Hongyun Wang, UCSC. ( ), v (that is, 1 ( ) L i AMS A Applied Mthemticl Methods I Lecture 6 Copyright y Hongyun Wng, UCSC Recp of Lecture 5 Clssifiction of oundry conditions Dirichlet eumnn Mixed Adjoint opertor, self-djoint opertor Sturm-Liouville

More information

The Atwood Machine OBJECTIVE INTRODUCTION APPARATUS THEORY

The Atwood Machine OBJECTIVE INTRODUCTION APPARATUS THEORY The Atwood Mchine OBJECTIVE To derive the ening of Newton's second lw of otion s it pplies to the Atwood chine. To explin how ss iblnce cn led to the ccelertion of the syste. To deterine the ccelertion

More information

Chapter 3 The Schrödinger Equation and a Particle in a Box

Chapter 3 The Schrödinger Equation and a Particle in a Box Chpter 3 The Schrödinger Eqution nd Prticle in Bo Bckground: We re finlly ble to introduce the Schrödinger eqution nd the first quntum mechnicl model prticle in bo. This eqution is the bsis of quntum mechnics

More information

Chapter (a) 2. At equilibrium, V = 0. x = (c) V( x) ke bkxe = 0. At equilibrium. b bx bx 2 bx. V = bke bkxe + b kxe = + = < 0.

Chapter (a) 2. At equilibrium, V = 0. x = (c) V( x) ke bkxe = 0. At equilibrium. b bx bx 2 bx. V = bke bkxe + b kxe = + = < 0. Chpter. () V( x) = x + x V = x x At equiibriu, V = x = V = + x V = + = > x= Stbe (b) V( x) = xe bx bx bx V = e bxe At equiibriu bx bx e bxe = x = b bx bx bx V = be bxe + b xe V be be = + = < x= b Unstbe

More information

Chapter 3 Solving Nonlinear Equations

Chapter 3 Solving Nonlinear Equations Chpter 3 Solving Nonliner Equtions 3.1 Introduction The nonliner function of unknown vrible x is in the form of where n could be non-integer. Root is the numericl vlue of x tht stisfies f ( x) 0. Grphiclly,

More information

Exponents and Powers

Exponents and Powers EXPONENTS AND POWERS 9 Exponents nd Powers CHAPTER. Introduction Do you know? Mss of erth is 5,970,000,000,000, 000, 000, 000, 000 kg. We hve lredy lernt in erlier clss how to write such lrge nubers ore

More information

Multivariate problems and matrix algebra

Multivariate problems and matrix algebra University of Ferrr Stefno Bonnini Multivrite problems nd mtrix lgebr Multivrite problems Multivrite sttisticl nlysis dels with dt contining observtions on two or more chrcteristics (vribles) ech mesured

More information

Lesson 1: Quadratic Equations

Lesson 1: Quadratic Equations Lesson 1: Qudrtic Equtions Qudrtic Eqution: The qudrtic eqution in form is. In this section, we will review 4 methods of qudrtic equtions, nd when it is most to use ech method. 1. 3.. 4. Method 1: Fctoring

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

Computer Graphics (CS 543) Lecture 3 (Part 1): Linear Algebra for Graphics (Points, Scalars, Vectors)

Computer Graphics (CS 543) Lecture 3 (Part 1): Linear Algebra for Graphics (Points, Scalars, Vectors) Coputer Grphics (CS 543) Lecture 3 (Prt ): Liner Alger for Grphics (Points, Sclrs, Vectors) Prof Enuel Agu Coputer Science Dept. Worcester Poltechnic Institute (WPI) Points, Sclrs nd Vectors Points, vectors

More information

7-1: Zero and Negative Exponents

7-1: Zero and Negative Exponents 7-: Zero nd Negtive Exponents Objective: To siplify expressions involving zero nd negtive exponents Wr Up:.. ( ).. 7.. Investigting Zero nd Negtive Exponents: Coplete the tble. Write non-integers s frctions

More information

NORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y

NORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y LOCUS 50 Section - 4 NORMALS Consider n ellipse. We need to find the eqution of the norml to this ellipse t given point P on it. In generl, we lso need to find wht condition must e stisfied if m c is to

More information

In Section 5.3 we considered initial value problems for the linear second order equation. y.a/ C ˇy 0.a/ D k 1 (13.1.4)

In Section 5.3 we considered initial value problems for the linear second order equation. y.a/ C ˇy 0.a/ D k 1 (13.1.4) 678 Chpter 13 Boundry Vlue Problems for Second Order Ordinry Differentil Equtions 13.1 TWO-POINT BOUNDARY VALUE PROBLEMS In Section 5.3 we considered initil vlue problems for the liner second order eqution

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions Hperbolic Functions Section : The inverse hperbolic functions Notes nd Emples These notes contin subsections on The inverse hperbolic functions Integrtion using the inverse hperbolic functions Logrithmic

More information

STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH

STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH STURM-LIOUVILLE THEORY, VARIATIONAL APPROACH XIAO-BIAO LIN. Qudrtic functionl nd the Euler-Jcobi Eqution The purpose of this note is to study the Sturm-Liouville problem. We use the vritionl problem s

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Integration Techniques

Integration Techniques Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

Math 113 Exam 2 Practice

Math 113 Exam 2 Practice Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

More information

than 1. It means in particular that the function is decreasing and approaching the x-

than 1. It means in particular that the function is decreasing and approaching the x- 6 Preclculus Review Grph the functions ) (/) ) log y = b y = Solution () The function y = is n eponentil function with bse smller thn It mens in prticulr tht the function is decresing nd pproching the

More information

Best Approximation. Chapter The General Case

Best Approximation. Chapter The General Case Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

More information

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion

Phys101 Lecture 4,5 Dynamics: Newton s Laws of Motion Phys101 Lecture 4,5 Dynics: ewton s Lws of Motion Key points: ewton s second lw is vector eqution ction nd rection re cting on different objects ree-ody Digrs riction Inclines Ref: 4-1,2,3,4,5,6,7,8,9.

More information

Bridging the gap: GCSE AS Level

Bridging the gap: GCSE AS Level Bridging the gp: GCSE AS Level CONTENTS Chpter Removing rckets pge Chpter Liner equtions Chpter Simultneous equtions 8 Chpter Fctors 0 Chpter Chnge the suject of the formul Chpter 6 Solving qudrtic equtions

More information

Complex, distinct eigenvalues (Sect. 7.6)

Complex, distinct eigenvalues (Sect. 7.6) Comple, distinct eigenvlues (Sect 76) Review: Clssifiction of 2 2 digonlizle systems Review: The cse of digonlizle mtrices Rel mtri with pir of comple eigenvlues Phse portrits for 2 2 systems Review: Clssifiction

More information

Quantum Physics II (8.05) Fall 2013 Assignment 2

Quantum Physics II (8.05) Fall 2013 Assignment 2 Quntum Physics II (8.05) Fll 2013 Assignment 2 Msschusetts Institute of Technology Physics Deprtment Due Fridy September 20, 2013 September 13, 2013 3:00 pm Suggested Reding Continued from lst week: 1.

More information

Does the Order Matter?

Does the Order Matter? LESSON 6 Does the Order Mtter? LEARNING OBJECTIVES Tody I : writing out exponent ultipliction. So tht I cn: develop rules for exponents. I ll know I hve it when I cn: solve proble like ( b) = b 5 0. Opening

More information

r = cos θ + 1. dt ) dt. (1)

r = cos θ + 1. dt ) dt. (1) MTHE 7 Proble Set 5 Solutions (A Crdioid). Let C be the closed curve in R whose polr coordintes (r, θ) stisfy () Sketch the curve C. r = cos θ +. (b) Find pretriztion t (r(t), θ(t)), t [, b], of C in polr

More information

MAC-solutions of the nonexistent solutions of mathematical physics

MAC-solutions of the nonexistent solutions of mathematical physics Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

More information

Recitation 3: More Applications of the Derivative

Recitation 3: More Applications of the Derivative Mth 1c TA: Pdric Brtlett Recittion 3: More Applictions of the Derivtive Week 3 Cltech 2012 1 Rndom Question Question 1 A grph consists of the following: A set V of vertices. A set E of edges where ech

More information

A-Level Mathematics Transition Task (compulsory for all maths students and all further maths student)

A-Level Mathematics Transition Task (compulsory for all maths students and all further maths student) A-Level Mthemtics Trnsition Tsk (compulsory for ll mths students nd ll further mths student) Due: st Lesson of the yer. Length: - hours work (depending on prior knowledge) This trnsition tsk provides revision

More information

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes

Jim Lambers MAT 169 Fall Semester Lecture 4 Notes Jim Lmbers MAT 169 Fll Semester 2009-10 Lecture 4 Notes These notes correspond to Section 8.2 in the text. Series Wht is Series? An infinte series, usully referred to simply s series, is n sum of ll of

More information

Lyapunov-type inequalities for Laplacian systems and applications to boundary value problems

Lyapunov-type inequalities for Laplacian systems and applications to boundary value problems Avilble online t www.isr-publictions.co/jns J. Nonliner Sci. Appl. 11 2018 8 16 Reserch Article Journl Hoepge: www.isr-publictions.co/jns Lypunov-type inequlities for Lplcin systes nd pplictions to boundry

More information

Module 6: LINEAR TRANSFORMATIONS

Module 6: LINEAR TRANSFORMATIONS Module 6: LINEAR TRANSFORMATIONS. Trnsformtions nd mtrices Trnsformtions re generliztions of functions. A vector x in some set S n is mpped into m nother vector y T( x). A trnsformtion is liner if, for

More information

Logarithmic Functions

Logarithmic Functions Logrithmic Functions Definition: Let > 0,. Then log is the number to which you rise to get. Logrithms re in essence eponents. Their domins re powers of the bse nd their rnges re the eponents needed to

More information

MA 201: Partial Differential Equations Lecture - 12

MA 201: Partial Differential Equations Lecture - 12 Two dimensionl Lplce Eqution MA 201: Prtil Differentil Equtions Lecture - 12 The Lplce Eqution (the cnonicl elliptic eqution) Two dimensionl Lplce Eqution Two dimensionl Lplce Eqution 2 u = u xx + u yy

More information

Math Lecture 23

Math Lecture 23 Mth 8 - Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information

SOLUTIONS TO CONCEPTS CHAPTER 6

SOLUTIONS TO CONCEPTS CHAPTER 6 SOLUIONS O CONCEPS CHAPE 6 1. Let ss of the block ro the freebody digr, 0...(1) velocity Agin 0 (fro (1)) g 4 g 4/g 4/10 0.4 he co-efficient of kinetic friction between the block nd the plne is 0.4. Due

More information

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=!

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=! 7. Problem 7. We hve two semi-innite slbs of dielectric mteril with nd equl indices of refrction n >, with n ir g (n ) of thickness d between them. Let the surfces be in the x; y lne, with the g being

More information

Chapter Direct Method of Interpolation More Examples Chemical Engineering

Chapter Direct Method of Interpolation More Examples Chemical Engineering hter 5. Direct Method of Interoltion More Exmles hemicl Engineering Exmle To find how much het is required to bring kettle of wter to its boiling oint, you re sked to clculte the secific het of wter t

More information

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system

AQA Further Pure 1. Complex Numbers. Section 1: Introduction to Complex Numbers. The number system Complex Numbers Section 1: Introduction to Complex Numbers Notes nd Exmples These notes contin subsections on The number system Adding nd subtrcting complex numbers Multiplying complex numbers Complex

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

Math Theory of Partial Differential Equations Lecture 2-9: Sturm-Liouville eigenvalue problems (continued).

Math Theory of Partial Differential Equations Lecture 2-9: Sturm-Liouville eigenvalue problems (continued). Mth 412-501 Theory of Prtil Differentil Equtions Lecture 2-9: Sturm-Liouville eigenvlue problems (continued). Regulr Sturm-Liouville eigenvlue problem: d ( p dφ ) + qφ + λσφ = 0 ( < x < b), dx dx β 1 φ()

More information

CAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam.

CAAM 453 NUMERICAL ANALYSIS I Examination There are four questions, plus a bonus. Do not look at them until you begin the exam. Exmintion 1 Posted 23 October 2002. Due no lter thn 5pm on Mondy, 28 October 2002. Instructions: 1. Time limit: 3 uninterrupted hours. 2. There re four questions, plus bonus. Do not look t them until you

More information

Practice Problems Solution

Practice Problems Solution Prctice Problems Solution Problem Consier D Simple Hrmonic Oscilltor escribe by the Hmiltonin Ĥ ˆp m + mwˆx Recll the rte of chnge of the expecttion of quntum mechnicl opertor t A ī A, H] + h A t. Let

More information

Recitation 3: Applications of the Derivative. 1 Higher-Order Derivatives and their Applications

Recitation 3: Applications of the Derivative. 1 Higher-Order Derivatives and their Applications Mth 1c TA: Pdric Brtlett Recittion 3: Applictions of the Derivtive Week 3 Cltech 013 1 Higher-Order Derivtives nd their Applictions Another thing we could wnt to do with the derivtive, motivted by wht

More information

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1 Tor Kjellsson Stockholm University Chpter 5 5. Strting with the following informtion: R = m r + m r m + m, r = r r we wnt to derive: µ = m m m + m r = R + µ m r, r = R µ m r 3 = µ m R + r, = µ m R r. 4

More information

INTRODUCTION TO LINEAR ALGEBRA

INTRODUCTION TO LINEAR ALGEBRA ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR

More information

MATH 573 FINAL EXAM. May 30, 2007

MATH 573 FINAL EXAM. May 30, 2007 MATH 573 FINAL EXAM My 30, 007 NAME: Solutions 1. This exm is due Wednesdy, June 6 efore the 1:30 pm. After 1:30 pm I will NOT ccept the exm.. This exm hs 1 pges including this cover. There re 10 prolems.

More information

Unit 5. Integration techniques

Unit 5. Integration techniques 18.01 EXERCISES Unit 5. Integrtion techniques 5A. Inverse trigonometric functions; Hyperbolic functions 5A-1 Evlute ) tn 1 3 b) sin 1 ( 3/) c) If θ = tn 1 5, then evlute sin θ, cos θ, cot θ, csc θ, nd

More information

Pressure Wave Analysis of a Cylindrical Drum

Pressure Wave Analysis of a Cylindrical Drum Pressure Wve Anlysis of Cylindricl Drum Chris Clrk, Brin Anderson, Brin Thoms, nd Josh Symonds Deprtment of Mthemtics The University of Rochester, Rochester, NY 4627 (Dted: December, 24 In this pper, hypotheticl

More information

Math 270A: Numerical Linear Algebra

Math 270A: Numerical Linear Algebra Mth 70A: Numericl Liner Algebr Instructor: Michel Holst Fll Qurter 014 Homework Assignment #3 Due Give to TA t lest few dys before finl if you wnt feedbck. Exercise 3.1. (The Bsic Liner Method for Liner

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

Math 231E, Lecture 33. Parametric Calculus

Math 231E, Lecture 33. Parametric Calculus Mth 31E, Lecture 33. Prmetric Clculus 1 Derivtives 1.1 First derivtive Now, let us sy tht we wnt the slope t point on prmetric curve. Recll the chin rule: which exists s long s /. = / / Exmple 1.1. Reconsider

More information

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations.

Lecture 3. In this lecture, we will discuss algorithms for solving systems of linear equations. Lecture 3 3 Solving liner equtions In this lecture we will discuss lgorithms for solving systems of liner equtions Multiplictive identity Let us restrict ourselves to considering squre mtrices since one

More information

Physics 215 Quantum Mechanics 1 Assignment 2

Physics 215 Quantum Mechanics 1 Assignment 2 Physics 15 Quntum Mechnics 1 Assignment Logn A. Morrison Jnury, 16 Problem 1 Clculte p nd p on the Gussin wve pcket α whose wve function is x α = 1 ikx x 1/4 d 1 Solution Recll tht where ψx = x ψ. Additionlly,

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Deprtment 8.044 Sttisticl Physics I Spring Term 03 Problem : Doping Semiconductor Solutions to Problem Set # ) Mentlly integrte the function p(x) given in

More information

Physics 137A - Quantum Mechanics - Spring 2018 Midterm 1. Mathematical Formulas

Physics 137A - Quantum Mechanics - Spring 2018 Midterm 1. Mathematical Formulas Copyright c 8 by Austin J. Hedemn Physics 7A - Quntum Mechnics - Spring 8 Midterm Mondy, Februry 6, 6:-8: PM You hve two hours, thirty minutes for the exm. All nswers should be written in blue book. You

More information

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is Lecture XVII Abstrct We introduce the concepts of vector functions, sclr nd vector fields nd stress their relevnce in pplied sciences. We study curves in three-dimensionl Eucliden spce nd introduce the

More information

M A T H F A L L CORRECTION. Algebra I 2 1 / 0 9 / U N I V E R S I T Y O F T O R O N T O

M A T H F A L L CORRECTION. Algebra I 2 1 / 0 9 / U N I V E R S I T Y O F T O R O N T O M A T H 2 4 0 F A L L 2 0 1 4 HOMEWORK ASSIGNMENT #1 CORRECTION Alger I 2 1 / 0 9 / 2 0 1 4 U N I V E R S I T Y O F T O R O N T O 1. Suppose nd re nonzero elements of field F. Using only the field xioms,

More information

Homework Problem Set 1 Solutions

Homework Problem Set 1 Solutions Chemistry 460 Dr. Jen M. Stnr Homework Problem Set 1 Solutions 1. Determine the outcomes of operting the following opertors on the functions liste. In these functions, is constnt..) opertor: / ; function:

More information

u(x, y, t) = T(t)Φ(x, y) 0. (THE EQUATIONS FOR PRODUCT SOLUTIONS) Plugging u = T(t)Φ(x, y) in (PDE)-(BC) we see: There is a constant λ such that

u(x, y, t) = T(t)Φ(x, y) 0. (THE EQUATIONS FOR PRODUCT SOLUTIONS) Plugging u = T(t)Φ(x, y) in (PDE)-(BC) we see: There is a constant λ such that Seprtion of Vriles for Higher Dimensionl Wve Eqution 1. Virting Memrne: 2-D Wve Eqution nd Eigenfunctions of the Lplcin Ojective: Let Ω e plnr region with oundry curve Γ. Consider the wve eqution in Ω

More information

Problem Set 2 Solutions

Problem Set 2 Solutions Chemistry 362 Dr. Jen M. Stnr Problem Set 2 Solutions 1. Determine the outcomes of operting the following opertors on the functions liste. In these functions, is constnt.).) opertor: /x ; function: x e

More information