Resonance and fractal geometry

Size: px
Start display at page:

Download "Resonance and fractal geometry"

Transcription

1 Resonance and fractal geometry Henk Broer Johann Bernoulli Institute for Mathematics and Computer Science Rijksuniversiteit Groningen

2 Summary i. resonance in parametrized systems ii. two oscillators: torus- en circle dynamics iii. driven oscillators, examples: - Hopf-Neĭmark-Sacker bifurcation - parametric resonance - Hopf saddle-node bifurcation for maps iv. universal properties for parameter space - resonance open & dense or residual - quasi-periodicity nowhere dense or meagre a fractal set of positive measure - and chaos emerging

3 What is resonance? Resonance: interaction of oscillating subsystems, where rational ratio of frequencies and with compatible motion examples: 1 : 1 resonance: Tuning radio frequency, Huygens s clocks, Moon and Earth, Charon and Pluto 1 : 2 resonance: Botafumeiro (Santiago de Compostela) 2 : 3 resonance: Mercury

4 J.J. Stoker, Nonlinear Vibrations in Mechanical and Electrical Systems. Interscience 1950; Wiley : 1 resonance R R α = ω α = ω Amplitude response diagram driven oscillators resonance peaks ẍ = α 2 x cẋ+εsin(ωt) (harmonic) ẍ = α 2 x cẋ δx 3 +εsin(ωt) (Duffing)

5 Christiaan Huygens ( ) Christiaan Huygens and title page Horologium Oscillatorium 1673 cycloids and synchronisation

6 Huygens s clocks synchronize Chr. Huygens, Œuvres Complètes de Christiaan Huygens, publiées par la Société Hollandaise des Sciences 16, Martinus Nijhoff, The Hague 1929, Vol. 5, ; Vol. 17,

7 Tidal resonance Moon caught by Earth in 1 : 1 resonance Pluto and Charon caught each other: als the ultimate fate of the Earth-Moon system... Mercury caught in3 : 2 resonance A. Correia and J. Laskar, Mercury s capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics. Nature 429 (2004)

8 Botafumeiro Santiago de Compostela incense container brought into 1:2 resonance by pully: period exactly equals twice that of the forcing

9 Mathematical programme modelling in terms of dynamical systems depending on parameters emergence of several kinds of dynamics: periodic, quasi-periodic and chaotic bifurcations (fase transitions) in between applications from climate change to (biological) cell systems

10 Torus en circle dynamics simplest model: torus dynamics P(ϕ) ϕ Poincaré map: ϕ ϕ+2πα+εf(ϕ) dynamics of the circle (by iteration) resonant periodic

11 Example: Arnol d family ϕ ϕ+2πα+εsinϕ ε /2-4/9-3/7-2/5-3/8-1/3-2/7-1/4-2/9-1/5-1/6-1/7-1/8 α 0 1/8 1/7 1/6 1/5 2/9 1/4 2/7 1/3 3/8 2/5 3/7 4/9 1/2 resonance tongues in (α,ε)-vlak catalogue of circle and torus dynamics

12 Explanation torus dynamics within tongues: periodicity resonance phase-locking synchronisation within main tongue : 1 : 1 resonance entrainment outside tongues: quasi-periodicity each orbit densely fills torus / circle H.W. Broer and F. Takens, Dynamical Systems and Chaos. Epsilon-Uitgaven 64 (2009); Appl. Math. Sc. 172 Springer (2011) D.G.M. Beersma, H.W. Broer, K. Efstathiou, K.A. Gargar and I. Hoveijn, Pacer cell response to periodic Zeitgebers. Physica D 19 (2011) H.W. Broer, K. Efstathiou and E. Subramanian, Robustness of unstable attractors in arbitrarily sized pulse-coupled systems with delay. Nonlinearity 21(1) (2008) H.W. Broer, K. Efstathiou and E. Subramanian, Heteroclinic cycles between unstable attractors.

13 Devil s staircase α rotation number mean rotation as a function ofα, for small ε > 0 fixed (α) continuous, non-decreasing and constant on plateaux for rational values of resonance rational H.W. Broer, C. Simó and J.C. Tatjer, Towards global models near homoclinic tangencies of dissipative diffeomorphisms. Nonlinearity 11 (1998)

14 Geometry in parameter space non-resonance fractal geometry nowhere dense set, topologically small positive Lebesgue measure fractal: Hausdorff dimension > topological dimension (= 0) quasi-periodic motion with irrational ; strongly irrational differentiable conjugation with rigid rotation V.I. Arnol d, Geometrical Methods in the Theory of Ordinary Differential Equations. Springer (1983) B.B. Mandelbrot, The Fractal Geometry of Nature. Freeman (1977) J. Oxtoby, Measure and Category, Springer (1971)

15 Conclusions Huygens s clocks torus / circle model weakly coupled oscillators as before almost identical oscillators 0 modulo 1 parameters(α,ε) in main tongue NB: mind the universal nature of this explanation. For more details on the phases of Huygens s clocks see the below references. Here the dynamics of the connecting beam has to play a role. M. Bennett, M.F. Schatz, H. Rockwood and K. Wiesenfeld, Huygens s clocks. Proc. R. Soc. Lond. A 458 (2002), A. Pogromsky, D. Rijlaarsdam and H. Nijmeijer, Experimental Huygens synchronization of oscillators. In: M. Thiel, J. Kurths, M.C. Romano, A. Moura and G. Károlyi, Nonlinear Dynamics and Chaos: Advances and Perspectives. Springer Complexity 2010,

16 Hopf-Neĭmark-Sacker I more general: mapp : R 2 R 2 fixed point P(0) = 0 eigenvalues derivative e 2π(α±iβ) with α 0 and β p/q example: P is Poincaré map of driven oscillator ẍ+ax+cẋ = εf(x,ẋ,t) with f(x,ẋ,t+2π) f(x,ẋ,t) locally: geometry with universal singularities (saddle node / fold and other bifurcations) globally: quasi-periodicity and fractal geometry

17 Hopf-Neĭmark-Sacker II β α non-degenerate case q 5 F. Takens, Forced oscillations and bifurcations. In: Applications of Global Analysis I, Comm. of the Math. Inst. Rijksuniversiteit Utrecht (1974). In: H.W. Broer, B. Krauskopf and G. Vegter (eds.), Global Analysis of Dynamical Systems. IoP Publishing (2001) 1-62

18 Hopf-Neĭmark-Sacker III mildly-degenerate case q 7

19 Bifurcation set Periodic points of periodq via - Lyapunov Schmidt reduction and - equivariant contact equivalence singularity theory p(u;σ,τ;ε) = σ +τu+u 2 2 ε q 6 u q 2 with u,ε R and σ,τ C Discriminant set: p(u;σ,τ;ε) = 0 & D u p(u;σ,τ;ε) = 0 eliminatingu 3D set in 4-space = {σ 1,σ 2,τ 1,τ 2 } tomographyτ 1 = constant:

20 Tomogram σ 2 σ1 τ 2

21 Continued σ 2 σ 1 τ 2

22 Conclusions Arnol d tongues universal: fold, cusp, swallowtail and Whitney umbrella H.W. Broer, M. Golubitsky and G. Vegter, The geometry of resonance tongues: A Singularity Theory approach. Nonlinearity 16 (2003) H.W. Broer, S.J. Holtman and G. Vegter, Recognition of the bifurcation type of resonance in mildly degenerate Hopf-Neĭmark-Sacker families. Nonlinearity 21 (2008) H.W. Broer, S.J. Holtman, G. Vegter and R. Vitolo, Geometry and dynamics of mildly degenerate Hopf-Neĭmarck-Sacker families near resonance. Nonlinearity 22 (2009) H.W. Broer, S.J. Holtman and G. Vegter, Recognition of resonance type in periodically forced oscillators. Physica-D 239(17) (2010) H.W. Broer, S.J. Holtman, G. Vegter, and R. Vitolo, Dynamics and Geometry Near Resonant Bifurcations. Regular and Chaotic Dynamics 16(1-2) (2011) 39-50

23 Parametric resonance driven oscillator ẍ+(a+εf(t))sinx = 0 (swing) with f(t+2π) f(t) for example: f ε (t) = cost+εcos(2t) f(t) = signum (cost) loss of stability x 0 ẋ in discrete tongues emanating from(a,ε) = ( 1 4 k2,0), k = 0,1,2,... subharmonic bifurcations covering spaces H.W. Broer and G. Vegter, Bifurcational aspects of parametric resonance. Dynamics Reported, New Series 1 (1992) 1-51 H.W. Broer and G. Vegter, Generic Hopf-Neĭmark-Sacker bifurcations in feed forward systems. Nonlinearity 21 (2008)

24 Resonance tongues swing H.W. Broer and M. Levi, Geometrical aspects of stability theory for Hill s equations. Archive Rat. Mech. An. 131 (1995) H.W. Broer and C. Simó, Resonance tongues in Hill s equations: a geometric approach. Journal of Differential Equations 166 (2000)

25 Botafumeiro revisited Poincaré map swing in 1 : 2 resonance period doubling quasi-periodicity chaos...

26 From gaps to tongues universal geometry from gaps to tongues with ε extra parameter collapse theory of gaps with Singularity Theory A 2k 1 quasi-periodic analogue ẍ+(a+εf(t))x = 0 with f(t) = F(ω 1 t,ω 2 t,...,ω n t) where F : T n R geometry per tongue as before globally fractal geometry with infinite regress H.W. Broer, H. Hanßmann, Á. Jorba, J. Villanueva and F.O.O. Wagener, Normal-internal resonances in quasi-periodically forces oscillators: a conservative approach. Nonlinearity 16 (2003)

27 Quasi-periodic Schrödinger tongues gaps spectrum Schrödinger operator (H εq x)(t) = ẍ(t) εf(t)x(t) with potentialεf, forx = x(t) L 2 (R) Cantor spectrum and... J. Moser and J. Pöschel, An extension of a result by Dinaburg and Sinai on quasi-periodic potentials. Comment. Math. Helvetici 59 (1984) L.H. Eliasson, Floquet solutions for the one-dimensional quasi-periodic Schrödinger equation. Commun. Math. Phys. 146 (1992) H.W. Broer, J. Puig and C. Simó, Resonance tongues and instability pockets in the quasi-periodic Hill-Schrödinger equation. Commun. Math. Phys. 241 (2003)

28 ... devil s staircase revisited rotation number (as before) as a function of a in example with n = 2, ω 1 = 1 and ω 2 = 1 2 ( 5 1)

29 Hopf saddle-node I map P : R 3 R 3, fixed point P(0) = 0 eigenvalues derivative 1 en e 2π(α±iβ) with α 0 and β p/q math more experimental inspired by climate models... H.W. Broer, C. Simó and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing. Nonlinearity 15(4) (2002) A.E. Sterk, R. Vitolo, H.W. Broer, C. Simó and H.A. Dijkstra, New nonlinear mechanisms of midlatitude atmospheric low-frequency variability. Physica D: Nonlinear Phenomena 239 (2010) H.W. Broer, H.A. Dijkstra, C. Simó, A.E. Sterk and R. itolo, The dynamics of a low-order model for the Atlantic Multidecadal Oscillation, DCDS-B 16(1) (2011)

30 Hopf saddle-node II box H 0.1 d O I 0.8 d H H.W. Broer, C. Simó and R. Vitolo, The Hopf-Saddle-Node bifurcation for fixed points of 3D-diffeomorphisms, analysis of a resonance bubble. Physica D 237 (2008) H.W. Broer, C. Simó and R. Vitolo, The Hopf-Saddle-Node bifurcation for fixed points of 3D-diffeomorphisms, the Arnol d resonance web. Bull. Belgian Math. Soc. Simon Stevin 15 (2008) H.W. Broer, C. Simó and R. Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus. DCDS-B 14(3) (2010)

31 Hopf saddle-node III 1 n=0.46 C C y -1 z x x n= D D y -1 z x x corresponding dynamics: quasi-periodicity and chaos...

32 Conclusions I co-existence periodicity (including resonance), quasi-periodicity and chaos in product state- and parameter space bifurcations (phase transitions): singularities non-resonances: Kolmogorov-Arnol d-moser theory H.W. Broer, KAM theory: the legacy of Kolmogorov s 1954 paper. Bull. AMS (New Series) 41(4) (2004) H.W. Broer, H. Hanßmann and F.O.O. Wagener, Quasi-Periodic Bifurcation Theory, the geometry of KAM. (Monograph in preparation)

33 Conclusions II fractal geometry with infinite regress nowhere dense meagre modelling at larger scale D. Ruelle and F. Takens, On the nature of turbulence. Comm. Math. Phys. 20 (1971) ; 23 (1971) H.W. Broer, B. Hasselblatt and F. Takens (eds.): Handbook of Dynamical Systems. Volume 3 North-Holland (2010) H.W. Broer, Resonance and Fractal Geometry. Acta Applicandæ Mathematicæ 120(1) (2012) 61-86

Resonance and fractal geometry

Resonance and fractal geometry Resonance and fractal geometry Henk Broer Johann Bernoulli Institute for Mathematics and Computer Science Rijksuniversiteit Groningen Summary i. resonance in parametrized systems ii. two oscillators: torus-

More information

DRIVEN and COUPLED OSCILLATORS. I Parametric forcing The pendulum in 1:2 resonance Santiago de Compostela

DRIVEN and COUPLED OSCILLATORS. I Parametric forcing The pendulum in 1:2 resonance Santiago de Compostela DRIVEN and COUPLED OSCILLATORS I Parametric forcing The pendulum in 1:2 resonance Santiago de Compostela II Coupled oscillators Resonance tongues Huygens s synchronisation III Coupled cell system with

More information

Geometry of Resonance Tongues

Geometry of Resonance Tongues Geometry of Resonance Tongues Henk Broer with Martin Golubitsky, Sijbo Holtman, Mark Levi, Carles Simó & Gert Vegter Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Resonance p.1/36

More information

Resonance and Fractal Geometry

Resonance and Fractal Geometry Resonance and Fractal Geometry Henk W. Broer June 23, 2011 Abstract The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations.

More information

Resonance and Fractal Geometry

Resonance and Fractal Geometry Acta Appl Math (2012) 120:61 86 DOI 10.1007/s10440-012-9670-x Resonance and Fractal Geometry Henk W. Broer Received: 25 September 2011 / Accepted: 9 January 2012 / Published online: 27 January 2012 The

More information

Secular and oscillatory motions in dynamical systems. Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen

Secular and oscillatory motions in dynamical systems. Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Secular and oscillatory motions in dynamical systems Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Contents 1. Toroidal symmetry 2. Secular (slow) versus

More information

Multiperiodic dynamics overview and some recent results

Multiperiodic dynamics overview and some recent results Multiperiodic dynamics overview and some recent results Henk Broer Rijksuniversiteit Groningen Instituut voor Wiskunde en Informatica POBox 800 9700 AV Groningen email: broer@math.rug.nl URL: http://www.math.rug.nl/~broer

More information

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip

More information

On Parametrized KAM Theory

On Parametrized KAM Theory On Parametrized KAM Theory Henk Broer, University of Groningen Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen PO Box 407 NL-9700 AK GRONINGEN email: h.w.broer@rug.nl

More information

Low-frequency climate variability: a dynamical systems a approach

Low-frequency climate variability: a dynamical systems a approach Low-frequency climate variability: a dynamical systems a approach Henk Broer Rijksuniversiteit Groningen http://www.math.rug.nl/ broer 19 October 2006 Page 1 of 40 1. Variability at low-frequencies Making

More information

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos Stephen Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition With 250 Figures 4jj Springer I Series Preface v L I Preface to the Second Edition vii Introduction 1 1 Equilibrium

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l = 1, 2, 3.

Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l = 1, 2, 3. June, : WSPC - Proceedings Trim Size: in x in SPT-broer Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l =,,. H.W. BROER and R. VAN DIJK Institute for mathematics

More information

Chaotic Vibrations. An Introduction for Applied Scientists and Engineers

Chaotic Vibrations. An Introduction for Applied Scientists and Engineers Chaotic Vibrations An Introduction for Applied Scientists and Engineers FRANCIS C. MOON Theoretical and Applied Mechanics Cornell University Ithaca, New York A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY

More information

Citation for published version (APA): Holtman, S-J. (2009). Dynamics and geometry near resonant bifurcations Groningen: s.n.

Citation for published version (APA): Holtman, S-J. (2009). Dynamics and geometry near resonant bifurcations Groningen: s.n. University of Groningen Dynamics and geometry near resonant bifurcations Holtman, Sijbo-Jan IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

More information

BIFURCATION PHENOMENA Lecture 4: Bifurcations in n-dimensional ODEs

BIFURCATION PHENOMENA Lecture 4: Bifurcations in n-dimensional ODEs BIFURCATION PHENOMENA Lecture 4: Bifurcations in n-dimensional ODEs Yuri A. Kuznetsov August, 2010 Contents 1. Solutions and orbits: equilibria cycles connecting orbits compact invariant manifolds strange

More information

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory Yuri A. Kuznetsov Elements of Applied Bifurcation Theory Third Edition With 251 Illustrations Springer Introduction to Dynamical Systems 1 1.1 Definition of a dynamical system 1 1.1.1 State space 1 1.1.2

More information

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics Chapter 23 Predicting Chaos We have discussed methods for diagnosing chaos, but what about predicting the existence of chaos in a dynamical system. This is a much harder problem, and it seems that the

More information

Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance bubble

Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance bubble Physica D www.elsevier.com/locate/physd Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance bubble Henk Broer a, Carles Simó b, Renato Vitolo c, a Department of

More information

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS

COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL PERIODIC FORCING TERMS International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 9 No. III (September, 2015), pp. 197-210 COMPLEX DYNAMICS AND CHAOS CONTROL IN DUFFING-VAN DER POL EQUATION WITH TWO EXTERNAL

More information

Difference Resonances in a controlled van der Pol-Duffing oscillator involving time. delay

Difference Resonances in a controlled van der Pol-Duffing oscillator involving time. delay Difference Resonances in a controlled van der Pol-Duffing oscillator involving time delay This paper was published in the journal Chaos, Solitions & Fractals, vol.4, no., pp.975-98, Oct 9 J.C. Ji, N. Zhang,

More information

Analysis of torus breakdown into chaos in a constraint Duffing. van der Pol oscillator

Analysis of torus breakdown into chaos in a constraint Duffing. van der Pol oscillator Analysis of torus breakdown into chaos in a constraint Duffing van der Pol oscillator Munehisa Sekikawa Aihara Complexity Modelling Project, ERATO, JST; 3-23-5-2F Uehara, Shibuya-ku 5-64, Japan Institute

More information

Bifurcations of normally parabolic tori in Hamiltonian systems

Bifurcations of normally parabolic tori in Hamiltonian systems INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 18 (25) 1735 1769 NONLINEARITY doi:1.188/951-7715/18/4/18 Bifurcations of normally parabolic tori in Hamiltonian systems Henk W Broer 1, Heinz Hanßmann 2,4

More information

Schilder, F. (2005). Algorithms for Arnol'd tongues and quasi-periodic tori : a case study.

Schilder, F. (2005). Algorithms for Arnol'd tongues and quasi-periodic tori : a case study. Schilder, F. (25). Algorithms for Arnol'd tongues and quasi-periodic tori : a case study. Early version, also known as pre-print Link to publication record in Explore ristol Research PDF-document University

More information

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory Yuri A. Kuznetsov Elements of Applied Bifurcation Theory Second Edition With 251 Illustrations Springer Preface to the Second Edition Preface to the First Edition vii ix 1 Introduction to Dynamical Systems

More information

Recent new examples of hidden attractors

Recent new examples of hidden attractors Eur. Phys. J. Special Topics 224, 1469 1476 (2015) EDP Sciences, Springer-Verlag 2015 DOI: 10.1140/epjst/e2015-02472-1 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Review Recent new examples of hidden

More information

Chaotic transport through the solar system

Chaotic transport through the solar system The Interplanetary Superhighway Chaotic transport through the solar system Richard Taylor rtaylor@tru.ca TRU Math Seminar, April 12, 2006 p. 1 The N -Body Problem N masses interact via mutual gravitational

More information

Available online at ScienceDirect. Procedia IUTAM 19 (2016 ) IUTAM Symposium Analytical Methods in Nonlinear Dynamics

Available online at   ScienceDirect. Procedia IUTAM 19 (2016 ) IUTAM Symposium Analytical Methods in Nonlinear Dynamics Available online at www.sciencedirect.com ScienceDirect Procedia IUTAM 19 (2016 ) 11 18 IUTAM Symposium Analytical Methods in Nonlinear Dynamics A model of evolutionary dynamics with quasiperiodic forcing

More information

The influence of noise on two- and three-frequency quasi-periodicity in a simple model system

The influence of noise on two- and three-frequency quasi-periodicity in a simple model system arxiv:1712.06011v1 [nlin.cd] 16 Dec 2017 The influence of noise on two- and three-frequency quasi-periodicity in a simple model system A.P. Kuznetsov, S.P. Kuznetsov and Yu.V. Sedova December 19, 2017

More information

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 NBA Lecture 1 Simplest bifurcations in n-dimensional ODEs Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 Contents 1. Solutions and orbits: equilibria cycles connecting orbits other invariant sets

More information

KAM Theory: quasi-periodicity in dynamical systems

KAM Theory: quasi-periodicity in dynamical systems KAM Theory: quasi-periodicity in dynamical systems Henk W. Broer Department of Mathematics and Computing Science, University of Groningen, Blauwborgje 3, 9747 AC Groningen, The Netherlands E-mail: broer@math.rug.nl

More information

Lesson 4: Non-fading Memory Nonlinearities

Lesson 4: Non-fading Memory Nonlinearities Lesson 4: Non-fading Memory Nonlinearities Nonlinear Signal Processing SS 2017 Christian Knoll Signal Processing and Speech Communication Laboratory Graz University of Technology June 22, 2017 NLSP SS

More information

A Model of Evolutionary Dynamics with Quasiperiodic Forcing

A Model of Evolutionary Dynamics with Quasiperiodic Forcing paper presented at Society for Experimental Mechanics (SEM) IMAC XXXIII Conference on Structural Dynamics February 2-5, 205, Orlando FL A Model of Evolutionary Dynamics with Quasiperiodic Forcing Elizabeth

More information

Hamiltonian Dynamics

Hamiltonian Dynamics Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

More information

University of Groningen. Dynamics amidst folding and twisting in 2-dimensional maps Garst, Swier

University of Groningen. Dynamics amidst folding and twisting in 2-dimensional maps Garst, Swier University of Groningen Dynamics amidst folding and twisting in 2-dimensional maps Garst, Swier IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: August 22, 2018, at 08 30 12 30 Johanneberg Jan Meibohm,

More information

University of Groningen. The Parametrically Forced Pendulum Broer, Hendrik; Hoveijn, I.; Noort, M. van; Simó, C.; Vegter, Geert

University of Groningen. The Parametrically Forced Pendulum Broer, Hendrik; Hoveijn, I.; Noort, M. van; Simó, C.; Vegter, Geert University of Groningen The Parametrically Forced Pendulum Broer, Hendrik; Hoveijn, I.; Noort, M. van; Simó, C.; Vegter, Geert Published in: Journal of dynamics and differential equations IMPORTANT NOTE:

More information

Quasipatterns in surface wave experiments

Quasipatterns in surface wave experiments Quasipatterns in surface wave experiments Alastair Rucklidge Department of Applied Mathematics University of Leeds, Leeds LS2 9JT, UK With support from EPSRC A.M. Rucklidge and W.J. Rucklidge, Convergence

More information

Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing

Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing Home Search Collections Journals About Contact us My IOPscience Bifurcations and strange attractors in the Lorenz-84 climate model with seasonal forcing This article has been downloaded from IOPscience.

More information

Chapitre 4. Transition to chaos. 4.1 One-dimensional maps

Chapitre 4. Transition to chaos. 4.1 One-dimensional maps Chapitre 4 Transition to chaos In this chapter we will study how successive bifurcations can lead to chaos when a parameter is tuned. It is not an extensive review : there exists a lot of different manners

More information

Torus Maps from Weak Coupling of Strong Resonances

Torus Maps from Weak Coupling of Strong Resonances Torus Maps from Weak Coupling of Strong Resonances John Guckenheimer Alexander I. Khibnik October 5, 1999 Abstract This paper investigates a family of diffeomorphisms of the two dimensional torus derived

More information

Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: analysis of a resonance bubble

Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: analysis of a resonance bubble Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: analysis of a resonance bubble Henk Broer, Carles Simó and Renato Vitolo July 16, 27 Abstract The dynamics near a Hopf-saddle-node bifurcation

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: January 14, 2019, at 08 30 12 30 Johanneberg Kristian

More information

Chapter 4. Transition towards chaos. 4.1 One-dimensional maps

Chapter 4. Transition towards chaos. 4.1 One-dimensional maps Chapter 4 Transition towards chaos In this chapter we will study how successive bifurcations can lead to chaos when a parameter is tuned. It is not an extensive review : there exists a lot of different

More information

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

More information

Example of a Blue Sky Catastrophe

Example of a Blue Sky Catastrophe PUB:[SXG.TEMP]TRANS2913EL.PS 16-OCT-2001 11:08:53.21 SXG Page: 99 (1) Amer. Math. Soc. Transl. (2) Vol. 200, 2000 Example of a Blue Sky Catastrophe Nikolaĭ Gavrilov and Andrey Shilnikov To the memory of

More information

Topological Bifurcations of Knotted Tori in Quasiperiodically Driven Oscillators

Topological Bifurcations of Knotted Tori in Quasiperiodically Driven Oscillators Topological Bifurcations of Knotted Tori in Quasiperiodically Driven Oscillators Brian Spears with Andrew Szeri and Michael Hutchings University of California at Berkeley Caltech CDS Seminar October 24,

More information

The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the

The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the The projects listed on the following pages are suitable for MSc/MSci or PhD students. An MSc/MSci project normally requires a review of the literature and finding recent related results in the existing

More information

Nonlinear and Collective Effects in Mesoscopic Mechanical Oscillators

Nonlinear and Collective Effects in Mesoscopic Mechanical Oscillators Dynamics Days Asia-Pacific: Singapore, 2004 1 Nonlinear and Collective Effects in Mesoscopic Mechanical Oscillators Alexander Zumdieck (Max Planck, Dresden), Ron Lifshitz (Tel Aviv), Jeff Rogers (HRL,

More information

Additive resonances of a controlled van der Pol-Duffing oscillator

Additive resonances of a controlled van der Pol-Duffing oscillator Additive resonances of a controlled van der Pol-Duffing oscillator This paper has been published in Journal of Sound and Vibration vol. 5 issue - 8 pp.-. J.C. Ji N. Zhang Faculty of Engineering University

More information

Control and synchronization of Julia sets of the complex dissipative standard system

Control and synchronization of Julia sets of the complex dissipative standard system Nonlinear Analysis: Modelling and Control, Vol. 21, No. 4, 465 476 ISSN 1392-5113 http://dx.doi.org/10.15388/na.2016.4.3 Control and synchronization of Julia sets of the complex dissipative standard system

More information

On low speed travelling waves of the Kuramoto-Sivashinsky equation.

On low speed travelling waves of the Kuramoto-Sivashinsky equation. On low speed travelling waves of the Kuramoto-Sivashinsky equation. Jeroen S.W. Lamb Joint with Jürgen Knobloch (Ilmenau, Germany) Marco-Antonio Teixeira (Campinas, Brazil) Kevin Webster (Imperial College

More information

Modeling the Duffing Equation with an Analog Computer

Modeling the Duffing Equation with an Analog Computer Modeling the Duffing Equation with an Analog Computer Matt Schmitthenner Physics Department, The College of Wooster, Wooster, Ohio 44691, USA (Dated: December 13, 2011) The goal was to model the Duffing

More information

WHAT IS A CHAOTIC ATTRACTOR?

WHAT IS A CHAOTIC ATTRACTOR? WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties

More information

Collective and Stochastic Effects in Arrays of Submicron Oscillators

Collective and Stochastic Effects in Arrays of Submicron Oscillators DYNAMICS DAYS: Long Beach, 2005 1 Collective and Stochastic Effects in Arrays of Submicron Oscillators Ron Lifshitz (Tel Aviv), Jeff Rogers (HRL, Malibu), Oleg Kogan (Caltech), Yaron Bromberg (Tel Aviv),

More information

Invariant manifolds of the Bonhoeffer-van der Pol oscillator

Invariant manifolds of the Bonhoeffer-van der Pol oscillator Invariant manifolds of the Bonhoeffer-van der Pol oscillator R. Benítez 1, V. J. Bolós 2 1 Dpto. Matemáticas, Centro Universitario de Plasencia, Universidad de Extremadura. Avda. Virgen del Puerto 2. 10600,

More information

Global theory of one-frequency Schrödinger operators

Global theory of one-frequency Schrödinger operators of one-frequency Schrödinger operators CNRS and IMPA August 21, 2012 Regularity and chaos In the study of classical dynamical systems, the main goal is the understanding of the long time behavior of observable

More information

STABLE OSCILLATIONS AND DEVIL S STAIRCASE IN THE VAN DER POL OSCILLATOR

STABLE OSCILLATIONS AND DEVIL S STAIRCASE IN THE VAN DER POL OSCILLATOR International Journal of Bifurcation and Chaos, Vol. 10, No. 1 (2000) 155 164 c World Scientific Publishing Company STABLE OSCILLATIONS AND DEVIL S STAIRCASE IN THE VAN DER POL OSCILLATOR T. GILBERT and

More information

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10)

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Mason A. Porter 15/05/2010 1 Question 1 i. (6 points) Define a saddle-node bifurcation and show that the first order system dx dt = r x e x

More information

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos Ian Eisenman eisenman@fas.harvard.edu Geological Museum 101, 6-6352 Nonlinear Dynamics and Chaos Review of some of the topics covered in homework problems, based on section notes. December, 2005 Contents

More information

Invariant manifolds in dissipative dynamical systems

Invariant manifolds in dissipative dynamical systems Invariant manifolds in dissipative dynamical systems Ferdinand Verhulst Mathematisch Instituut University of Utrecht PO Box 80.010, 3508 TA Utrecht The Netherlands Abstract Invariant manifolds like tori,

More information

TWO VAN DER POL-DUFFING OSCILLATORS WITH HUYGENS COUPLING

TWO VAN DER POL-DUFFING OSCILLATORS WITH HUYGENS COUPLING ENOC-8, Saint Petersburg, Russia, June, 3 July, 8 TWO VAN DER POL-DUFFING OSCILLATORS WITH HUYGENS COUPLING V.N. Belykh, E.V. Pankratova Mathematics Department Volga State Academy Nizhny Novgorod, 3, Russia.

More information

Internal and external synchronization of self-oscillating oscillators with non-identical control parameters

Internal and external synchronization of self-oscillating oscillators with non-identical control parameters Internal and external synchronization of self-oscillating oscillators with non-identical control parameters Emelianova Yu.P., Kuznetsov A.P. Department of Nonlinear Processes, Saratov State University,

More information

arxiv: v1 [nlin.cd] 20 Jul 2010

arxiv: v1 [nlin.cd] 20 Jul 2010 Invariant manifolds of the Bonhoeffer-van der Pol oscillator arxiv:1007.3375v1 [nlin.cd] 20 Jul 2010 R. Benítez 1, V. J. Bolós 2 1 Departamento de Matemáticas, Centro Universitario de Plasencia, Universidad

More information

Synchronization between coupled oscillators: an experimental approach

Synchronization between coupled oscillators: an experimental approach Synchronization between coupled oscillators: an experimental approach D.J. Rijlaarsdam, A.Y. Pogromsky, H. Nijmeijer Department of Mechanical Engineering Eindhoven University of Technology The Netherlands

More information

Global Analysis of Dynamical Systems Festschrift dedicated to Floris Takens for his 60th birthday

Global Analysis of Dynamical Systems Festschrift dedicated to Floris Takens for his 60th birthday Global Analysis of Dynamical Systems Festschrift dedicated to Floris Takens for his 6th birthday Edited by Henk W. Broer, Bernd Krauskopf and Gert Vegter January 6, 3 Chapter Global Bifurcations of Periodic

More information

One dimensional Maps

One dimensional Maps Chapter 4 One dimensional Maps The ordinary differential equation studied in chapters 1-3 provide a close link to actual physical systems it is easy to believe these equations provide at least an approximate

More information

The Geometry of Resonance Tongues: A Singularity Theory Approach

The Geometry of Resonance Tongues: A Singularity Theory Approach The Geometry of Resonance Tongues: A Singularity Theory Approach Henk W. Broer Department of Mathematics University of Groningen P.O. Box 8 97 AV Groningen The Netherlands Martin Golubitsky Department

More information

On the smoothness of the conjugacy between circle maps with a break

On the smoothness of the conjugacy between circle maps with a break On the smoothness of the conjugacy between circle maps with a break Konstantin Khanin and Saša Kocić 2 Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4 2 Department of Mathematics,

More information

JULIA SETS AND BIFURCATION DIAGRAMS FOR EXPONENTIAL MAPS

JULIA SETS AND BIFURCATION DIAGRAMS FOR EXPONENTIAL MAPS BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 11, Number 1, July 1984 JULIA SETS AND BIFURCATION DIAGRAMS FOR EXPONENTIAL MAPS BY ROBERT L. DEVANEY ABSTRACT. We describe some of the

More information

Survey on dissipative KAM theory including quasi-periodic bifurcation theory

Survey on dissipative KAM theory including quasi-periodic bifurcation theory I Survey on dissipative KAM theory including quasi-periodic bifurcation theory Maria-Cristina Ciocci, Anna Litvak-Hinenzon & Henk Broer Based on lectures by Henk Broer ABSTRACT Kolmogorov-Arnol d-moser

More information

Localization of Compact Invariant Sets of Nonlinear Systems

Localization of Compact Invariant Sets of Nonlinear Systems Localization of Compact Invariant of Nonlinear Systems ALEXANDER P. KRISHCHENKO Bauman Moscow State Technical University Department of Mathematical Modeling 2-aja Baumanskaja ul., 5, 105005 Moscow RUSSIA

More information

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos

Phase Desynchronization as a Mechanism for Transitions to High-Dimensional Chaos Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 682 688 c International Academic Publishers Vol. 35, No. 6, June 15, 2001 Phase Desynchronization as a Mechanism for Transitions to High-Dimensional

More information

Electronic Circuit Simulation of the Lorenz Model With General Circulation

Electronic Circuit Simulation of the Lorenz Model With General Circulation International Journal of Physics, 2014, Vol. 2, No. 5, 124-128 Available online at http://pubs.sciepub.com/ijp/2/5/1 Science and Education Publishing DOI:10.12691/ijp-2-5-1 Electronic Circuit Simulation

More information

Bifurcation and Chaos in Coupled Periodically Forced Non-identical Duffing Oscillators

Bifurcation and Chaos in Coupled Periodically Forced Non-identical Duffing Oscillators APS/13-QED Bifurcation and Chaos in Coupled Periodically Forced Non-identical Duffing Oscillators U. E. Vincent 1 and A. Kenfack, 1 Department of Physics, Olabisi Onabanjo University, Ago-Iwoye, Nigeria.

More information

On Universality of Transition to Chaos Scenario in Nonlinear Systems of Ordinary Differential Equations of Shilnikov s Type

On Universality of Transition to Chaos Scenario in Nonlinear Systems of Ordinary Differential Equations of Shilnikov s Type Journal of Applied Mathematics and Physics, 2016, 4, 871-880 Published Online May 2016 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.4236/jamp.2016.45095 On Universality of Transition

More information

Complicated behavior of dynamical systems. Mathematical methods and computer experiments.

Complicated behavior of dynamical systems. Mathematical methods and computer experiments. Complicated behavior of dynamical systems. Mathematical methods and computer experiments. Kuznetsov N.V. 1, Leonov G.A. 1, and Seledzhi S.M. 1 St.Petersburg State University Universitetsky pr. 28 198504

More information

11 Chaos in Continuous Dynamical Systems.

11 Chaos in Continuous Dynamical Systems. 11 CHAOS IN CONTINUOUS DYNAMICAL SYSTEMS. 47 11 Chaos in Continuous Dynamical Systems. Let s consider a system of differential equations given by where x(t) : R R and f : R R. ẋ = f(x), The linearization

More information

Lecture 3 ENSO s irregularity and phase locking

Lecture 3 ENSO s irregularity and phase locking Lecture ENSO s irregularity and phase locking Eli Tziperman.5 Is ENSO self-sustained? chaotic? damped and stochastically forced? That El Nino is aperiodic is seen, for example, in a nino time series (Fig.

More information

Towards a Global Theory of Singularly Perturbed Dynamical Systems John Guckenheimer Cornell University

Towards a Global Theory of Singularly Perturbed Dynamical Systems John Guckenheimer Cornell University Towards a Global Theory of Singularly Perturbed Dynamical Systems John Guckenheimer Cornell University Dynamical systems with multiple time scales arise naturally in many domains. Models of neural systems

More information

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v.

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v. April 3, 005 - Hyperbolic Sets We now extend the structure of the horseshoe to more general kinds of invariant sets. Let r, and let f D r (M) where M is a Riemannian manifold. A compact f invariant set

More information

SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM

SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM International Journal of Bifurcation and Chaos, Vol. 23, No. 11 (2013) 1350188 (7 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127413501885 SIMPLE CHAOTIC FLOWS WITH ONE STABLE EQUILIBRIUM

More information

Entrainment Alex Bowie April 7, 2004

Entrainment Alex Bowie April 7, 2004 Entrainment Alex Bowie April 7, 2004 Abstract The driven Van der Pol oscillator displays entrainment, quasiperiodicity, and chaos. The characteristics of these different modes are discussed as well as

More information

In Arnold s Mathematical Methods of Classical Mechanics (1), it

In Arnold s Mathematical Methods of Classical Mechanics (1), it Near strongly resonant periodic orbits in a Hamiltonian system Vassili Gelfreich* Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom Communicated by John N. Mather, Princeton

More information

Stabilization of Hyperbolic Chaos by the Pyragas Method

Stabilization of Hyperbolic Chaos by the Pyragas Method Journal of Mathematics and System Science 4 (014) 755-76 D DAVID PUBLISHING Stabilization of Hyperbolic Chaos by the Pyragas Method Sergey Belyakin, Arsen Dzanoev, Sergey Kuznetsov Physics Faculty, Moscow

More information

Experimental Huygens synchronization of oscillators

Experimental Huygens synchronization of oscillators 1 1 Experimental Huygens synchronization of oscillators Alexander Pogromsky, David Rijlaarsdam, and Henk Nijmeijer Department of Mechanical engineering Eindhoven University of Technology The Netherlands

More information

Numerical techniques: Deterministic Dynamical Systems

Numerical techniques: Deterministic Dynamical Systems Numerical techniques: Deterministic Dynamical Systems Henk Dijkstra Institute for Marine and Atmospheric research Utrecht, Department of Physics and Astronomy, Utrecht, The Netherlands Transition behavior

More information

A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017

A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017 A short introduction with a view toward examples Center of Research and Applications of Nonlinear (CRANS) Department of Mathematics University of Patras Greece sanastassiou@gmail.com Short presentation

More information

The how and what. H.W. Broer Vakgroep Wiskunde en Informatica, Universiteit Groningen Postbus 800, 9700 AV Groningen

The how and what. H.W. Broer Vakgroep Wiskunde en Informatica, Universiteit Groningen Postbus 800, 9700 AV Groningen 34 NAW 5/1 nr.1 maart 2000 The how and what of chaos H.W. Broer H.W. Broer Vakgroep Wiskunde en Informatica, Universiteit Groningen Postbus 800, 9700 AV Groningen broer@math.rug.nl The how and what A review

More information

MATH 614 Dynamical Systems and Chaos Lecture 16: Rotation number. The standard family.

MATH 614 Dynamical Systems and Chaos Lecture 16: Rotation number. The standard family. MATH 614 Dynamical Systems and Chaos Lecture 16: Rotation number. The standard family. Maps of the circle T : S 1 S 1, T an orientation-preserving homeomorphism. Suppose T : S 1 S 1 is an orientation-preserving

More information

Hamiltonian Chaos and the standard map

Hamiltonian Chaos and the standard map Hamiltonian Chaos and the standard map Outline: What happens for small perturbation? Questions of long time stability? Poincare section and twist maps. Area preserving mappings. Standard map as time sections

More information

BIFURCATIONS OF PERIODIC ORBITS IN THREE-WELL DUFFING SYSTEM WITH A PHASE SHIFT

BIFURCATIONS OF PERIODIC ORBITS IN THREE-WELL DUFFING SYSTEM WITH A PHASE SHIFT J Syst Sci Complex (11 4: 519 531 BIFURCATIONS OF PERIODIC ORBITS IN THREE-WELL DUFFING SYSTEM WITH A PHASE SHIFT Jicai HUANG Han ZHANG DOI: 1.17/s1144-1-89-3 Received: 9 May 8 / Revised: 5 December 9

More information

On Global Bifurcations in Three-Dimensional Diffeomorphisms Leading to Wild Lorenz-Like Attractors

On Global Bifurcations in Three-Dimensional Diffeomorphisms Leading to Wild Lorenz-Like Attractors ISSN 1560-3547, Regular and Chaotic Dynamics, 2009, Vol. 14, No. 1, pp. 137 147. c Pleiades Publishing, Ltd., 2009. JÜRGEN MOSER 80 On Global Bifurcations in Three-Dimensional Diffeomorphisms Leading to

More information

QUASIPERIODIC RESPONSE TO PARAMETRIC EXCITATIONS

QUASIPERIODIC RESPONSE TO PARAMETRIC EXCITATIONS QUASIPERIODIC RESPONSE TO PARAMETRIC EXCITATIONS J. M. LOPEZ AND F. MARQUES Abstract. Parametric excitations are capable of stabilizing an unstable state, but they can also destabilize modes that are otherwise

More information

Two models for the parametric forcing of a nonlinear oscillator

Two models for the parametric forcing of a nonlinear oscillator Nonlinear Dyn (007) 50:147 160 DOI 10.1007/s11071-006-9148-3 ORIGINAL ARTICLE Two models for the parametric forcing of a nonlinear oscillator Nazha Abouhazim Mohamed Belhaq Richard H. Rand Received: 3

More information

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos

Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos Lecture 1: A Preliminary to Nonlinear Dynamics and Chaos Autonomous Systems A set of coupled autonomous 1st-order ODEs. Here "autonomous" means that the right hand side of the equations does not explicitly

More information

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations TWO DIMENSIONAL FLOWS Lecture 5: Limit Cycles and Bifurcations 5. Limit cycles A limit cycle is an isolated closed trajectory [ isolated means that neighbouring trajectories are not closed] Fig. 5.1.1

More information

Chaos and Time-Series Analysis

Chaos and Time-Series Analysis Chaos and Time-Series Analysis Julien Clinton Sprott Department of Physics Universitv of Wisconsin Madison OXTORD UNIVERSITY PRESS Contents Introduction 1.1 Examples of dynamical systems 1.1.1 Astronomical

More information

ECE 8803 Nonlinear Dynamics and Applications Spring Georgia Tech Lorraine

ECE 8803 Nonlinear Dynamics and Applications Spring Georgia Tech Lorraine ECE 8803 Nonlinear Dynamics and Applications Spring 2018 Georgia Tech Lorraine Brief Description Introduction to the nonlinear dynamics of continuous-time and discrete-time systems. Routes to chaos. Quantification

More information

Phase synchronization of an ensemble of weakly coupled oscillators: A paradigm of sensor fusion

Phase synchronization of an ensemble of weakly coupled oscillators: A paradigm of sensor fusion Phase synchronization of an ensemble of weakly coupled oscillators: A paradigm of sensor fusion Ariën J. van der Wal Netherlands Defence Academy (NLDA) 15 th ICCRTS Santa Monica, CA, June 22-24, 2010 Copyright

More information