Zeeman effect - Wikipedia, the free encyclopedia

Size: px
Start display at page:

Download "Zeeman effect - Wikipedia, the free encyclopedia"

Transcription

1 Zeeman effect From Wikipedia, the free encyclopedia The Zeeman effect (IPA: [ˈzeːmɑn], in English sometimes pronounced /ˈzeɪmən/) is the splitting of a spectral line into several components in the presence of a static magnetic field. It is analogous to the Stark effect, the splitting of a spectral line into several components in the presence of an electric field. The Zeeman effect is very important in applications such as nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, magnetic resonance imaging (MRI) and Mössbauer spectroscopy. It may also be utilized to improve accuracy in Atomic absorption spectroscopy. When the spectral lines are absorption lines, the effect is called Inverse Zeeman effect. The Zeeman effect is named after the Dutch physicist Pieter Zeeman. Contents 1 Introduction 2 Theoretical presentation 3 Weak field (Zeeman effect) 3.1 Example: Lyman alpha transition in hydrogen 4 Strong field (Paschen-Back effect) 5 See also 6 References 6.1 Historical 6.2 Modern Introduction In most atoms, there exist several electron configurations with the same energy, so that transitions between these configurations and another correspond to a single spectral line. The presence of a magnetic field breaks this degeneracy, since the magnetic field interacts differently with electrons with different quantum numbers, slightly modifying their energies. The result is that, where there were several configurations with the same energy, they now have different energies, giving rise to several very close spectral lines. Without a magnetic field, configurations a, b and c have the same energy, as do d, e and f. The presence of a magnetic field (B) splits the energy levels. Therefore, a line produced by a transition from a, b or c to d, e or f will now be split into several components between different combinations of a, b, c and d, e, f. However, not all transitions will be possible (in 1 of 5 09/13/ :10 AM

2 the dipole approximation), as governed by the selection rules. Since the distance between the Zeeman sub-levels is proportional to the magnetic field, this effect can be used by astronomers to measure the magnetic field of the Sun and other stars. There is also an anomalous Zeeman effect that appears on transitions where the net spin of the electrons is not 0, the number of Zeeman sub-levels being even instead of odd if there's an uneven number of electrons involved. It was called "anomalous" because the electron spin had not yet been discovered, and so there was no good explanation for it at the time that Zeeman observed the effect. At higher magnetic fields the effect ceases to be linear. At even higher field strength, when the strength of the external field is comparable to the strength of the atom's internal field, electron coupling is disturbed and the spectral lines rearrange. This is called the Paschen-Back effect. Theoretical presentation The total Hamiltonian of an atom in a magnetic field is where H 0 is the unperturbed Hamiltonian of the atom, and V M is perturbation due to the magnetic field: where is the magnetic moment of the atom. The magnetic moment consists of the electronic and nuclear parts, however, the latter is many orders of magnitude smaller and will be neglected further on. Therefore, where μ B is the Bohr magneton, is the total electronic angular momentum, and g is the g-factor. The operator of the magnetic moment of an electron is a sum of the contributions of the orbital angular momentum and the spin angular momentum, with each multiplied by the appropriate gyromagnetic ratio: where g l = 1 and (the latter is called the anomalous gyromagnetic ratio; the deviation of the value from 2 is due to Quantum Electrodynamics effects). In the case of the LS coupling, one can sum over all electrons in the atom: where and are the total orbital momentum and spin of the atom, and averaging is done over a state with a given value of the total angular momentum. If the interaction term V M is small (less than the fine structure), it can be treated as a perturbation; this is the Zeeman effect proper. In the Paschen-Back effect, described below, V M exceeds the LS coupling significantly (but is still small compared to H 0 ). In 2 of 5 09/13/ :10 AM

3 ultrastrong magnetic fields, the magnetic-field interaction may exceed H 0, in which case the atom can no longer exist in its normal meaning, and one talks about Landau levels instead. There are, of course, intermediate cases which are more complex than these limit cases. Weak field (Zeeman effect) If the spin-orbit interaction dominates over the effect of the external magnetic field, and are not separately conserved, only the total angular momentum is. The spin and orbital angular momentum vectors can be thought of as precessing about the (fixed) total angular momentum vector. The (time-)"averaged" spin vector is then the projection of the spin onto the direction of : and for the (time-)"averaged" orbital vector: Thus, Using and squaring both sides, we get and: using and squaring both sides, we get Combining everything and taking, we obtain the magnetic potential energy of the atom in the applied external magnetic field, where the quantity in square brackets is the Lande g-factor g J of the atom (g L = 1 and ) and m j is the z-component of the total angular momentum. For a single electron above filled shells s = 1 / 2. Example: Lyman alpha transition in hydrogen The Lyman alpha transition in hydrogen in the presence of the spin-orbit interaction involves the transitions and 3 of 5 09/13/ :10 AM

4 In the presence of an external magnetic field, the weak-field Zeeman effect splits the 1S 1/2 and 2P 1/2 states into 2 levels each (m j = 1 / 2, 1 / 2) and the 2P 3/2 state into 4 levels (m j = 3 / 2,1 / 2, 1 / 2, 3 / 2). The Lande g-factors for the three levels are: g J = 2 for 1S 1 / 2 (j=1/2, l=0) g J = 2 / 3 for 2P 1 / 2 (j=1/2, l=1) g J = 4 / 3 for 2P 3 / 2 (j=3/2, l=1). Note in particular that the size of the energy splitting is different for the different orbitals, because the g J values are different. On the left, fine structure splitting is depicted. This splitting occurs even in the absence of a magnetic field, as it is due to spin-orbit coupling. Depicted on the right is the additional Zeeman splitting, which occurs in the presence of magnetic fields. Strong field (Paschen-Back effect) The Paschen-Back effect is the splitting of atomic energy levels in the presence of a strong magnetic field. This occurs when an external magnetic field is sufficiently large to disrupt the coupling between orbital ( ) and spin ( ) angular momenta. This effect is the strong-field limit of the Zeeman effect. When s = 0, the two effects are equivalent. The effect was named after the German physicists Friedrich Paschen and Ernst E. A. Back. When the magnetic-field perturbation significantly exceeds the spin-orbit interaction, one can safely assume [H 0,S] = 0. This allows the expectation values of L z and S z to be easily evaluated for a state : The above may be read as implying that the LS-coupling is completely broken by the external field. The m l and m s are still "good" quantum numbers. Together with the selection rules for an electric dipole transition, i.e., this allows to ignore the spin degree of freedom 4 of 5 09/13/ :10 AM

5 altogether. As a result, only three spectral lines will be visible, corresponding to the selection rule. The splitting ΔE = Bμ B Δm l is independent of the unperturbed energies and electronic configurations of the levels being considered. It should be noted that in general (if ), these three components are actually groups of several transitions each, due to the residual spin-orbit coupling. See also magneto-optic Kerr effect Voigt effect Faraday effect Cotton-Mouton effect Polarization spectroscopy References Historical Condon, E. U.; G. H. Shortley (1935). The Theory of Atomic Spectra. Cambridge University Press. ISBN (Chapter 16 provides a comprehensive treatment, as of 1935.) Zeeman, P. (1897). "On the influence of Magnetism on the Nature of the Light emitted by a Substance". Phil. Mag. 43: 226. Zeeman, P. (1897). "Doubles and triplets in the spectrum produced by external magnetic forces". Phil. Mag. 44: 55. Zeeman, P. (11 February 1897). "The Effect of Magnetisation on the Nature of Light Emitted by a Substance" ( /Zeeman-effect.html) (). Nature 55: 347. doi: /055347a0 ( / %2F055347a0). /Zeeman-effect.html. Modern Forman, Paul (1970). "Alfred Landé and the anomalous Zeeman Effect, ". Historical Studies in the Physical Sciences 2: Griffiths, David J. (2004). Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. ISBN X. Liboff, Richard L. (2002). Introductory Quantum Mechanics. Addison-Wesley. ISBN Sobelman, Igor I. (2006). Theory of Atomic Spectra. Alpha Science. ISBN Retrieved from "" Categories: Atomic physics Magnetism Foundational quantum physics Physical phenomena This page was last modified on 2 September 2010 at 12:47. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See Terms of Use for details. Wikipedia is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization. 5 of 5 09/13/ :10 AM

More. The Zeeman Effect. Normal Zeeman Effect

More. The Zeeman Effect. Normal Zeeman Effect More The Zeeman Effect As we mentioned in Chapter, the splitting of spectral lines when an atom is placed in an external magnetic field was looked for by Faraday, predicted on the basis of classical theory

More information

More. The Zeeman Effect. Normal Zeeman Effect

More. The Zeeman Effect. Normal Zeeman Effect More The Zeeman Effect As we mentioned in Chapter 3, the splitting of spectral lines when an atom is placed in an external magnetic field was looked for by Faraday, predicted on the basis of classical

More information

The Zeeman Effect. Oisin De Conduin /2/2011

The Zeeman Effect. Oisin De Conduin /2/2011 The Zeeman Effect Oisin De Conduin 07379510 2/2/2011 Abstract The purpose of this experiment was to study the splitting of a spectral line due to a magnetic field, known as the Zeeman effect. Specifically

More information

The Zeeman Effect in Atomic Mercury (Taryl Kirk )

The Zeeman Effect in Atomic Mercury (Taryl Kirk ) The Zeeman Effect in Atomic Mercury (Taryl Kirk - 2001) Introduction A state with a well defined quantum number breaks up into several sub-states when the atom is in a magnetic field. The final energies

More information

Chapter 10: Multi- Electron Atoms Optical Excitations

Chapter 10: Multi- Electron Atoms Optical Excitations Chapter 10: Multi- Electron Atoms Optical Excitations To describe the energy levels in multi-electron atoms, we need to include all forces. The strongest forces are the forces we already discussed in Chapter

More information

Lecture 4: Polarimetry 2. Scattering Polarization. Zeeman Effect. Hanle Effect. Outline

Lecture 4: Polarimetry 2. Scattering Polarization. Zeeman Effect. Hanle Effect. Outline Lecture 4: Polarimetry 2 Outline 1 Scattering Polarization 2 Zeeman Effect 3 Hanle Effect Scattering Polarization Single Particle Scattering light is absorbed and re-emitted if light has low enough energy,

More information

Select/Special Topics in Atomic Physics Prof. P.C. Deshmukh Department Of Physics Indian Institute of Technology, Madras

Select/Special Topics in Atomic Physics Prof. P.C. Deshmukh Department Of Physics Indian Institute of Technology, Madras Select/Special Topics in Atomic Physics Prof. P.C. Deshmukh Department Of Physics Indian Institute of Technology, Madras Lecture - 37 Stark - Zeeman Spectroscopy Well, let us continue our discussion on

More information

CHAPTER 8 Atomic Physics

CHAPTER 8 Atomic Physics CHAPTER 8 Atomic Physics 8.1 Atomic Structure and the Periodic Table 8.2 Total Angular Momentum 8.3 Anomalous Zeeman Effect What distinguished Mendeleev was not only genius, but a passion for the elements.

More information

The Anomalous Zeeman Splitting of the Sodium 3P States

The Anomalous Zeeman Splitting of the Sodium 3P States Advanced Optics Laboratory The Anomalous Zeeman Splitting of the Sodium 3P States David Galey Lindsay Stanceu Prasenjit Bose April 5, 010 Objectives Calibrate Fabry-Perot interferometer Determine the Zeeman

More information

Spectra of Atoms and Molecules, 3 rd Ed., Peter F. Bernath, Oxford University Press, chapter 5. Engel/Reid, chapter 18.3 / 18.4

Spectra of Atoms and Molecules, 3 rd Ed., Peter F. Bernath, Oxford University Press, chapter 5. Engel/Reid, chapter 18.3 / 18.4 Last class Today Atomic spectroscopy (part I) Absorption spectroscopy Bohr model QM of H atom (review) Atomic spectroscopy (part II)-skipped Visualization of wave functions Atomic spectroscopy (part III)

More information

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect.

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect. Lecture 11: Polarized Light Outline 1 Fundamentals of Polarized Light 2 Descriptions of Polarized Light 3 Scattering Polarization 4 Zeeman Effect 5 Hanle Effect Fundamentals of Polarized Light Electromagnetic

More information

1.1 Units, definitions and fundamental equations. How should we deal with B and H which are usually used for magnetic fields?

1.1 Units, definitions and fundamental equations. How should we deal with B and H which are usually used for magnetic fields? Advance Organizer: Chapter 1: Introduction to single magnetic moments: Magnetic dipoles Spin and orbital angular momenta Spin-orbit coupling Magnetic susceptibility, Magnetic dipoles in a magnetic field:

More information

Department of Physics, Colorado State University PH 425 Advanced Physics Laboratory The Zeeman Effect. 1 Introduction. 2 Origin of the Zeeman Effect

Department of Physics, Colorado State University PH 425 Advanced Physics Laboratory The Zeeman Effect. 1 Introduction. 2 Origin of the Zeeman Effect Department of Physics, Colorado State University PH 425 Advanced Physics Laboratory The Zeeman Effect (a) CAUTION: Do not look directly at the mercury light source. It is contained in a quartz tube. The

More information

Chapter Electron Spin. * Fine structure:many spectral lines consist of two separate. lines that are very close to each other.

Chapter Electron Spin. * Fine structure:many spectral lines consist of two separate. lines that are very close to each other. Chapter 7 7. Electron Spin * Fine structure:many spectral lines consist of two separate lines that are very close to each other. ex. H atom, first line of Balmer series n = 3 n = => 656.3nm in reality,

More information

Zeeman Effect. Alex Povilus Physics 441- Fall 2003 December 20, 2003

Zeeman Effect. Alex Povilus Physics 441- Fall 2003 December 20, 2003 Zeeman Effect Alex Povilus Physics 441- Fall 2003 December 20, 2003 Abstract The Zeeman Effect is observed by application of a strong magnetic field to a mercury vapor cell and exciting transitions by

More information

An Introduction to Hyperfine Structure and Its G-factor

An Introduction to Hyperfine Structure and Its G-factor An Introduction to Hyperfine Structure and Its G-factor Xiqiao Wang East Tennessee State University April 25, 2012 1 1. Introduction In a book chapter entitled Model Calculations of Radiation Induced Damage

More information

Atomic Physics 3 rd year B1

Atomic Physics 3 rd year B1 Atomic Physics 3 rd year B1 P. Ewart Lecture notes Lecture slides Problem sets All available on Physics web site: http:www.physics.ox.ac.uk/users/ewart/index.htm Atomic Physics: Astrophysics Plasma Physics

More information

On the rotating electron

On the rotating electron Sopra l elettrone rotante, Nouv. Cim. (8) 3 (196), 6-35. On the rotating electron Note by FRANCO RASETI and ENRICO FERMI Translated by D. H. Delphenich The measurable elements of the electron are its electric

More information

(b) The wavelength of the radiation that corresponds to this energy is 6

(b) The wavelength of the radiation that corresponds to this energy is 6 Chapter 7 Problem Solutions 1. A beam of electrons enters a uniform 1.0-T magnetic field. (a) Find the energy difference between electrons whose spins are parallel and antiparallel to the field. (b) Find

More information

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m LS coupling 1 The big picture We start from the Hamiltonian of an atomic system: H = [ ] 2 2 n Ze2 1 + 1 e 2 1 + H s o + H h f + H B. (1) 2m n e 4πɛ 0 r n 2 4πɛ 0 r nm n,m Here n runs pver the electrons,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring, Problem Set #2 Reading Assignment: Bernath Chapter 5 MASSACHUSETTS INSTITUTE O TECHNOLOGY 5.76 Modern Topics in Physical Chemistry Spring 994 Problem Set # The following handouts also contain useful information: C &

More information

Lecture 41 (Hydrogen Atom and Spatial Quantization) Physics Fall 2018 Douglas Fields

Lecture 41 (Hydrogen Atom and Spatial Quantization) Physics Fall 2018 Douglas Fields Lecture 41 (Hydrogen Atom and Spatial Quantization) Physics 262-01 Fall 2018 Douglas Fields States A state of the electron is described by a specific wavefunction (or a specific combination of wavefunctions

More information

Atomic Systems (PART I)

Atomic Systems (PART I) Atomic Systems (PART I) Lecturer: Location: Recommended Text: Dr. D.J. Miller Room 535, Kelvin Building d.miller@physics.gla.ac.uk Joseph Black C407 (except 15/1/10 which is in Kelvin 312) Physics of Atoms

More information

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4.

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4. 4 Time-ind. Perturbation Theory II We said we solved the Hydrogen atom exactly, but we lied. There are a number of physical effects our solution of the Hamiltonian H = p /m e /r left out. We already said

More information

Magnetism in Condensed Matter

Magnetism in Condensed Matter Magnetism in Condensed Matter STEPHEN BLUNDELL Department of Physics University of Oxford OXFORD 'UNIVERSITY PRESS Contents 1 Introduction 1.1 Magnetic moments 1 1 1.1.1 Magnetic moments and angular momentum

More information

Relativistic corrections of energy terms

Relativistic corrections of energy terms Lectures 2-3 Hydrogen atom. Relativistic corrections of energy terms: relativistic mass correction, Darwin term, and spin-orbit term. Fine structure. Lamb shift. Hyperfine structure. Energy levels of the

More information

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model Quantum Mechanics and Atomic Physics Lecture 20: Real Hydrogen Atom /Identical particles http://www.physics.rutgers.edu/ugrad/361 physics edu/ugrad/361 Prof. Sean Oh Last time Hydrogen atom: electron in

More information

Optical Pumping of Rb 85 & Rb 87

Optical Pumping of Rb 85 & Rb 87 Optical Pumping of Rb 85 & Rb 87 Fleet Admiral Tim Welsh PhD. M.D. J.D. (Dated: February 28, 2013) In this experiment we penetrate the mystery surrounding the hyperfine structure of Rb 85 and Rb 87. We

More information

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS No. of Pages: 6 No. of Questions: 10 MIDSUMMER EXAMINATIONS 2001 Subject PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS Title of Paper MODULE PA266

More information

L z L L. Think of it as also affecting the angle

L z L L. Think of it as also affecting the angle Quantum Mechanics and Atomic Physics Lecture 19: Quantized Angular Momentum and Electron Spin http://www.physics.rutgers.edu/ugrad/361 h / d/361 Prof. Sean Oh Last time Raising/Lowering angular momentum

More information

Zeeman Effect - Lab exercises 24

Zeeman Effect - Lab exercises 24 Zeeman Effect - Lab exercises 24 Pieter Zeeman Franziska Beyer August 2010 1 Overview and Introduction The Zeeman effect consists of the splitting of energy levels of atoms if they are situated in a magnetic

More information

ATOMIC STRUCRURE

ATOMIC STRUCRURE ATOMIC STRUCRURE Long Answer Questions: 1. What are quantum numbers? Give their significance? Ans. The various orbitals in an atom qualitatively distinguished by their size, shape and orientation. The

More information

Chapter 28. Atomic Physics

Chapter 28. Atomic Physics Chapter 28 Atomic Physics Quantum Numbers and Atomic Structure The characteristic wavelengths emitted by a hot gas can be understood using quantum numbers. No two electrons can have the same set of quantum

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

Optical Pumping in 85 Rb and 87 Rb

Optical Pumping in 85 Rb and 87 Rb Optical Pumping in 85 Rb and 87 Rb John Prior III*, Quinn Pratt, Brennan Campbell, Kjell Hiniker University of San Diego, Department of Physics (Dated: December 14, 2015) Our experiment aimed to determine

More information

THE ZEEMAN EFFECT v3 R. A. Schumacher, May 2017 B. B. Luokkala, January 2001

THE ZEEMAN EFFECT v3 R. A. Schumacher, May 2017 B. B. Luokkala, January 2001 THE ZEEMAN EFFECT v3 R. A. Schumacher, May 2017 B. B. Luokkala, January 2001 I. INTRODUCTION The goal of this experiment is to measure the Bohr magneton using the normal Zeeman effect of the 643.8 nm (red)

More information

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1 Chapter 1 Production of Net Magnetization Magnetic resonance (MR) is a measurement technique used to examine atoms and molecules. It is based on the interaction between an applied magnetic field and a

More information

6.1 Nondegenerate Perturbation Theory

6.1 Nondegenerate Perturbation Theory 6.1 Nondegenerate Perturbation Theory Analytic solutions to the Schrödinger equation have not been found for many interesting systems. Fortunately, it is often possible to find expressions which are analytic

More information

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics.

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics. Ch28 Quantum Mechanics of Atoms Bohr s model was very successful to explain line spectra and the ionization energy for hydrogen. However, it also had many limitations: It was not able to predict the line

More information

and for absorption: 2π c 3 m 2 ˆɛˆk,j a pe i k r b 2( nˆk,j +1 February 1, 2000

and for absorption: 2π c 3 m 2 ˆɛˆk,j a pe i k r b 2( nˆk,j +1 February 1, 2000 At the question period after a Dirac lecture at the University of Toronto, somebody in the audience remarked: Professor Dirac, I do not understand how you derived the formula on the top left side of the

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Simon Lacoste-Julien Electromagnetic Theory Project 198-562B Department of Physics McGill University April 21 2003 Abstract This paper gives an elementary introduction

More information

OPTICAL SPECTROSCOPY AND THE ZEEMAN EFFECT Beyond the First Year workshop Philadelphia, July Greg Elliott, University of Puget Sound

OPTICAL SPECTROSCOPY AND THE ZEEMAN EFFECT Beyond the First Year workshop Philadelphia, July Greg Elliott, University of Puget Sound OPTICAL SPECTROSCOPY AND THE ZEEMAN EFFECT Beyond the First Year workshop Philadelphia, July 5-7 Greg Elliott, University of Puget Sound The Zeeman effect offers a striking visual demonstration of a quantum

More information

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions. 1. Quantum Mechanics (Fall 2004) Two spin-half particles are in a state with total spin zero. Let ˆn a and ˆn b be unit vectors in two arbitrary directions. Calculate the expectation value of the product

More information

charges q r p = q 2mc 2mc L (1.4) ptles µ e = g e

charges q r p = q 2mc 2mc L (1.4) ptles µ e = g e APAS 5110. Atomic and Molecular Processes. Fall 2013. 1. Magnetic Moment Classically, the magnetic moment µ of a system of charges q at positions r moving with velocities v is µ = 1 qr v. (1.1) 2c charges

More information

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. ------------------- Duration: 2h 30m Chapter 39 Quantum Mechanics of Atoms Units of Chapter 39 39-1 Quantum-Mechanical View of Atoms 39-2

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

V27: RF Spectroscopy

V27: RF Spectroscopy Martin-Luther-Universität Halle-Wittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf

More information

Zeeman Effect Physics 481

Zeeman Effect Physics 481 Zeeman Effect Introduction You are familiar with Atomic Spectra, especially the H- atom energy spectrum. Atoms emit or absorb energies in packets, or quanta which are photons. The orbital motion of electrons

More information

Experiment 10. Zeeman Effect. Introduction. Zeeman Effect Physics 244

Experiment 10. Zeeman Effect. Introduction. Zeeman Effect Physics 244 Experiment 10 Zeeman Effect Introduction You are familiar with Atomic Spectra, especially the H-atom energy spectrum. Atoms emit or absorb energies in packets, or quanta which are photons. The orbital

More information

This idea had also occurred to us quite independently and for largely the. by Heisenberg4 that the multiplet separation is due to the difference

This idea had also occurred to us quite independently and for largely the. by Heisenberg4 that the multiplet separation is due to the difference 80 PHYSICS: BICHOWSK Y AND URE Y PROC. N. A. S. 1700, the variation depending mainly on the other atoms in the molecule. I am particularly indebted to Dr. W. W. Coblentz for his suggestions and personal

More information

A.1 Alkaline atoms in magnetic fields

A.1 Alkaline atoms in magnetic fields 164 Appendix the Kohn, virial and Bertrand s theorem, with an original approach. Annex A.4 summarizes elements of the elastic collisions theory required to address scattering problems. Eventually, annex

More information

(n, l, m l ) 3/2/2016. Quantum Numbers (QN) Plots of Energy Level. Roadmap for Exploring Hydrogen Atom

(n, l, m l ) 3/2/2016. Quantum Numbers (QN) Plots of Energy Level. Roadmap for Exploring Hydrogen Atom PHYS 34 Modern Physics Atom III: Angular Momentum and Spin Roadmap for Exploring Hydrogen Atom Today Contents: a) Orbital Angular Momentum and Magnetic Dipole Moment b) Electric Dipole Moment c) Stern

More information

(Recall: Right-hand rule!)

(Recall: Right-hand rule!) 1.10 The Vector Model of the Atom Classical Physics: If you go back to your first year physics textbook, you will find momentum p (= m v) has an angular counterpart, angular momentum l (= r x p), as shown

More information

Quantum gate. Contents. Commonly used gates

Quantum gate. Contents. Commonly used gates Quantum gate From Wikipedia, the free encyclopedia In quantum computing and specifically the quantum circuit model of computation, a quantum gate (or quantum logic gate) is a basic quantum circuit operating

More information

64-311/5: Atomic and Molecular Spectra

64-311/5: Atomic and Molecular Spectra 64-311-Questions.doc 64-311/5: Atomic and Molecular Spectra Dr T Reddish (Room 89-1 Essex Hall) SECTION 1: REVISION QUESTIONS FROM 64-310/14 ε ο = 8.854187817 x 10-1 Fm -1, h = 1.0545766 x 10-34 Js, e

More information

Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms

Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms Hyperfine effects in atomic physics are due to the interaction of the atomic electrons with the electric and magnetic multipole

More information

Preliminary Quantum Questions

Preliminary Quantum Questions Preliminary Quantum Questions Thomas Ouldridge October 01 1. Certain quantities that appear in the theory of hydrogen have wider application in atomic physics: the Bohr radius a 0, the Rydberg constant

More information

Stern-Gerlach Experiment and Spin

Stern-Gerlach Experiment and Spin Stern-Gerlach Experiment and Spin 1 Abstract Vedat Tanrıverdi Physics Department, METU tvedat@metu.edu.tr The historical development of spin and Stern-Gerlach experiment are summarized. Then some questions

More information

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY

MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20 CHAPTER MOLECULAR SPECTROSCOPY AND PHOTOCHEMISTRY 20.1 Introduction to Molecular Spectroscopy 20.2 Experimental Methods in Molecular Spectroscopy 20.3 Rotational and Vibrational Spectroscopy 20.4 Nuclear

More information

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split

Alkali metals show splitting of spectral lines in absence of magnetic field. s lines not split p, d lines split Electron Spin Electron spin hypothesis Solution to H atom problem gave three quantum numbers, n,, m. These apply to all atoms. Experiments show not complete description. Something missing. Alkali metals

More information

Optical pumping of rubidium

Optical pumping of rubidium Optical pumping of rubidium Quinn Pratt, John Prior, Brennan Campbell a) (Dated: 25 October 2015) The effects of a magnetic field incident on a sample of rubidium were examined both in the low-field Zeeman

More information

Electron Spin Resonance. Laboratory & Computational Physics 2

Electron Spin Resonance. Laboratory & Computational Physics 2 Electron Spin Resonance Laboratory & Computational Physics 2 Last compiled August 8, 2017 1 Contents 1 Introduction 3 1.1 Introduction.................................. 3 1.2 Prelab questions................................

More information

Introduction to Modern Physics

Introduction to Modern Physics SECOND EDITION Introduction to Modern Physics John D. McGervey Case Western Reserve University Academic Press A Subsidiary of Harcourt Brace Jovanovich Orlando San Diego San Francisco New York London Toronto

More information

Atomic Structure. Chapter 8

Atomic Structure. Chapter 8 Atomic Structure Chapter 8 Overview To understand atomic structure requires understanding a special aspect of the electron - spin and its related magnetism - and properties of a collection of identical

More information

THEORY OF MAGNETIC RESONANCE

THEORY OF MAGNETIC RESONANCE THEORY OF MAGNETIC RESONANCE Second Edition Charles P. Poole, Jr., and Horacio A. Farach Department of Physics University of South Carolina, Columbia A Wiley-lnterscience Publication JOHN WILEY & SONS

More information

Physics 221A Fall 2017 Notes 25 The Zeeman Effect in Hydrogen and Alkali Atoms

Physics 221A Fall 2017 Notes 25 The Zeeman Effect in Hydrogen and Alkali Atoms Copyright c 2017 by Robert G. Littlejohn Physics 221A Fall 2017 Notes 25 The Zeeman Effect in Hydrogen and Alkali Atoms 1. Introduction The Zeeman effect concerns the interaction of atomic systems with

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

4/21/2010. Schrödinger Equation For Hydrogen Atom. Spherical Coordinates CHAPTER 8

4/21/2010. Schrödinger Equation For Hydrogen Atom. Spherical Coordinates CHAPTER 8 CHAPTER 8 Hydrogen Atom 8.1 Spherical Coordinates 8.2 Schrödinger's Equation in Spherical Coordinate 8.3 Separation of Variables 8.4 Three Quantum Numbers 8.5 Hydrogen Atom Wave Function 8.6 Electron Spin

More information

The Zeeman Effect refers to the splitting of spectral

The Zeeman Effect refers to the splitting of spectral Calculation of the Bohr Magneton Using the Zeeman Effect Robert Welch Abstract The Zeeman Effect was predicted by Hendrik Lorentz and first observed by Pieter Zeeman in 1896. It refers to the splitting

More information

Physics 2203, Fall 2012 Modern Physics

Physics 2203, Fall 2012 Modern Physics Physics 2203, Fall 2012 Modern Physics. Wednesday, Oct. 10 th, 2012. Finish examples from Ch. 8 Chapter 9 with examples Take home average 85, sum average 63. Announcements: Quiz on Friday on Ch. 8 or Ch.

More information

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron):

Chemistry 120A 2nd Midterm. 1. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (1-electron): April 6th, 24 Chemistry 2A 2nd Midterm. (36 pts) For this question, recall the energy levels of the Hydrogenic Hamiltonian (-electron): E n = m e Z 2 e 4 /2 2 n 2 = E Z 2 /n 2, n =, 2, 3,... where Ze is

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 8 (ALKALI METAL SPECTRA)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 8 (ALKALI METAL SPECTRA) Subject Chemistry Paper No and Title Module No and Title Module Tag 8 and Physical Spectroscopy 8: Alkali metal spectra CHE_P8_M8 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Multi-electron

More information

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics

NPTEL/IITM. Molecular Spectroscopy Lectures 1 & 2. Prof.K. Mangala Sunder Page 1 of 15. Topics. Part I : Introductory concepts Topics Molecular Spectroscopy Lectures 1 & 2 Part I : Introductory concepts Topics Why spectroscopy? Introduction to electromagnetic radiation Interaction of radiation with matter What are spectra? Beer-Lambert

More information

Part I. Principles and techniques

Part I. Principles and techniques Part I Principles and techniques 1 General principles and characteristics of optical magnetometers D. F. Jackson Kimball, E. B. Alexandrov, and D. Budker 1.1 Introduction Optical magnetometry encompasses

More information

( ) electron gives S = 1/2 and L = l 1

( ) electron gives S = 1/2 and L = l 1 Practice Modern Physics II, W018, Set 1 Question 1 Energy Level Diagram of Boron ion B + For neutral B, Z = 5 (A) Draw the fine-structure diagram of B + that includes all n = 3 states Label the states

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

Atomic Structure Ch , 9.6, 9.7

Atomic Structure Ch , 9.6, 9.7 Ch. 9.2-4, 9.6, 9.7 Magnetic moment of an orbiting electron: An electron orbiting a nucleus creates a current loop. A current loop behaves like a magnet with a magnetic moment µ:! µ =! µ B " L Bohr magneton:

More information

THE ZEEMAN EFFECT PHYSICS 359E

THE ZEEMAN EFFECT PHYSICS 359E THE ZEEMAN EFFECT PHYSICS 359E INTRODUCTION The Zeeman effect is a demonstration of spatial quantization of angular momentum in atomic physics. Since an electron circling a nucleus is analogous to a current

More information

Magnetic Resonance Spectroscopy ( )

Magnetic Resonance Spectroscopy ( ) Magnetic Resonance Spectroscopy In our discussion of spectroscopy, we have shown that absorption of E.M. radiation occurs on resonance: When the frequency of applied E.M. field matches the energy splitting

More information

Classical electromagnetism - Wikipedia, the free encyclopedia

Classical electromagnetism - Wikipedia, the free encyclopedia Page 1 of 6 Classical electromagnetism From Wikipedia, the free encyclopedia (Redirected from Classical electrodynamics) Classical electromagnetism (or classical electrodynamics) is a branch of theoretical

More information

Spinning Electrons and the Structure of Spectra

Spinning Electrons and the Structure of Spectra Spinning Electrons and the Structure of Spectra Nature, vol. 117, p. 264-265 February 20, 1926 So far as we know, the idea of a quantised spinning of the electron was put forward for the first time by

More information

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Nuclear Sizes Nuclei occupy the center of the atom. We can view them as being more

More information

Fine structure in hydrogen - relativistic effects

Fine structure in hydrogen - relativistic effects LNPhysiqueAtomique016 Fine structure in hydrogen - relativistic effects Electron spin ; relativistic effects In a spectrum from H (or from an alkali), one finds that spectral lines appears in pairs. take

More information

has an exact defined value: [1][2]

has an exact defined value: [1][2] Vacuum permeability From Wikipedia, the free encyclopedia (Redirected from Permeability of free space) Vacuum permeability, permeability of free space, or magnetic constant is an ideal, (baseline) physical

More information

Atomic Structure and Atomic Spectra

Atomic Structure and Atomic Spectra Atomic Structure and Atomic Spectra Atomic Structure: Hydrogenic Atom Reading: Atkins, Ch. 10 (7 판 Ch. 13) The principles of quantum mechanics internal structure of atoms 1. Hydrogenic atom: one electron

More information

Looks aren't everything... (Let's take a spin).

Looks aren't everything... (Let's take a spin). Looks aren't everything... (Let's take a spin). Bohr correctly deduced the energies for the hydrogen atom, but he didn t know about the Schrödinger Eq. and he didn t know about wavefunctions. So his picture

More information

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln

Mossbauer Effect and Spectroscopy. Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln Mossbauer Effect and Spectroscopy Kishan Sinha Xu Group Department of Physics and Astronomy University of Nebraska-Lincoln Emission E R γ-photon E transition hν = E transition - E R Photon does not carry

More information

Electron Spin Resonance. Laboratory & Comp. Physics 2

Electron Spin Resonance. Laboratory & Comp. Physics 2 Electron Spin Resonance Laboratory & Comp. Physics 2 Last compiled August 8, 2017 Contents 1 Introduction 4 1.1 Introduction.............. 4 1.2 Prelab questions............ 5 2 Background theory 7 2.1

More information

Physics GRE: Atomic Physics. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/658/

Physics GRE: Atomic Physics. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/658/ Physics GRE: Atomic Physics G. J. Loges 1 University of Rochester Dept. of Physics & Astronomy xkcd.com/658/ 1 c Gregory Loges, 2016 Contents 1 Bohr Model 1 2 Atomic Structure 1 3 Selection Rules 2 4 Blackbody

More information

Optical pumping and the Zeeman Effect

Optical pumping and the Zeeman Effect 1. Introduction Optical pumping and the Zeeman Effect The Hamiltonian of an atom with a single electron outside filled shells (as for rubidium) in a magnetic field is HH = HH 0 + ηηii JJ μμ JJ BB JJ μμ

More information

Appendix A Powers of Ten

Appendix A Powers of Ten Conclusion This has been a theory book for observational amateur astronomers. This is perhaps a bit unusual because most astronomy theory books tend to be written for armchair astronomers and they tend

More information

It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s.

It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s. Lecture 9 Title: - coupling Page- It is seen that for heavier atoms, the nuclear charge causes the spin-orbit interactions to be strong enough the force between the individual l and s. For large Z atoms,

More information

Lecture 5 September 18, 2009 Electron Shell Model & Quantum Numbers

Lecture 5 September 18, 2009 Electron Shell Model & Quantum Numbers Welcome to 3.091 Lecture 5 September 18, 2009 Electron Shell Model & Quantum Numbers 1 3.091 Periodic Table Quiz 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

More information

Introduction of Key Concepts of Nuclear Magnetic Resonance

Introduction of Key Concepts of Nuclear Magnetic Resonance I have not yet lost that sense of wonder, and delight, that this delicate motion should reside in all ordinary things around us, revealing itself only to those who looks for it. E. M. Purcell, Nobel Lecture.

More information

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1 Electromagnetism II Instructor: Andrei Sirenko sirenko@njit.edu Spring 013 Thursdays 1 pm 4 pm Spring 013, NJIT 1 PROBLEMS for CH. 6 http://web.njit.edu/~sirenko/phys433/phys433eandm013.htm Can obtain

More information

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall.

Final Exam. Tuesday, May 8, Starting at 8:30 a.m., Hoyt Hall. Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. Summary of Chapter 38 In Quantum Mechanics particles are represented by wave functions Ψ. The absolute square of the wave function Ψ 2

More information

FACULTY OF SCIENCES SYLLABUS FOR. B.Sc. (Non-Medical) PHYSICS PART-II. (Semester: III, IV) Session: , MATA GUJRI COLLEGE

FACULTY OF SCIENCES SYLLABUS FOR. B.Sc. (Non-Medical) PHYSICS PART-II. (Semester: III, IV) Session: , MATA GUJRI COLLEGE FACULTY OF SCIENCES SYLLABUS FOR B.Sc. (Non-Medical) PHYSICS PART-II (Semester: III, IV) Session: 2017 2018, 2018-2019 MATA GUJRI COLLEGE FATEHGARH SAHIB-140406, PUNJAB ----------------------------------------------------------

More information

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1 Chapter 29 Atomic Physics Looking Ahead Slide 29-1 Atomic Spectra and the Bohr Model In the mid 1800s it became apparent that the spectra of atomic gases is comprised of individual emission lines. Slide

More information

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras (Refer Slide Time: 00:22) Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture 25 Pauli paramagnetism and Landau diamagnetism So far, in our

More information