Math 702 Problem Set 10 Solutions

Size: px
Start display at page:

Download "Math 702 Problem Set 10 Solutions"

Transcription

1 Math 70 Problem Set 0 Solutions Unless otherwise stated, X is a complex Hilbert space with the inner product h; i the induced norm k k. The null-space range of a linear map T W X! X are denoted by N.T / R.T /. Problem. This exercise proves a family of polarization identities in inner product spaces. (i) Let D e i=n, where n is an integer. Show that ( nx kj if j D 0 D n 0 if j n : kd If j D 0 we have kj D for every k the result is immediate. If j n, then j the geometric sum formula gives nx kj D.nC/j j D 0 j kd since.nc/j D nj j D j. (ii) Use (i) to show that for every x; y in an inner product space, hx; yi D nx kx C k yk k n provided that n 3. The expansion shows that kd kx C k yk D hx C k y; x C k yi D kxk C kyk C k hy; xi C k hx; yi kx C k yk k D.kxk C kyk / k C k hy; xi C hx; yi: Averaging over k n, the first second terms vanish by part (i) (here we use the condition n 3), while the third term gives hx; yi (iii) Prove the following continuous version of the above identity: hx; yi D Z 0 kx C e it yk e it dt: This can be obtained from (ii) by letting n! since the average in (ii) is a Riemann sum approximation of the above integral average. It can also be proved directly as

2 follows: The expansion shows that kx C e it yk D hx C e it y; x C e it yi D kxk C kyk C e it hy; xi C e it hx; yi kx C e it yk e it D.kxk C kyk / e it C e it hy; xi C hx; yi: Averaging over 0 t, the first second term clearly vanish, while the third term gives hx; yi. Problem. Assuming Y is a closed subspace of X, prove the following statements: (i).y? /? D Y. If y Y, then hy; zi D 0 for every z Y?, so y.y? /?. This proves Y.Y? /?. The orthogonal decompositions X D Y? Y D Y?.Y? /? show that Y cannot be a proper subspace of.y? /?. (ii) The natural map Y?! X=Y given by z 7! z C Y is an isometric isomorphism (recall that the norm on X=Y is defined by kx C Y k D inf yy kx C yk). Recall that every x X can be written uniquely as P.x/ C Q.x/ where P.x/ Y Q.x/ Y?. Moreover, P.x/; Q.x/ are the nearest points of Y; Y? to x. Let us denote the natural map Y?! X=Y by. If.z/ D Y for some z Y?, then z Y \ Y?, so z D 0, showing is injective. Moreover, for every x X, x C Y D Q.x/ C Y D.Q.x//; which shows is surjective. Finally, since P.z/ D 0 Q.z/ D z whenever z Y?, k.z/k D kz C Y k D distance from z to Y D kq.z/k D kzk; so is an isometry. (iii) If x X, () min kx yk W y Y D max jhx; zij W z Y? ; kzk D : Let us assume x Y, the result being trivial otherwise. Consider the orthogonal projections P; Q as above. Then the left side of () is kq.x/k. For every z Y? with kzk D, the Cauchy-Schwarz inequality shows that jhx; zij D jhp.x/; zi C hq.x/; zij D jhq.x/; zij kq.x/k; with equality iff z D Q.x/=kQ.x/k (notice that Q.x/ 0 since x Y ). It follows that the right side of () is also kq.x/k.

3 Comment. The quantity in () can also be interpreted as the operator norm of the functional z 7! hz; xi on Y?. Problem 3. Suppose f is a non-zero bounded linear functional on X. Prove the following statements: (i).ker f /? has dimension. According to Riesz, f.x/ D hx; ai for some non-zero a X. Hence ker f D Y?, where Y is the subspace of X spanned by a. It follows from problem (i) that.ker f /? D.Y? /? D Y is -dimensional. (ii) ker f D ker g for a bounded linear functional g if only if f D g for some scalar. If f D g for some (necessarily non-zero), then clearly ker f D ker g. Conversely, suppose ker f D ker g. Then g is not identically zero, so g.x/ D hx; bi for some non-zero b X. If Z is the subspace of X generated by b, it follows from (i) that Z D.ker g/? D.ker f /? D Y; so a D cb for some scalar c. Thus, f D g, where D c. Comment. The results of this problem hold more generally in any vector space if (i) is formulated appropriately. If f is a non-zero linear functional on a vector space X, then X=.ker f / is -dimensional. To see this, choose x 0 X such that f.x 0 / 0. For every x X there is a scalar c such that f.x/ D cf.x 0 /. Then f.x cx 0 / D 0 H) x cx 0 ker f H) x C ker f D c.x 0 C ker f /: This shows X=.ker f / is spanned by x 0 C ker f. If ker f D ker g, choose x 0 as above set D f.x 0 /=g.x 0 /. For every x X there is a c such that x cx 0 ker f D ker g, so This proves f D g. f.x/ D cf.x 0 / D cg.x 0 / D g.x/: Problem 4. Take advantage of the fact that L Œ ; is a Hilbert space to compute 3 min a;b;cc max g jx 3 a bx cx j dx ˇ x 3 ˇ g.x/ dxˇ;

4 4 where g L Π; is subject to the restrictions g.x/ dx D xg.x/ dx D x g.x/ dx D 0 jg.x/j dx D : Let Y be the subspace of L Π; spanned by f; x; x g. As a finite dimensional subspace, Y is closed. By the orthogonal decomposition theorem, L Π; D Y Y? the above minimum is achieved when a C bx C cx is the orthogonal projection P.f / of f.x/ D x 3 onto Y. This projection can be computed once we have an orthonormal basis fu ; u ; u 3 g for Y. Applying the Gram-Schmidt process to f; x; x g, we obtain such a basis: v D u D v kv k D p v D x hx; u i u D x u D v p 3 D p x kv k Z x dx D x v 3 D x hx ; u i u hx ; u i u D x u 3 D v 3 kv 3 k D x 3 dx x p 5 p.3x /: 8 x 3 dx D x 3 We compute the Fourier coefficients of f with respect to fu ; u ; u 3 g: hf; u i D p x 3 dx D 0 p Z 3 p 6 hf; u i D p x 4 dx D 5 p Z 5 hf; u 3 i D p x 3.3x / dx D 0: 8 Thus, P.f / D hf; u i u C hf; u i u C hf; u 3 i u 3 D 3 5 x min jx 3 a bx cx j dx D x 3 3 a;b;cc 5 x 8 dx D 75 :

5 The maximization problem amounts to finding max jhx 3 ; gij W g Y? ; kgk D : By problem (ii), this is the same as kf P.f /k D kq.f /k D p 8= p 75, is achieved when g.x/ D Q.f / p 75 D p x 3 3 kq.f /k 8 5 x : Comment. Alternatively, we could have found the projection P.f / rather easier by noting that Q.f / D x 3 a bx cx is orthogonal to ; x; x. This would give 0 D hq.f /; i D 0 D hq.f /; xi D 0 D hq.f /; x i D.x 3 a bx cx / dx D a.x 4 ax bx cx 3 / dx D 5 3 c 3 b.x 5 ax bx 3 cx 4 / dx D a c; 3 5 or a D c D 0, b D 3=5, showing as before P.f / D 3x=5. Problem 5. Let T W X! X be a bounded linear map. (i) Show that there is a unique bounded linear map T W X! X, called the adjoint of T, which satisfies () ht.x/; yi D hx; T.y/i for every x; y X. For each y Y, the assignment x 7! ht.x/; yi is clearly a bounded linear functional on X. According to Riesz, there is a unique vector T.y/ X for which this functional is expressed as x 7! hx; T.y/i. This proves the existence uniqueness of a map T W X! X satisfying (). Since hx; T. y C z/i D ht.x/; y C zi for all x; y; z X C, we have D ht.x/; yi C ht.x/; zi D hx; T.y/i C hx; T.z/i D hx; T.y/ C T.z/i T. y C z/ D T.y/ C T.z/; so T is linear. By the Cauchy-Schwarz inequality, jhx; T.y/ij D jht.x/; yij kt.x/k kyk kt k kxk kyk 5

6 6 for every x; y. Setting x D T.y/ then gives kt.y/k kt k kt.y/k kyk or kt.y/k kt k kyk for every y. This shows T is bounded kt k kt k. (ii) Verify the relations kt k D kt k kt T k D kt T k D kt k : By what we have seen above, kt k kt k. Since.T / D T, we also have kt k D k.t / k kt k. Hence, kt k D kt k. Next, for every x X, kt.x/k D ht.x/; T.x/i D hx;.t T /.x/i kxk k.t T /.x/k kt T k kxk ; which shows The reverse inequality holds since Finally, by what we just proved, kt k kt T k: kt T k kt k kt k D kt k : kt T k D k.t / T k D kt k D kt k : (iii) Show that N.T / D R.T /? N.T / D R.T /?. These are straightforward from the definition: y N.T / T.y/ D 0 hx; T.y/i D 0 for every x X ht.x/; yi D 0 for every x X y R.T /? x N.T / T.x/ D 0 ht.x/; yi D 0 for every y X hx; T.y/i D 0 for every y X x R.T /? : Problem 6. (i) Let Y be a closed subspace of X P W X! X be the orthogonal projection onto Y (so R.P / D Y N.P / D Y? ). Show that P D P D P kp k D. Clearly, P.x/ D x if x Y, so P.P.x// D P.x/ for all x X. This shows P D P.

7 On the other h, if x; y X, write x D P.x/ C Q.x/ y D P.y/ C Q.y/ notice that This proves P D P. hp.x/; yi D hp.x/; P.y/ C Q.y/i D hp.x/; P.y/i D hp.x/ C Q.x/; P.y/i D hx; P.y/i: Finally, by the Pythagorean theorem, kxk D kp.x/k C kq.x/k. So kp.x/k kxk with equality iff x Y. This shows kp k D. (We need to assume Y f0g for the last conclusion.) (ii) Let P W X! X be a bounded linear map such that P D P D P. Show that R.P / is a closed subspace of X P is the orthogonal projection onto R.P /. First notice that if y D P.x/ R.P /, then y D P.x/ D P.x/ D P.y/. Conversely, if y D P.y/, then clearly y R.P /. Thus, R.P / is precisely the kernel of the continuous linear map P I. As such, it must be a closed subspace of X. Next, let W X! X be the orthogonal projection onto R.P /. By what we have just seen, P D D I on R.P /. Also, by problem 5(iii), R.P /? D N.P / D N.P /, so P D D 0 on R.P /?. Since X D R.P / R.P /?, it follows that P D on X. Problem 7. (Bonus) Suppose T W X! X is linear ht.x/; yi D hx; T.y/i for every x; y X. Show that T is bounded (hence T D T ). By the closed graph theorem, it suffices to check that if fx n g is a sequence in X, if x n! a, if T.x n /! b, then b D T.a/. But this is easy: Letting n! in the relation ht.x n /; xi D hx n ; T.x/i using continuity of the inner product, we obtain for every x X. This shows b b T.a/ D 0, as required. hb; xi D ha; T.x/i D ht.a/; xi T.a/ is orthogonal to every vector in X. Hence, Comment. This statement, known as the Hellinger-Toeplitz theorem, is one of the oldest results in functional analysis (proved in 90). It shows that one cannot define an unbounded symmetric operator on a Hilbert space, an obstruction that had troubling implications for the mathematical formulation of quantum mechanics in its early days. 7

Math 413/513 Chapter 6 (from Friedberg, Insel, & Spence)

Math 413/513 Chapter 6 (from Friedberg, Insel, & Spence) Math 413/513 Chapter 6 (from Friedberg, Insel, & Spence) David Glickenstein December 7, 2015 1 Inner product spaces In this chapter, we will only consider the elds R and C. De nition 1 Let V be a vector

More information

Functional Analysis: Assignment Set # 3 Spring 2009 Professor: Fengbo Hang February 25, 2009

Functional Analysis: Assignment Set # 3 Spring 2009 Professor: Fengbo Hang February 25, 2009 duardo Corona Functional Analysis: Assignment Set # 3 Spring 9 Professor: Fengbo Hang February 5, 9 C6. Show that a norm that satis es the parallelogram identity: comes from a scalar product. kx + yk +

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

2.4 Hilbert Spaces. Outline

2.4 Hilbert Spaces. Outline 2.4 Hilbert Spaces Tom Lewis Spring Semester 2017 Outline Hilbert spaces L 2 ([a, b]) Orthogonality Approximations Definition A Hilbert space is an inner product space which is complete in the norm defined

More information

Inner products. Theorem (basic properties): Given vectors u, v, w in an inner product space V, and a scalar k, the following properties hold:

Inner products. Theorem (basic properties): Given vectors u, v, w in an inner product space V, and a scalar k, the following properties hold: Inner products Definition: An inner product on a real vector space V is an operation (function) that assigns to each pair of vectors ( u, v) in V a scalar u, v satisfying the following axioms: 1. u, v

More information

LECTURE 7. k=1 (, v k)u k. Moreover r

LECTURE 7. k=1 (, v k)u k. Moreover r LECTURE 7 Finite rank operators Definition. T is said to be of rank r (r < ) if dim T(H) = r. The class of operators of rank r is denoted by K r and K := r K r. Theorem 1. T K r iff T K r. Proof. Let T

More information

Math Linear Algebra II. 1. Inner Products and Norms

Math Linear Algebra II. 1. Inner Products and Norms Math 342 - Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,

More information

Chapter 8 Integral Operators

Chapter 8 Integral Operators Chapter 8 Integral Operators In our development of metrics, norms, inner products, and operator theory in Chapters 1 7 we only tangentially considered topics that involved the use of Lebesgue measure,

More information

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e.,

1. Subspaces A subset M of Hilbert space H is a subspace of it is closed under the operation of forming linear combinations;i.e., Abstract Hilbert Space Results We have learned a little about the Hilbert spaces L U and and we have at least defined H 1 U and the scale of Hilbert spaces H p U. Now we are going to develop additional

More information

Inner Product Spaces

Inner Product Spaces Inner Product Spaces Introduction Recall in the lecture on vector spaces that geometric vectors (i.e. vectors in two and three-dimensional Cartesian space have the properties of addition, subtraction,

More information

2.4 Annihilators, Complemented Subspaces

2.4 Annihilators, Complemented Subspaces 40 CHAPTER 2. WEAK TOPOLOGIES AND REFLEXIVITY 2.4 Annihilators, Complemented Subspaces Definition 2.4.1. (Annihilators, Pre-Annihilators) Assume X is a Banach space. Let M X and N X. We call the annihilator

More information

Fall TMA4145 Linear Methods. Solutions to exercise set 9. 1 Let X be a Hilbert space and T a bounded linear operator on X.

Fall TMA4145 Linear Methods. Solutions to exercise set 9. 1 Let X be a Hilbert space and T a bounded linear operator on X. TMA445 Linear Methods Fall 26 Norwegian University of Science and Technology Department of Mathematical Sciences Solutions to exercise set 9 Let X be a Hilbert space and T a bounded linear operator on

More information

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis Real Analysis, 2nd Edition, G.B.Folland Chapter 5 Elements of Functional Analysis Yung-Hsiang Huang 5.1 Normed Vector Spaces 1. Note for any x, y X and a, b K, x+y x + y and by ax b y x + b a x. 2. It

More information

3 Compact Operators, Generalized Inverse, Best- Approximate Solution

3 Compact Operators, Generalized Inverse, Best- Approximate Solution 3 Compact Operators, Generalized Inverse, Best- Approximate Solution As we have already heard in the lecture a mathematical problem is well - posed in the sense of Hadamard if the following properties

More information

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7 Linear Algebra and its Applications-Lab 1 1) Use Gaussian elimination to solve the following systems x 1 + x 2 2x 3 + 4x 4 = 5 1.1) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1 x + y + 2z = 4 1.4)

More information

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space.

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space. Chapter 1 Preliminaries The purpose of this chapter is to provide some basic background information. Linear Space Hilbert Space Basic Principles 1 2 Preliminaries Linear Space The notion of linear space

More information

LEARNING OBJECTIVES FOR THIS CHAPTER

LEARNING OBJECTIVES FOR THIS CHAPTER CHAPTER 6 Woman teaching geometry, from a fourteenth-century edition of Euclid s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition

More information

MAT 578 FUNCTIONAL ANALYSIS EXERCISES

MAT 578 FUNCTIONAL ANALYSIS EXERCISES MAT 578 FUNCTIONAL ANALYSIS EXERCISES JOHN QUIGG Exercise 1. Prove that if A is bounded in a topological vector space, then for every neighborhood V of 0 there exists c > 0 such that tv A for all t > c.

More information

CHAPTER VIII HILBERT SPACES

CHAPTER VIII HILBERT SPACES CHAPTER VIII HILBERT SPACES DEFINITION Let X and Y be two complex vector spaces. A map T : X Y is called a conjugate-linear transformation if it is a reallinear transformation from X into Y, and if T (λx)

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

1 Functional Analysis

1 Functional Analysis 1 Functional Analysis 1 1.1 Banach spaces Remark 1.1. In classical mechanics, the state of some physical system is characterized as a point x in phase space (generalized position and momentum coordinates).

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week 9 November 13 November Deadline to hand in the homeworks: your exercise class on week 16 November 20 November Exercises (1) Show that if T B(X, Y ) and S B(Y, Z)

More information

I teach myself... Hilbert spaces

I teach myself... Hilbert spaces I teach myself... Hilbert spaces by F.J.Sayas, for MATH 806 November 4, 2015 This document will be growing with the semester. Every in red is for you to justify. Even if we start with the basic definition

More information

Math 24 Spring 2012 Sample Homework Solutions Week 8

Math 24 Spring 2012 Sample Homework Solutions Week 8 Math 4 Spring Sample Homework Solutions Week 8 Section 5. (.) Test A M (R) for diagonalizability, and if possible find an invertible matrix Q and a diagonal matrix D such that Q AQ = D. ( ) 4 (c) A =.

More information

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS G. RAMESH Contents Introduction 1 1. Bounded Operators 1 1.3. Examples 3 2. Compact Operators 5 2.1. Properties 6 3. The Spectral Theorem 9 3.3. Self-adjoint

More information

Hilbert spaces. 1. Cauchy-Schwarz-Bunyakowsky inequality

Hilbert spaces. 1. Cauchy-Schwarz-Bunyakowsky inequality (October 29, 2016) Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/notes 2016-17/03 hsp.pdf] Hilbert spaces are

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

Projection Theorem 1

Projection Theorem 1 Projection Theorem 1 Cauchy-Schwarz Inequality Lemma. (Cauchy-Schwarz Inequality) For all x, y in an inner product space, [ xy, ] x y. Equality holds if and only if x y or y θ. Proof. If y θ, the inequality

More information

Numerical Linear Algebra

Numerical Linear Algebra University of Alabama at Birmingham Department of Mathematics Numerical Linear Algebra Lecture Notes for MA 660 (1997 2014) Dr Nikolai Chernov April 2014 Chapter 0 Review of Linear Algebra 0.1 Matrices

More information

Real Analysis Qualifying Exam May 14th 2016

Real Analysis Qualifying Exam May 14th 2016 Real Analysis Qualifying Exam May 4th 26 Solve 8 out of 2 problems. () Prove the Banach contraction principle: Let T be a mapping from a complete metric space X into itself such that d(tx,ty) apple qd(x,

More information

Recall that any inner product space V has an associated norm defined by

Recall that any inner product space V has an associated norm defined by Hilbert Spaces Recall that any inner product space V has an associated norm defined by v = v v. Thus an inner product space can be viewed as a special kind of normed vector space. In particular every inner

More information

Exercise Solutions to Functional Analysis

Exercise Solutions to Functional Analysis Exercise Solutions to Functional Analysis Note: References refer to M. Schechter, Principles of Functional Analysis Exersize that. Let φ,..., φ n be an orthonormal set in a Hilbert space H. Show n f n

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Real Variables # 10 : Hilbert Spaces II

Real Variables # 10 : Hilbert Spaces II randon ehring Real Variables # 0 : Hilbert Spaces II Exercise 20 For any sequence {f n } in H with f n = for all n, there exists f H and a subsequence {f nk } such that for all g H, one has lim (f n k,

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

1 Definition and Basic Properties of Compa Operator

1 Definition and Basic Properties of Compa Operator 1 Definition and Basic Properties of Compa Operator 1.1 Let X be a infinite dimensional Banach space. Show that if A C(X ), A does not have bounded inverse. Proof. Denote the unit ball of X by B and the

More information

Overview of normed linear spaces

Overview of normed linear spaces 20 Chapter 2 Overview of normed linear spaces Starting from this chapter, we begin examining linear spaces with at least one extra structure (topology or geometry). We assume linearity; this is a natural

More information

Chapter 7: Bounded Operators in Hilbert Spaces

Chapter 7: Bounded Operators in Hilbert Spaces Chapter 7: Bounded Operators in Hilbert Spaces I-Liang Chern Department of Applied Mathematics National Chiao Tung University and Department of Mathematics National Taiwan University Fall, 2013 1 / 84

More information

Chapter 5. Basics of Euclidean Geometry

Chapter 5. Basics of Euclidean Geometry Chapter 5 Basics of Euclidean Geometry 5.1 Inner Products, Euclidean Spaces In Affine geometry, it is possible to deal with ratios of vectors and barycenters of points, but there is no way to express the

More information

Math Real Analysis II

Math Real Analysis II Math 4 - Real Analysis II Solutions to Homework due May Recall that a function f is called even if f( x) = f(x) and called odd if f( x) = f(x) for all x. We saw that these classes of functions had a particularly

More information

October 25, 2013 INNER PRODUCT SPACES

October 25, 2013 INNER PRODUCT SPACES October 25, 2013 INNER PRODUCT SPACES RODICA D. COSTIN Contents 1. Inner product 2 1.1. Inner product 2 1.2. Inner product spaces 4 2. Orthogonal bases 5 2.1. Existence of an orthogonal basis 7 2.2. Orthogonal

More information

Orthogonal Projection and Least Squares Prof. Philip Pennance 1 -Version: December 12, 2016

Orthogonal Projection and Least Squares Prof. Philip Pennance 1 -Version: December 12, 2016 Orthogonal Projection and Least Squares Prof. Philip Pennance 1 -Version: December 12, 2016 1. Let V be a vector space. A linear transformation P : V V is called a projection if it is idempotent. That

More information

Analysis Comprehensive Exam Questions Fall 2008

Analysis Comprehensive Exam Questions Fall 2008 Analysis Comprehensive xam Questions Fall 28. (a) Let R be measurable with finite Lebesgue measure. Suppose that {f n } n N is a bounded sequence in L 2 () and there exists a function f such that f n (x)

More information

MATH 115A: SAMPLE FINAL SOLUTIONS

MATH 115A: SAMPLE FINAL SOLUTIONS MATH A: SAMPLE FINAL SOLUTIONS JOE HUGHES. Let V be the set of all functions f : R R such that f( x) = f(x) for all x R. Show that V is a vector space over R under the usual addition and scalar multiplication

More information

Linear Algebra. Session 12

Linear Algebra. Session 12 Linear Algebra. Session 12 Dr. Marco A Roque Sol 08/01/2017 Example 12.1 Find the constant function that is the least squares fit to the following data x 0 1 2 3 f(x) 1 0 1 2 Solution c = 1 c = 0 f (x)

More information

Introduction to Signal Spaces

Introduction to Signal Spaces Introduction to Signal Spaces Selin Aviyente Department of Electrical and Computer Engineering Michigan State University January 12, 2010 Motivation Outline 1 Motivation 2 Vector Space 3 Inner Product

More information

ECON 7335 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO LECTURE 1: BASICS. 1. Bayes Rule. p(b j A)p(A) p(b)

ECON 7335 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO LECTURE 1: BASICS. 1. Bayes Rule. p(b j A)p(A) p(b) ECON 7335 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO LECTURE : BASICS KRISTOFFER P. NIMARK. Bayes Rule De nition. Bayes Rule. The probability of event A occurring conditional on the event B having

More information

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32

Functional Analysis. Martin Brokate. 1 Normed Spaces 2. 2 Hilbert Spaces The Principle of Uniform Boundedness 32 Functional Analysis Martin Brokate Contents 1 Normed Spaces 2 2 Hilbert Spaces 2 3 The Principle of Uniform Boundedness 32 4 Extension, Reflexivity, Separation 37 5 Compact subsets of C and L p 46 6 Weak

More information

15B. Isometries and Functionals 1

15B. Isometries and Functionals 1 5B. Isometries and Functionals Isometries If the important functions between vector spaces V and W are those that preserve linearity (i.e., linear transformations), then the important functions between

More information

Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u u 2 2 = u 2. Geometric Meaning:

Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u u 2 2 = u 2. Geometric Meaning: Recall: Dot product on R 2 : u v = (u 1, u 2 ) (v 1, v 2 ) = u 1 v 1 + u 2 v 2, u u = u 2 1 + u 2 2 = u 2. Geometric Meaning: u v = u v cos θ. u θ v 1 Reason: The opposite side is given by u v. u v 2 =

More information

GQE ALGEBRA PROBLEMS

GQE ALGEBRA PROBLEMS GQE ALGEBRA PROBLEMS JAKOB STREIPEL Contents. Eigenthings 2. Norms, Inner Products, Orthogonality, and Such 6 3. Determinants, Inverses, and Linear (In)dependence 4. (Invariant) Subspaces 3 Throughout

More information

Infinite-dimensional Vector Spaces and Sequences

Infinite-dimensional Vector Spaces and Sequences 2 Infinite-dimensional Vector Spaces and Sequences After the introduction to frames in finite-dimensional vector spaces in Chapter 1, the rest of the book will deal with expansions in infinitedimensional

More information

1 Inner Product Space

1 Inner Product Space Ch - Hilbert Space 1 4 Hilbert Space 1 Inner Product Space Let E be a complex vector space, a mapping (, ) : E E C is called an inner product on E if i) (x, x) 0 x E and (x, x) = 0 if and only if x = 0;

More information

REAL ANALYSIS II HOMEWORK 3. Conway, Page 49

REAL ANALYSIS II HOMEWORK 3. Conway, Page 49 REAL ANALYSIS II HOMEWORK 3 CİHAN BAHRAN Conway, Page 49 3. Let K and k be as in Proposition 4.7 and suppose that k(x, y) k(y, x). Show that K is self-adjoint and if {µ n } are the eigenvalues of K, each

More information

Theorem (4.11). Let M be a closed subspace of a Hilbert space H. For any x, y E, the parallelogram law applied to x/2 and y/2 gives.

Theorem (4.11). Let M be a closed subspace of a Hilbert space H. For any x, y E, the parallelogram law applied to x/2 and y/2 gives. Math 641 Lecture #19 4.11, 4.12, 4.13 Inner Products and Linear Functionals (Continued) Theorem (4.10). Every closed, convex set E in a Hilbert space H contains a unique element of smallest norm, i.e.,

More information

David Hilbert was old and partly deaf in the nineteen thirties. Yet being a diligent

David Hilbert was old and partly deaf in the nineteen thirties. Yet being a diligent Chapter 5 ddddd dddddd dddddddd ddddddd dddddddd ddddddd Hilbert Space The Euclidean norm is special among all norms defined in R n for being induced by the Euclidean inner product (the dot product). A

More information

Functional Analysis Exercise Class

Functional Analysis Exercise Class Functional Analysis Exercise Class Week: December 4 8 Deadline to hand in the homework: your exercise class on week January 5. Exercises with solutions ) Let H, K be Hilbert spaces, and A : H K be a linear

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India

Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India CHAPTER 9 BY Prof. M. Saha Professor of Mathematics The University of Burdwan West Bengal, India E-mail : mantusaha.bu@gmail.com Introduction and Objectives In the preceding chapters, we discussed normed

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

OPERATOR THEORY ON HILBERT SPACE. Class notes. John Petrovic

OPERATOR THEORY ON HILBERT SPACE. Class notes. John Petrovic OPERATOR THEORY ON HILBERT SPACE Class notes John Petrovic Contents Chapter 1. Hilbert space 1 1.1. Definition and Properties 1 1.2. Orthogonality 3 1.3. Subspaces 7 1.4. Weak topology 9 Chapter 2. Operators

More information

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space

PROBLEMS. (b) (Polarization Identity) Show that in any inner product space 1 Professor Carl Cowen Math 54600 Fall 09 PROBLEMS 1. (Geometry in Inner Product Spaces) (a) (Parallelogram Law) Show that in any inner product space x + y 2 + x y 2 = 2( x 2 + y 2 ). (b) (Polarization

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Statistical Inference with Reproducing Kernel Hilbert Space Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department

More information

4 Linear operators and linear functionals

4 Linear operators and linear functionals 4 Linear operators and linear functionals The next section is devoted to studying linear operators between normed spaces. Definition 4.1. Let V and W be normed spaces over a field F. We say that T : V

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

4.6. Linear Operators on Hilbert Spaces

4.6. Linear Operators on Hilbert Spaces 4.6. Linear Operators on Hilbert Spaces 1 4.6. Linear Operators on Hilbert Spaces Note. This section explores a number of different kinds of bounded linear transformations (or, equivalently, operators

More information

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS

Math 250B Midterm II Information Spring 2019 SOLUTIONS TO PRACTICE PROBLEMS Math 50B Midterm II Information Spring 019 SOLUTIONS TO PRACTICE PROBLEMS Problem 1. Determine whether each set S below forms a subspace of the given vector space V. Show carefully that your answer is

More information

INF-SUP CONDITION FOR OPERATOR EQUATIONS

INF-SUP CONDITION FOR OPERATOR EQUATIONS INF-SUP CONDITION FOR OPERATOR EQUATIONS LONG CHEN We study the well-posedness of the operator equation (1) T u = f. where T is a linear and bounded operator between two linear vector spaces. We give equivalent

More information

Functional Analysis I

Functional Analysis I Functional Analysis I Course Notes by Stefan Richter Transcribed and Annotated by Gregory Zitelli Polar Decomposition Definition. An operator W B(H) is called a partial isometry if W x = X for all x (ker

More information

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan

4 Hilbert spaces. The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan The proof of the Hilbert basis theorem is not mathematics, it is theology. Camille Jordan Wir müssen wissen, wir werden wissen. David Hilbert We now continue to study a special class of Banach spaces,

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms.

Vector Spaces. Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. Vector Spaces Vector space, ν, over the field of complex numbers, C, is a set of elements a, b,..., satisfying the following axioms. For each two vectors a, b ν there exists a summation procedure: a +

More information

Exercise Sheet 1.

Exercise Sheet 1. Exercise Sheet 1 You can download my lecture and exercise sheets at the address http://sami.hust.edu.vn/giang-vien/?name=huynt 1) Let A, B be sets. What does the statement "A is not a subset of B " mean?

More information

C.6 Adjoints for Operators on Hilbert Spaces

C.6 Adjoints for Operators on Hilbert Spaces C.6 Adjoints for Operators on Hilbert Spaces 317 Additional Problems C.11. Let E R be measurable. Given 1 p and a measurable weight function w: E (0, ), the weighted L p space L p s (R) consists of all

More information

Spectral Theory, with an Introduction to Operator Means. William L. Green

Spectral Theory, with an Introduction to Operator Means. William L. Green Spectral Theory, with an Introduction to Operator Means William L. Green January 30, 2008 Contents Introduction............................... 1 Hilbert Space.............................. 4 Linear Maps

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008. This chapter is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Problem Set 6: Solutions Math 201A: Fall a n x n,

Problem Set 6: Solutions Math 201A: Fall a n x n, Problem Set 6: Solutions Math 201A: Fall 2016 Problem 1. Is (x n ) n=0 a Schauder basis of C([0, 1])? No. If f(x) = a n x n, n=0 where the series converges uniformly on [0, 1], then f has a power series

More information

THE INVERSE FUNCTION THEOREM FOR LIPSCHITZ MAPS

THE INVERSE FUNCTION THEOREM FOR LIPSCHITZ MAPS THE INVERSE FUNCTION THEOREM FOR LIPSCHITZ MAPS RALPH HOWARD DEPARTMENT OF MATHEMATICS UNIVERSITY OF SOUTH CAROLINA COLUMBIA, S.C. 29208, USA HOWARD@MATH.SC.EDU Abstract. This is an edited version of a

More information

Applications of Homotopy

Applications of Homotopy Chapter 9 Applications of Homotopy In Section 8.2 we showed that the fundamental group can be used to show that two spaces are not homeomorphic. In this chapter we exhibit other uses of the fundamental

More information

Functional Analysis, Math 7321 Lecture Notes from April 04, 2017 taken by Chandi Bhandari

Functional Analysis, Math 7321 Lecture Notes from April 04, 2017 taken by Chandi Bhandari Functional Analysis, Math 7321 Lecture Notes from April 0, 2017 taken by Chandi Bhandari Last time:we have completed direct sum decomposition with generalized eigen space. 2. Theorem. Let X be separable

More information

Implicit Functions, Curves and Surfaces

Implicit Functions, Curves and Surfaces Chapter 11 Implicit Functions, Curves and Surfaces 11.1 Implicit Function Theorem Motivation. In many problems, objects or quantities of interest can only be described indirectly or implicitly. It is then

More information

Math 113 Final Exam: Solutions

Math 113 Final Exam: Solutions Math 113 Final Exam: Solutions Thursday, June 11, 2013, 3.30-6.30pm. 1. (25 points total) Let P 2 (R) denote the real vector space of polynomials of degree 2. Consider the following inner product on P

More information

be the set of complex valued 2π-periodic functions f on R such that

be the set of complex valued 2π-periodic functions f on R such that . Fourier series. Definition.. Given a real number P, we say a complex valued function f on R is P -periodic if f(x + P ) f(x) for all x R. We let be the set of complex valued -periodic functions f on

More information

Lecture Notes in Functional Analysis

Lecture Notes in Functional Analysis Lecture Notes in Functional Analysis Please report any mistakes, misprints or comments to aulikowska@mimuw.edu.pl LECTURE 1 Banach spaces 1.1. Introducton to Banach Spaces Definition 1.1. Let X be a K

More information

INNER PRODUCT SPACE. Definition 1

INNER PRODUCT SPACE. Definition 1 INNER PRODUCT SPACE Definition 1 Suppose u, v and w are all vectors in vector space V and c is any scalar. An inner product space on the vectors space V is a function that associates with each pair of

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

Mathematics Department Stanford University Math 61CM/DM Inner products

Mathematics Department Stanford University Math 61CM/DM Inner products Mathematics Department Stanford University Math 61CM/DM Inner products Recall the definition of an inner product space; see Appendix A.8 of the textbook. Definition 1 An inner product space V is a vector

More information

THE PROBLEMS FOR THE SECOND TEST FOR BRIEF SOLUTIONS

THE PROBLEMS FOR THE SECOND TEST FOR BRIEF SOLUTIONS THE PROBLEMS FOR THE SECOND TEST FOR 18.102 BRIEF SOLUTIONS RICHARD MELROSE Question.1 Show that a subset of a separable Hilbert space is compact if and only if it is closed and bounded and has the property

More information

MTH 503: Functional Analysis

MTH 503: Functional Analysis MTH 53: Functional Analysis Semester 1, 215-216 Dr. Prahlad Vaidyanathan Contents I. Normed Linear Spaces 4 1. Review of Linear Algebra........................... 4 2. Definition and Examples...........................

More information

Math 4310 Solutions to homework 7 Due 10/27/16

Math 4310 Solutions to homework 7 Due 10/27/16 Math 4310 Solutions to homework 7 Due 10/27/16 1. Find the gcd of x 3 + x 2 + x + 1 and x 5 + 2x 3 + x 2 + x + 1 in Rx. Use the Euclidean algorithm: x 5 + 2x 3 + x 2 + x + 1 = (x 3 + x 2 + x + 1)(x 2 x

More information

Functional Analysis. AMAT 617 University of Calgary Winter semester Lecturer: Gilad Gour Notes taken by Mark Girard.

Functional Analysis. AMAT 617 University of Calgary Winter semester Lecturer: Gilad Gour Notes taken by Mark Girard. Functional Analysis AMAT 617 University of Calgary Winter semester 2014 Lecturer: Gilad Gour Notes taken by Mark Girard April 12, 2014 Contents 1 Lecture 1 4 1.1 Normed Spaces.......................................

More information

( sin(t), cos(t), 1) dt =

( sin(t), cos(t), 1) dt = Differential Geometry MT451 Problems/Homework Recommended Reading: Morgan F. Riemannian geometry, a beginner s guide Klingenberg W. A Course in Differential Geometry do Carmo M.P. Differential geometry

More information

ADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS

ADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS J. OPERATOR THEORY 44(2000), 243 254 c Copyright by Theta, 2000 ADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS DOUGLAS BRIDGES, FRED RICHMAN and PETER SCHUSTER Communicated by William B. Arveson Abstract.

More information

CONTENTS. 4 Hausdorff Measure Introduction The Cantor Set Rectifiable Curves Cantor Set-Like Objects...

CONTENTS. 4 Hausdorff Measure Introduction The Cantor Set Rectifiable Curves Cantor Set-Like Objects... Contents 1 Functional Analysis 1 1.1 Hilbert Spaces................................... 1 1.1.1 Spectral Theorem............................. 4 1.2 Normed Vector Spaces.............................. 7 1.2.1

More information

Linear Models Review

Linear Models Review Linear Models Review Vectors in IR n will be written as ordered n-tuples which are understood to be column vectors, or n 1 matrices. A vector variable will be indicted with bold face, and the prime sign

More information

Chapter 4 Euclid Space

Chapter 4 Euclid Space Chapter 4 Euclid Space Inner Product Spaces Definition.. Let V be a real vector space over IR. A real inner product on V is a real valued function on V V, denoted by (, ), which satisfies () (x, y) = (y,

More information

2. Review of Linear Algebra

2. Review of Linear Algebra 2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

More information

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY

ADVANCED TOPICS IN ALGEBRAIC GEOMETRY ADVANCED TOPICS IN ALGEBRAIC GEOMETRY DAVID WHITE Outline of talk: My goal is to introduce a few more advanced topics in algebraic geometry but not to go into too much detail. This will be a survey of

More information