c4 d 4 + c 3 d 3 + c 2 d 2 + c 1 d + c 0

Size: px
Start display at page:

Download "c4 d 4 + c 3 d 3 + c 2 d 2 + c 1 d + c 0"

Transcription

1 2.3 Newton s Proportional Method 125 Exercise (a) By expanding with the binomial theorem and gathering together common powers of y, show that with the substitution x = d + y, the polynomial, p (x) =c 4 x 4 + c 3 x 3 + c 2 x 2 + c 1 x + c 0, becomes c 4 y 4 +(4c 4 d + c 3 ) y 3 + ( 6c 4 d 2 +3c 3 d + c 2 ) y 2 + ( 4c 4 d 3 +3c 3 d 2 +2c 2 d + c 1 ) y + ( c4 d 4 + c 3 d 3 + c 2 d 2 + c 1 d + c 0 ). (b) Recast algebraically Qin s method up to the first transformation so that we achieve (a). To accomplish this, rewrite each step in the form c 4 Q+c 3 c 3 (Tableau 3 to Tableau 4, using primes differently from Qin). Be wary of the word subtract after Tableau 4, and be sure to accumulate primes. Compound these substitutions. The final c 4, c 3, etc., at Tableau 16 should be the coefficients of the powers of y found in (a). But notice how Qin s method, with its clever sequencing of multiplications and additions, implicitly mimics binomial coefficients while explicitly avoiding them. Exercise (a) Substitute x into Qin s polynomial P 0 and thereby obtain P 1. (b) Expand Qin s polynomial P 0 in a Taylor series about d = 800 and obtain P 1. Exercise Estimating the initial or even subsequent digits of a root of a general polynomial is tricky. Suppose, after having computed a new translation, you suspect your choice of a new digit was wrong. How do you know whether to add or subtract 1 from your suspect digit to create a new trial digit? Formulate a rule to determine this by using the signs of the coefficients c 0 and c 1 of the new polynomial. Recall that c 0 is its value and c 1 its derivative at the new estimate of the root. Exercise Find a root of x 3 130x 2 250x 1848 by Qin s method. Exercise Reflect on the differences between the method of Qin for finding roots of polynomials and modern methods, such as pocket calculators and computer packages, e.g., Maple and Mathematica. In particular, find out in detail how a particular modern method actually does it. 2.3 Newton s Proportional Method Here is how John Fauvel opens the book Let Newton Be! [72]. In April 1727, the French writer Voltaire viewed with astonishment the preparations for the funeral of Sir Isaac Newton. The late President of the Royal Society lay in state in Westminster Abbey for the week preceding the funeral on 4 April. At the ceremony, his pall was borne in a ceremonious pageant by two dukes, three earls, and the Lord Chancellor. He was buried, Voltaire observed, like a king who had done well by his subjects. No scientist before had been so revered. Few since have been interred with such dignity and high honour.

2 126 2 Solving Equations Numerically:Finding Our Roots Since there are many fine books about Newton ( ) and his extraordinary contributions to science, let us just note that he lived in tumultuous times. He was born at Woolsthorpe in Lincolnshire, England, when the British Civil War was beginning. He came of age at the restoration of Charles II, who, although his rule was relaxed in many ways, received secret financial help from Louis XIV so that England might become again an absolute monarchy like France. Newton studied at Cambridge University for three years, which then closed because of the bubonic plague then raging. He returned to his family manor from 1664 to 1666, where the magic apple presumably fell and he discovered the universal law of gravitation. At that time he also demonstrated that all colors of the rainbow compose white light, and he began to develop the calculus. His lifetime was the time in England of the writers John Milton, John Dryden and John Bunyan, the composers Henry and Daniel Purcell, and fellow scientists Edmund Halley, Robert Hooke, Robert Boyle and William Harvey. Photo 2.4. Newton.

3 2.3 Newton s Proportional Method 127 Newton s proportional method [178, pp ] was probably written in Not surprisingly, as just a sketch in his Waste Book, already described in the introduction of this chapter, his informal exposition has several annoying but minor errors, as well as a few inconsistencies, most of which we correct. Newton had read Wallis s ( ) Arithmetica Infinitorum,by which time, through the efforts of Simon Steven ( ), Rafael Bombelli ( ) and François Viète ( ), algebraic notation had evolved close to its present form. Consult [93] for details about the history of the Waste Book. In preparation for reading the selection of Newton in its original language, we make several preliminary remarks about his first paragraph. 5 The comma serves as a decimal point in Europe. Parenthetically, Newton lists various ways of obtaining a first estimate, which is needed to start iterating. Geometrically by description of lines would mean something like the method Umar used in the introduction; and an instrument... of numbers made to slide by one another would be a slide rule [120], invented by William Oughtred and Edmund Wingate about 1630, and superseded by the pocket calculator in the 1970s. Then Newton splits his first estimate 2,2 intog = 2 and y =0,2. At each step in the algorithm these are updated, although g and y are never mentioned again. Maybe this split is indicated by Newton initially writing 2,2 as 2 2 in the original manuscript. In other words, 2 and 2,2 are the first two estimates for the root. From these he will compute a better third estimate, and a final and significantly better fourth. Beware that his letters are slippery: they are recycled with new values, over and over again. Newton, from The resolusion of y e affected Equation x 3 + pxx + qx = r. Or x 3 +10x 2 7x = 44. First having found two or 3 of y e first figures of y e desired roote viz 2,2 (w ch may bee done either by rationall or Logarithmical tryalls as M r Oughtred hath tought, or Geometrically by descriptions of lines, or by an instrument consisting of 4 or 5 or more lines of numbers made to slide by one another w ch may be oblong but better circular) this knowne pte of y e root I call g, y e other unknowne pte I call y then is g + y = x. Then I prosecute y e Resolution after this manner (making x + p in x = a. a + q in x = b. b r in x = c. &c.) 5 As an aside, we explain the origin of the curious word y e occurring here, and meaning simply the. The y was sometimes used by printers to mimic an old runic character called thorn, which looked somewhat like a y. But y e should not be confused with the archaic English pronoun ye, as used in the Christmas carol God rest ye merry Gentlemen.

4 128 2 Solving Equations Numerically:Finding Our Roots We interrupt the flow to make several points. To follow Newton s sketch, one could rewrite his equation as a polynomial set to zero: x 3 + pxx + qx r= x 3 +10x 2 7x 44=0. 6 This is helpful in comparing his algorithm to the other algorithms of this chapter. But it seems best for now to follow Newton as he wrote it; then we will be finding out how much the left side deviates from 44. There are two parts to his algorithm: computing the values that his polynomial x 3 +10x 2 7x achieves at the estimates, which he does in the arrays below; and calculating a new estimate from a natural proportion created from four numbers: the previous two estimates and their polynomial values, i.e., by linear extrapolation a new estimate is found. 7 Values of the polynomial are going to be calculated at 2 and 2,2; the results are both designated by b and these subtracted from r are designated by h and k, respectively, which are the deviations from 44, and which should be approaching 0. Newton evaluates a polynomial, P (x) =x 3 + px 2 + qx, as ((x + p) x + q) x, a form computer programmers rediscovered as minimizing the number of multiplications (this is what his parenthetical phrase above explains). In the arrays below, a = (x + p) x and b = (a + q) x; in short, multiply 12 by 2 to get 24, etc. 12 = x + p 24 = a x =2. a + q =17 b =34 2=x. r b =10=h. by supposing x =2. This is essentially synthetic division, as described in the last section, although here the g at which the polynomial is evaluated may be longer than one digit, for example, 2,2. When g = 2, we have, in the language of that section, that P (x) =(x 2) Q (x) +P (2)=(x 2) ( x 2 +12x +17 ) + 34, calculated in the synthetic division 2) These coefficients are readily read off from Newton s calculations. But Newton does not complete the sequence of synthetic divisions to translate the polynomial. At the next iteration he uses the original polynomial, increasing his 6 Actually Newton starts out his sketch with the equation x 3 + pxx + qx + r =0 and then shortly shifts his r to the right side without changing its sign! But we have altered his original in order to treat r consistently throughout. 7 This method of finding a real root by approaching it from both sides is called Regula falsi or the method of false position [123, article 301c]. It is natural, old, and has appeared in many different cultures [133]. Newton s contribution was to find an efficient way to evaluate polynomials.

5 2.3 Newton s Proportional Method 129 labors unnecessarily (but Joseph Raphson ( ) did complete the substitution to obtain a new polynomial, although not in the efficient manner of Qin, Horner, et al. [29, pp ]). Here are more of Newton s calculations, where he distributes the multiplication by 2,2 over 2 and,2, and adds up the partial products. Againe supposing x =2,2. x + p =12,2 2,44,2 24,4 2, 26,84 = a a + q =19,84 3,968,2 39,68 2, 43,648 = b r b =0,352 = k. h k =9,648. In preparation for creating a proportion, differences in the value of the polynomial are being calculated, corresponding to differences in the argument. In geometrical terms, the heights of similar right triangles are being figured, 9,648 and 0,352; the bases will be 0,2 and y, if the graph of the polynomial is visualized (Exercise 2.36). Corresponding sides of the similar triangles lead to the proportion, as Newton explains next and which is at the heart of the method. That is y e { } latter r b substracted from the former r b there remaines difference twixt this & y e 9,648. former valor of r b is &y e difference twixt this & y e former valor of x is 0,2. Therefore make 9,648 : 0,2 ::0,352 : y. Then is y = 0,0704 9,648 =0,00728 &c. the first figure of wch being added to y e last valor of x makes 2,207 = x. Now iterate the process (Exercise 2.37). Then w th this valor of x prosecuting y e operacon as before tis x + p =12,207 0, ,007 2,44140,20 24,414 2, 26, = a a + q =19, , ,007 3, ,20 39, , 44, = b

6 130 2 Solving Equations Numerically:Finding Our Roots r b = 0, w ch valor of r b substracted from y e precedent valor of r b y e diff: is +0, Also y e diff twixt this & y e precedent valor of x is 0,007. Therefore I make 0, : 0,007 :: 0, : y. That is 0, y = = 0, &c. 0, figures of w ch (because negative) I substract from y e former value of x & there rests x =2, And so might y e Resolution be prosecuted. The final answer is slightly wrong. The leading 59 in the numerator of y 0, should really be 66; thus y = 0, = 0, , and thus x = 2, Stimulated by the need to solve equations arising from the birth of modern science, Newton and others created diverse algorithms (Exercises 2.38, 2.39 and 2.40). Exercise Graph the polynomial x 3 +10x 2 7x carefully, perhaps with a pocket calculator, together with the horizontal, y = 44. Plot all the points, quantities, and similar triangles that enter into the first iteration of Newton s example. Emphasize the secant. Notice that the first correction is positive, but the next is negative. Why is this? What sign do you expect the next corrections to have? Exercise (a) For Newton s proportional method derive the iterative formula, y n x n+1 = x n y n y n 1 (n =1, 2, 3,...), x n x n 1 where x 0 and x 1 are initial estimates, y n = f (x n ), and f is any continuous function whose root we desire. Why is the fraction in the denominator close to the derivative, if it exists? How close are we to the classical Newton s method. (b) Simplify the formula of (a) to x n+1 = x n 1y n x n y n 1 y n y n 1. Exercise Rather than guessing the new root proportionally, that is, by linear extrapolation, try to speed up convergence by using quadratic extrapolation, i.e., by fitting a quadratic curve to the old estimates. Work out the details of this by resolving the equation, x 3 +10x 2 7x = 44, of the selection in this new way. You will need three original guesses x, so add 2.1 to2.0 and

7 2.3 Newton s Proportional Method Use these to plot three points on the cubic curve, and then solve three linear equations to find the a, b, c that fit ax 2 + bx + c to the cubic polynomial at these three values of x; that is, make the quadratic pass through the three points. Then find where the quadratic crosses the line y = 44, and use this for a new estimate of x. How many iterations do you need to match Newton s final accuracy? Edmund Halley (1656? 1743) proposed quadratic extrapolation in (See [29, pp ] for the history of this method and many other proposed variants of Newton s and Simpson s methods.) Exercise Newton had another way of finding a root of a polynomial, which should first be read in [179, pp ], and which is sometimes cited as evidence for Newton discovering Newton s method. But to do this, one must conjecture what Newton was thinking. He applied this method only to specific polynomials where the coefficients were numbers, with the arithmetical operations leaving no trace of any algebra, and even obscuring the presence of a derivative. So the general form is not obvious. The reader is asked to create the theory from his specific example. (a) Explain how close it is to Qin s and the Horner Ruffini methods, excepting that Newton s layout is radically different and he allows the answer to increase more than one decimal place at a time. (b) When Newton estimates the next few digits, he is in effect computing a derivative. Show numerically that in his polynomial, f(y) =y 3 2y 5, when he substitutes y =2+p and uses the linear and constant terms to estimate the next few digits, he has computed f(2) f (2). (c) Algebraically, retrace (b) for an arbitrary polynomial with literals as coefficients: make a linear substitution, use the binomial theorem to expand, throw out all terms higher than the first power, and show that indeed the correction term has the renowned form of Simpson s fluxional method [29, pp ]. Exercise [179, p. 326] Although Newton did not discover the method named after him, he did invent many remarkable techniques. In particular, he was fond of taking strictly numerical methods and applying them algebraically. As an example of this technique, you are to expand a 2 + x in a power series in x. (a) By completing powers in complete analogy with the numerical method of calculating square roots at the beginning of Section 2, find a 2 + x by starting with a trial divisor of a into a 2 + x. Continue through the fourth power of x. (b) Find ( a 2 + x ) 1/2 by the binomial theorem, and compare with (a). They should be the same. (c) Find 5 by taking a = 2 and x = 1, using the series of (b) through the fourth power. How accurate is the answer? (Hint: Partial sums of an alternating series with the terms decreasing in size bracket the answer.)

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2018 3 Lecture 3 3.1 General remarks March 4, 2018 This

More information

Precalculus Honors 3.4 Newton s Law of Cooling November 8, 2005 Mr. DeSalvo

Precalculus Honors 3.4 Newton s Law of Cooling November 8, 2005 Mr. DeSalvo Precalculus Honors 3.4 Newton s Law of Cooling November 8, 2005 Mr. DeSalvo Isaac Newton (1642-1727) proposed that the temperature of a hot object decreases at a rate proportional to the difference between

More information

Math 3 Variable Manipulation Part 3 Polynomials A

Math 3 Variable Manipulation Part 3 Polynomials A Math 3 Variable Manipulation Part 3 Polynomials A 1 MATH 1 & 2 REVIEW: VOCABULARY Constant: A term that does not have a variable is called a constant. Example: the number 5 is a constant because it does

More information

Lies My Calculator and Computer Told Me

Lies My Calculator and Computer Told Me Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing

More information

Ron Paul Curriculum Mathematics 8 Lesson List

Ron Paul Curriculum Mathematics 8 Lesson List Ron Paul Curriculum Mathematics 8 Lesson List 1 Introduction 2 Algebraic Addition 3 Algebraic Subtraction 4 Algebraic Multiplication 5 Week 1 Review 6 Algebraic Division 7 Powers and Exponents 8 Order

More information

The History and Philosophy of Astronomy

The History and Philosophy of Astronomy Astronomy 350L (Spring 2005) The History and Philosophy of Astronomy (Lecture 13: Newton I) Instructor: Volker Bromm TA: Amanda Bauer The University of Texas at Austin Isaac Newton: Founding Father of

More information

Practical Algebra. A Step-by-step Approach. Brought to you by Softmath, producers of Algebrator Software

Practical Algebra. A Step-by-step Approach. Brought to you by Softmath, producers of Algebrator Software Practical Algebra A Step-by-step Approach Brought to you by Softmath, producers of Algebrator Software 2 Algebra e-book Table of Contents Chapter 1 Algebraic expressions 5 1 Collecting... like terms 5

More information

2.5 The Fundamental Theorem of Algebra.

2.5 The Fundamental Theorem of Algebra. 2.5. THE FUNDAMENTAL THEOREM OF ALGEBRA. 79 2.5 The Fundamental Theorem of Algebra. We ve seen formulas for the (complex) roots of quadratic, cubic and quartic polynomials. It is then reasonable to ask:

More information

Notes on Polynomials from Barry Monson, UNB

Notes on Polynomials from Barry Monson, UNB Notes on Polynomials from Barry Monson, UNB 1. Here are some polynomials and their degrees: polynomial degree note 6x 4 8x 3 +21x 2 +7x 2 4 quartic 2x 3 +0x 2 + 3x + 2 3 cubic 2 2x 3 + 3x + 2 3 the same

More information

Chapter 0.B.3. [More than Just] Lines.

Chapter 0.B.3. [More than Just] Lines. Chapter 0.B.3. [More than Just] Lines. Of course you've studied lines before, so why repeat it one more time? Haven't you seen this stuff about lines enough to skip this section? NO! But why? It is true

More information

3.3 Real Zeros of Polynomial Functions

3.3 Real Zeros of Polynomial Functions 71_00.qxp 12/27/06 1:25 PM Page 276 276 Chapter Polynomial and Rational Functions. Real Zeros of Polynomial Functions Long Division of Polynomials Consider the graph of f x 6x 19x 2 16x 4. Notice in Figure.2

More information

CH 59 SQUARE ROOTS. Every positive number has two square roots. Ch 59 Square Roots. Introduction

CH 59 SQUARE ROOTS. Every positive number has two square roots. Ch 59 Square Roots. Introduction 59 CH 59 SQUARE ROOTS Introduction W e saw square roots when we studied the Pythagorean Theorem. They may have been hidden, but when the end of a right-triangle problem resulted in an equation like c =

More information

Chapter 19 Classwork Famous Scientist Biography Isaac...

Chapter 19 Classwork Famous Scientist Biography Isaac... Chapter 19 Classwork Famous Scientist Biography Isaac... Score: 1. is perhaps the greatest physicist who has ever lived. 1@1 2. He and are almost equally matched contenders for this title. 1@1 3. Each

More information

Chapter 0. Introduction. An Overview of the Course

Chapter 0. Introduction. An Overview of the Course Chapter 0 Introduction An Overview of the Course In the first part of these notes we consider the problem of calculating the areas of various plane figures. The technique we use for finding the area of

More information

Algebraic. techniques1

Algebraic. techniques1 techniques Algebraic An electrician, a bank worker, a plumber and so on all have tools of their trade. Without these tools, and a good working knowledge of how to use them, it would be impossible for them

More information

Notes on arithmetic. 1. Representation in base B

Notes on arithmetic. 1. Representation in base B Notes on arithmetic The Babylonians that is to say, the people that inhabited what is now southern Iraq for reasons not entirely clear to us, ued base 60 in scientific calculation. This offers us an excuse

More information

STUDY GUIDE Math 20. To accompany Intermediate Algebra for College Students By Robert Blitzer, Third Edition

STUDY GUIDE Math 20. To accompany Intermediate Algebra for College Students By Robert Blitzer, Third Edition STUDY GUIDE Math 0 To the students: To accompany Intermediate Algebra for College Students By Robert Blitzer, Third Edition When you study Algebra, the material is presented to you in a logical sequence.

More information

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i

Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i Complex Numbers: Definition: A complex number is a number of the form: z = a + bi where a, b are real numbers and i is a symbol with the property: i 2 = 1 Sometimes we like to think of i = 1 We can treat

More information

Essential Mathematics

Essential Mathematics Appendix B 1211 Appendix B Essential Mathematics Exponential Arithmetic Exponential notation is used to express very large and very small numbers as a product of two numbers. The first number of the product,

More information

Symbolic Analytic Geometry and the Origins of Symbolic Algebra

Symbolic Analytic Geometry and the Origins of Symbolic Algebra Viète and Descartes Symbolic Analytic Geometry and the Origins of Symbolic Algebra Waseda University, SILS, History of Mathematics Outline Introduction François Viète Life and work Life and work Descartes

More information

Fundamentals. Introduction. 1.1 Sets, inequalities, absolute value and properties of real numbers

Fundamentals. Introduction. 1.1 Sets, inequalities, absolute value and properties of real numbers Introduction This first chapter reviews some of the presumed knowledge for the course that is, mathematical knowledge that you must be familiar with before delving fully into the Mathematics Higher Level

More information

4.3 Rational Inequalities and Applications

4.3 Rational Inequalities and Applications 342 Rational Functions 4.3 Rational Inequalities and Applications In this section, we solve equations and inequalities involving rational functions and eplore associated application problems. Our first

More information

Polynomial and Synthetic Division

Polynomial and Synthetic Division Polynomial and Synthetic Division Polynomial Division Polynomial Division is very similar to long division. Example: 3x 3 5x 3x 10x 1 3 Polynomial Division 3x 1 x 3x 3 3 x 5x 3x x 6x 4 10x 10x 7 3 x 1

More information

Square-Triangular Numbers

Square-Triangular Numbers Square-Triangular Numbers Jim Carlson April 26, 2004 Contents 1 Introduction 2 2 Existence 2 3 Finding an equation 3 4 Solutions by brute force 4 5 Speeding things up 5 6 Solutions by algebraic numbers

More information

West Windsor-Plainsboro Regional School District Math A&E Grade 7

West Windsor-Plainsboro Regional School District Math A&E Grade 7 West Windsor-Plainsboro Regional School District Math A&E Grade 7 Page 1 of 24 Unit 1: Introduction to Algebra Content Area: Mathematics Course & Grade Level: A&E Mathematics, Grade 7 Summary and Rationale

More information

College Algebra with Corequisite Support: Targeted Review

College Algebra with Corequisite Support: Targeted Review College Algebra with Corequisite Support: Targeted Review 978-1-63545-056-9 To learn more about all our offerings Visit Knewtonalta.com Source Author(s) (Text or Video) Title(s) Link (where applicable)

More information

Lesson 5b Solving Quadratic Equations

Lesson 5b Solving Quadratic Equations Lesson 5b Solving Quadratic Equations In this lesson, we will continue our work with Quadratics in this lesson and will learn several methods for solving quadratic equations. The first section will introduce

More information

Part 2 - Beginning Algebra Summary

Part 2 - Beginning Algebra Summary Part - Beginning Algebra Summary Page 1 of 4 1/1/01 1. Numbers... 1.1. Number Lines... 1.. Interval Notation.... Inequalities... 4.1. Linear with 1 Variable... 4. Linear Equations... 5.1. The Cartesian

More information

Welcome to Math Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013

Welcome to Math Video Lessons. Stanley Ocken. Department of Mathematics The City College of New York Fall 2013 Welcome to Math 19500 Video Lessons Prof. Department of Mathematics The City College of New York Fall 013 An important feature of the following Beamer slide presentations is that you, the reader, move

More information

Jan Hudde s Second Letter: On Maxima and Minima. Translated into English, with a Brief Introduction* by. Daniel J. Curtin Northern Kentucky University

Jan Hudde s Second Letter: On Maxima and Minima. Translated into English, with a Brief Introduction* by. Daniel J. Curtin Northern Kentucky University Jan Hudde s Second Letter: On Maxima and Minima Translated into English, with a Brief Introduction* by Daniel J. Curtin Northern Kentucky University Abstract. In 1658, Jan Hudde extended Descartes fundamental

More information

Lesson 7.1 Polynomial Degree and Finite Differences

Lesson 7.1 Polynomial Degree and Finite Differences Lesson 7.1 Polynomial Degree and Finite Differences 1. Identify the degree of each polynomial. a. 3x 4 2x 3 3x 2 x 7 b. x 1 c. 0.2x 1.x 2 3.2x 3 d. 20 16x 2 20x e. x x 2 x 3 x 4 x f. x 2 6x 2x 6 3x 4 8

More information

Introduction to Techniques for Counting

Introduction to Techniques for Counting Introduction to Techniques for Counting A generating function is a device somewhat similar to a bag. Instead of carrying many little objects detachedly, which could be embarrassing, we put them all in

More information

Chapter 3: Polynomial and Rational Functions

Chapter 3: Polynomial and Rational Functions Chapter 3: Polynomial and Rational Functions 3.1 Polynomial Functions A polynomial on degree n is a function of the form P(x) = a n x n + a n 1 x n 1 + + a 1 x 1 + a 0, where n is a nonnegative integer

More information

Evaluate algebraic expressions for given values of the variables.

Evaluate algebraic expressions for given values of the variables. Algebra I Unit Lesson Title Lesson Objectives 1 FOUNDATIONS OF ALGEBRA Variables and Expressions Exponents and Order of Operations Identify a variable expression and its components: variable, coefficient,

More information

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 Professor Biswa Nath Datta Department of Mathematical Sciences Northern Illinois University DeKalb, IL. 60115 USA E mail: dattab@math.niu.edu

More information

Tropical Polynomials

Tropical Polynomials 1 Tropical Arithmetic Tropical Polynomials Los Angeles Math Circle, May 15, 2016 Bryant Mathews, Azusa Pacific University In tropical arithmetic, we define new addition and multiplication operations on

More information

NEWTON-RAPHSON ITERATION

NEWTON-RAPHSON ITERATION NEWTON-RAPHSON ITERATION Newton-Raphson iteration is a numerical technique used for finding approximations to the real roots of the equation where n denotes the f ( φ ) = 0 φ φ = n+ 1 n given in the form

More information

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers Fry Texas A&M University! Fall 2016! Math 150 Notes! Section 1A! Page 1 Chapter 1A -- Real Numbers Math Symbols: iff or Example: Let A = {2, 4, 6, 8, 10, 12, 14, 16,...} and let B = {3, 6, 9, 12, 15, 18,

More information

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity SB Activity Activity 1 Creating Equations 1-1 Learning Targets: Create an equation in one variable from a real-world context. Solve an equation in one variable. 1-2 Learning Targets: Create equations in

More information

CHMC: Finite Fields 9/23/17

CHMC: Finite Fields 9/23/17 CHMC: Finite Fields 9/23/17 1 Introduction This worksheet is an introduction to the fascinating subject of finite fields. Finite fields have many important applications in coding theory and cryptography,

More information

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity

Algebra 2 Khan Academy Video Correlations By SpringBoard Activity SB Activity Activity 1 Creating Equations 1-1 Learning Targets: Create an equation in one variable from a real-world context. Solve an equation in one variable. 1-2 Learning Targets: Create equations in

More information

Factorisation CHAPTER Introduction

Factorisation CHAPTER Introduction FACTORISATION 217 Factorisation CHAPTER 14 14.1 Introduction 14.1.1 Factors of natural numbers You will remember what you learnt about factors in Class VI. Let us take a natural number, say 30, and write

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

Spring 2015, Math 111 Lab 8: Newton s Method

Spring 2015, Math 111 Lab 8: Newton s Method Spring 2015, Math 111 Lab 8: William and Mary April 7, 2015 Spring 2015, Math 111 Lab 8: Historical Outline Intuition Learning Objectives Today, we will be looking at applications of. Learning Objectives:

More information

Complex Numbers: A Brief Introduction. By: Neal Dempsey. History of Mathematics. Prof. Jennifer McCarthy. July 16, 2010

Complex Numbers: A Brief Introduction. By: Neal Dempsey. History of Mathematics. Prof. Jennifer McCarthy. July 16, 2010 1 Complex Numbers: A Brief Introduction. By: Neal Dempsey History of Mathematics Prof. Jennifer McCarthy July 16, 2010 2 Abstract Complex numbers, although confusing at times, are one of the most elegant

More information

Chapter Five Notes N P U2C5

Chapter Five Notes N P U2C5 Chapter Five Notes N P UC5 Name Period Section 5.: Linear and Quadratic Functions with Modeling In every math class you have had since algebra you have worked with equations. Most of those equations have

More information

The Mathematics of Renaissance Europe

The Mathematics of Renaissance Europe The Mathematics of Renaissance Europe The 15 th and 16 th centuries in Europe are often referred to as the Renaissance. The word renaissance means rebirth and describes the renewed interest in intellectual

More information

EULER S THEOREM KEITH CONRAD

EULER S THEOREM KEITH CONRAD EULER S THEOREM KEITH CONRAD. Introduction Fermat s little theorem is an important property of integers to a prime modulus. Theorem. (Fermat). For prime p and any a Z such that a 0 mod p, a p mod p. If

More information

POLYNOMIALS. Maths 4 th ESO José Jaime Noguera

POLYNOMIALS. Maths 4 th ESO José Jaime Noguera POLYNOMIALS Maths 4 th ESO José Jaime Noguera 1 Algebraic expressions Book, page 26 YOUR TURN: exercises 1, 2, 3. Exercise: Find the numerical value of the algebraic expression xy 2 8x + y, knowing that

More information

Math Precalculus I University of Hawai i at Mānoa Spring

Math Precalculus I University of Hawai i at Mānoa Spring Math 135 - Precalculus I University of Hawai i at Mānoa Spring - 2013 Created for Math 135, Spring 2008 by Lukasz Grabarek and Michael Joyce Send comments and corrections to lukasz@math.hawaii.edu Contents

More information

MA094 Part 2 - Beginning Algebra Summary

MA094 Part 2 - Beginning Algebra Summary MA094 Part - Beginning Algebra Summary Page of 8/8/0 Big Picture Algebra is Solving Equations with Variables* Variable Variables Linear Equations x 0 MA090 Solution: Point 0 Linear Inequalities x < 0 page

More information

1 Introduction. 2 Solving Linear Equations. Charlotte Teacher Institute, Modular Arithmetic

1 Introduction. 2 Solving Linear Equations. Charlotte Teacher Institute, Modular Arithmetic 1 Introduction This essay introduces some new sets of numbers. Up to now, the only sets of numbers (algebraic systems) we know is the set Z of integers with the two operations + and and the system R of

More information

On the Shoulders of Giants: Isaac Newton and Modern Science

On the Shoulders of Giants: Isaac Newton and Modern Science 22 May 2012 MP3 at voaspecialenglish.com On the Shoulders of Giants: Isaac Newton and Modern Science SHIRLEY GRIFFITH: This is Shirley Griffith. STEVE EMBER: And this is Steve Ember with the VOA Special

More information

2009 A-level Maths Tutor All Rights Reserved

2009 A-level Maths Tutor All Rights Reserved 2 This book is under copyright to A-level Maths Tutor. However, it may be distributed freely provided it is not sold for profit. Contents indices 3 laws of logarithms 7 surds 12 inequalities 18 quadratic

More information

Written by Hank Garcia

Written by Hank Garcia Algebra 8 Written by Hank Garcia Editor: Carla Hamaguchi Illustrator: Darcy Tom Designer/Production: Moonhee Pak/Cari Helstrom Cover Designer: Barbara Peterson Art Director: Tom Cochrane Project Director:

More information

Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254

Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254 Partial Fraction Decomposition Honors Precalculus Mr. Velazquez Rm. 254 Adding and Subtracting Rational Expressions Recall that we can use multiplication and common denominators to write a sum or difference

More information

Grade 6 Math Circles November 1 st /2 nd. Egyptian Mathematics

Grade 6 Math Circles November 1 st /2 nd. Egyptian Mathematics Faculty of Mathematics Waterloo, Ontario N2L 3G Centre for Education in Mathematics and Computing Grade 6 Math Circles November st /2 nd Egyptian Mathematics Ancient Egypt One of the greatest achievements

More information

JUST THE MATHS UNIT NUMBER 1.6. ALGEBRA 6 (Formulae and algebraic equations) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.6. ALGEBRA 6 (Formulae and algebraic equations) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.6 ALGEBRA 6 (Formulae and algebraic equations) by A.J.Hobson 1.6.1 Transposition of formulae 1.6. of linear equations 1.6.3 of quadratic equations 1.6. Exercises 1.6.5 Answers

More information

CfE Higher Mathematics Course Materials Topic 4: Polynomials and quadratics

CfE Higher Mathematics Course Materials Topic 4: Polynomials and quadratics SCHOLAR Study Guide CfE Higher Mathematics Course Materials Topic 4: Polynomials and quadratics Authored by: Margaret Ferguson Reviewed by: Jillian Hornby Previously authored by: Jane S Paterson Dorothy

More information

MITOCW MITRES18_006F10_26_0602_300k-mp4

MITOCW MITRES18_006F10_26_0602_300k-mp4 MITOCW MITRES18_006F10_26_0602_300k-mp4 FEMALE VOICE: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

More information

Math Review. for the Quantitative Reasoning measure of the GRE General Test

Math Review. for the Quantitative Reasoning measure of the GRE General Test Math Review for the Quantitative Reasoning measure of the GRE General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important for solving

More information

Algebra 31 Summer Work Packet Review and Study Guide

Algebra 31 Summer Work Packet Review and Study Guide Algebra Summer Work Packet Review and Study Guide This study guide is designed to accompany the Algebra Summer Work Packet. Its purpose is to offer a review of the ten specific concepts covered in the

More information

Exponents and Logarithms

Exponents and Logarithms chapter 5 Starry Night, painted by Vincent Van Gogh in 1889. The brightness of a star as seen from Earth is measured using a logarithmic scale. Exponents and Logarithms This chapter focuses on understanding

More information

1.5 EQUATIONS. Solving Linear Equations Solving Quadratic Equations Other Types of Equations

1.5 EQUATIONS. Solving Linear Equations Solving Quadratic Equations Other Types of Equations SECTION.5 Equations 45 0. DISCUSS: Algebraic Errors The left-hand column of the table lists some common algebraic errors. In each case, give an example using numbers that shows that the formula is not

More information

Theory of Equations. Lesson 5. Barry H. Dayton Northeastern Illinois University Chicago, IL 60625, USA. bhdayton/theq/

Theory of Equations. Lesson 5. Barry H. Dayton Northeastern Illinois University Chicago, IL 60625, USA.   bhdayton/theq/ Theory of Equations Lesson 5 by Barry H. Dayton Northeastern Illinois University Chicago, IL 60625, USA www.neiu.edu/ bhdayton/theq/ These notes are copyrighted by Barry Dayton, 2002. The PDF files are

More information

Intermediate Algebra

Intermediate Algebra Intermediate Algebra 978-1-63545-084-2 To learn more about all our offerings Visit Knewton.com Source Author(s) (Text or Video) Title(s) Link (where applicable) Openstax Lyn Marecek, MaryAnne Anthony-Smith

More information

THE INTRODUCTION OF COMPLEX NUMBERS*

THE INTRODUCTION OF COMPLEX NUMBERS* THE INTRODUCTION OF COMPLEX NUMBERS* John N. Crossley Monash University, Melbourne, Australia Any keen mathematics student will tell you that complex numbers come in when you want to solve a quadratic

More information

p324 Section 5.2: The Natural Logarithmic Function: Integration

p324 Section 5.2: The Natural Logarithmic Function: Integration p324 Section 5.2: The Natural Logarithmic Function: Integration Theorem 5.5: Log Rule for Integration Let u be a differentiable function of x 1. 2. Example 1: Using the Log Rule for Integration ** Note:

More information

Solving Equations by Adding and Subtracting

Solving Equations by Adding and Subtracting SECTION 2.1 Solving Equations by Adding and Subtracting 2.1 OBJECTIVES 1. Determine whether a given number is a solution for an equation 2. Use the addition property to solve equations 3. Determine whether

More information

19. TAYLOR SERIES AND TECHNIQUES

19. TAYLOR SERIES AND TECHNIQUES 19. TAYLOR SERIES AND TECHNIQUES Taylor polynomials can be generated for a given function through a certain linear combination of its derivatives. The idea is that we can approximate a function by a polynomial,

More information

Isaac Newton. Isaac Newton, Woolsthorpe Manor

Isaac Newton. Isaac Newton, Woolsthorpe Manor Isaac Newton Nature, and Nature s Laws lay hid in Night. God said, Let Newton be! and All was Light. SC/STS 3760, XIV 1 Isaac Newton, 1642-1727 Born December 25, 1642 by the Julian Calendar or January

More information

Solution of Algebric & Transcendental Equations

Solution of Algebric & Transcendental Equations Page15 Solution of Algebric & Transcendental Equations Contents: o Introduction o Evaluation of Polynomials by Horner s Method o Methods of solving non linear equations o Bracketing Methods o Bisection

More information

SOLVING QUADRATIC EQUATIONS USING GRAPHING TOOLS

SOLVING QUADRATIC EQUATIONS USING GRAPHING TOOLS GRADE PRE-CALCULUS UNIT A: QUADRATIC EQUATIONS (ALGEBRA) CLASS NOTES. A definition of Algebra: A branch of mathematics which describes basic arithmetic relations using variables.. Algebra is just a language.

More information

Questionnaire for CSET Mathematics subset 1

Questionnaire for CSET Mathematics subset 1 Questionnaire for CSET Mathematics subset 1 Below is a preliminary questionnaire aimed at finding out your current readiness for the CSET Math subset 1 exam. This will serve as a baseline indicator for

More information

Mathematics 102 Fall 1999 The formal rules of calculus The three basic rules The sum rule. The product rule. The composition rule.

Mathematics 102 Fall 1999 The formal rules of calculus The three basic rules The sum rule. The product rule. The composition rule. Mathematics 02 Fall 999 The formal rules of calculus So far we have calculated the derivative of each function we have looked at all over again from scratch, applying what is essentially the definition

More information

Sequences and infinite series

Sequences and infinite series Sequences and infinite series D. DeTurck University of Pennsylvania March 29, 208 D. DeTurck Math 04 002 208A: Sequence and series / 54 Sequences The lists of numbers you generate using a numerical method

More information

Ch. 12 Higher Degree Equations Rational Root

Ch. 12 Higher Degree Equations Rational Root Ch. 12 Higher Degree Equations Rational Root Sec 1. Synthetic Substitution ~ Division of Polynomials This first section was covered in the chapter on polynomial operations. I m reprinting it here because

More information

1 Introduction. 2 Solving Linear Equations

1 Introduction. 2 Solving Linear Equations 1 Introduction This essay introduces some new sets of numbers. Up to now, the only sets of numbers (algebraic systems) we know is the set Z of integers with the two operations + and and the system R of

More information

The Integers. Peter J. Kahn

The Integers. Peter J. Kahn Math 3040: Spring 2009 The Integers Peter J. Kahn Contents 1. The Basic Construction 1 2. Adding integers 6 3. Ordering integers 16 4. Multiplying integers 18 Before we begin the mathematics of this section,

More information

cha1873x_p02.qxd 3/21/05 1:01 PM Page 104 PART TWO

cha1873x_p02.qxd 3/21/05 1:01 PM Page 104 PART TWO cha1873x_p02.qxd 3/21/05 1:01 PM Page 104 PART TWO ROOTS OF EQUATIONS PT2.1 MOTIVATION Years ago, you learned to use the quadratic formula x = b ± b 2 4ac 2a to solve f(x) = ax 2 + bx + c = 0 (PT2.1) (PT2.2)

More information

P1 Chapter 3 :: Equations and Inequalities

P1 Chapter 3 :: Equations and Inequalities P1 Chapter 3 :: Equations and Inequalities jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 26 th August 2017 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

CONTENTS. IBDP Mathematics HL Page 1

CONTENTS. IBDP Mathematics HL Page 1 CONTENTS ABOUT THIS BOOK... 3 THE NON-CALCULATOR PAPER... 4 ALGEBRA... 5 Sequences and Series... 5 Sequences and Series Applications... 7 Exponents and Logarithms... 8 Permutations and Combinations...

More information

Polynomial Interpolation

Polynomial Interpolation Chapter Polynomial Interpolation. Introduction Suppose that we have a two sets of n + real numbers {x i } n+ i= and {y i} n+ i=, and that the x i are strictly increasing: x < x < x 2 < < x n. Interpolation

More information

Chapter 9: Roots and Irrational Numbers

Chapter 9: Roots and Irrational Numbers Chapter 9: Roots and Irrational Numbers Index: A: Square Roots B: Irrational Numbers C: Square Root Functions & Shifting D: Finding Zeros by Completing the Square E: The Quadratic Formula F: Quadratic

More information

Pre AP Algebra. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Algebra

Pre AP Algebra. Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Algebra Pre AP Algebra Mathematics Standards of Learning Curriculum Framework 2009: Pre AP Algebra 1 The content of the mathematics standards is intended to support the following five goals for students: becoming

More information

Index I-1. in one variable, solution set of, 474 solving by factoring, 473 cubic function definition, 394 graphs of, 394 x-intercepts on, 474

Index I-1. in one variable, solution set of, 474 solving by factoring, 473 cubic function definition, 394 graphs of, 394 x-intercepts on, 474 Index A Absolute value explanation of, 40, 81 82 of slope of lines, 453 addition applications involving, 43 associative law for, 506 508, 570 commutative law for, 238, 505 509, 570 English phrases for,

More information

Chapter 3-1 Polynomials

Chapter 3-1 Polynomials Chapter 3 notes: Chapter 3-1 Polynomials Obj: SWBAT identify, evaluate, add, and subtract polynomials A monomial is a number, a variable, or a product of numbers and variables with whole number exponents

More information

Proofs. Chapter 2 P P Q Q

Proofs. Chapter 2 P P Q Q Chapter Proofs In this chapter we develop three methods for proving a statement. To start let s suppose the statement is of the form P Q or if P, then Q. Direct: This method typically starts with P. Then,

More information

Elementary and Intermediate Algebra

Elementary and Intermediate Algebra Elementary and Intermediate Algebra 978-1-63545-106-1 To learn more about all our offerings Visit Knewton.com Source Author(s) (Text or Video) Title(s) Link (where applicable) OpenStax Lynn Marecek, Santa

More information

Polynomials; Add/Subtract

Polynomials; Add/Subtract Chapter 7 Polynomials Polynomials; Add/Subtract Polynomials sounds tough enough. But, if you look at it close enough you ll notice that students have worked with polynomial expressions such as 6x 2 + 5x

More information

7.5 Partial Fractions and Integration

7.5 Partial Fractions and Integration 650 CHPTER 7. DVNCED INTEGRTION TECHNIQUES 7.5 Partial Fractions and Integration In this section we are interested in techniques for computing integrals of the form P(x) dx, (7.49) Q(x) where P(x) and

More information

Polynomials. Exponents. End Behavior. Writing. Solving Factoring. Graphing. End Behavior. Polynomial Notes. Synthetic Division.

Polynomials. Exponents. End Behavior. Writing. Solving Factoring. Graphing. End Behavior. Polynomial Notes. Synthetic Division. Polynomials Polynomials 1. P 1: Exponents 2. P 2: Factoring Polynomials 3. P 3: End Behavior 4. P 4: Fundamental Theorem of Algebra Writing real root x= 10 or (x+10) local maximum Exponents real root x=10

More information

9.4 Radical Expressions

9.4 Radical Expressions Section 9.4 Radical Expressions 95 9.4 Radical Expressions In the previous two sections, we learned how to multiply and divide square roots. Specifically, we are now armed with the following two properties.

More information

CH 73 THE QUADRATIC FORMULA, PART II

CH 73 THE QUADRATIC FORMULA, PART II 1 CH THE QUADRATIC FORMULA, PART II INTRODUCTION W ay back in Chapter 55 we used the Quadratic Formula to solve quadratic equations like 6x + 1x + 0 0, whose solutions are 5 and 8. In fact, all of the

More information

Math K-1 CCRS Level A Alignment College & Career Readiness Standards Version: April 2017

Math K-1 CCRS Level A Alignment College & Career Readiness Standards Version: April 2017 Math K-1 CCRS Level A Alignment Standard Math K Lessons Math 1 Lessons Number and Operations: Base Ten Understand place value 6 Compare 1, 26 Compare 50, 33 Skip Count 5s and 10s, 35 Group 10s, 36 Compare

More information

MthEd/Math 300 Williams Fall 2011 Midterm Exam 2

MthEd/Math 300 Williams Fall 2011 Midterm Exam 2 Name: MthEd/Math 300 Williams Fall 2011 Midterm Exam 2 Closed Book / Closed Note. Answer all problems. You may use a calculator for numerical computations. Section 1: For each event listed in the first

More information

Name (print): Question 4. exercise 1.24 (compute the union, then the intersection of two sets)

Name (print): Question 4. exercise 1.24 (compute the union, then the intersection of two sets) MTH299 - Homework 1 Question 1. exercise 1.10 (compute the cardinality of a handful of finite sets) Solution. Write your answer here. Question 2. exercise 1.20 (compute the union of two sets) Question

More information

AP Calculus AB. Introduction. Slide 1 / 233 Slide 2 / 233. Slide 4 / 233. Slide 3 / 233. Slide 6 / 233. Slide 5 / 233. Limits & Continuity

AP Calculus AB. Introduction. Slide 1 / 233 Slide 2 / 233. Slide 4 / 233. Slide 3 / 233. Slide 6 / 233. Slide 5 / 233. Limits & Continuity Slide 1 / 233 Slide 2 / 233 AP Calculus AB Limits & Continuity 2015-10-20 www.njctl.org Slide 3 / 233 Slide 4 / 233 Table of Contents click on the topic to go to that section Introduction The Tangent Line

More information

Algebra 2 and Trigonometry

Algebra 2 and Trigonometry Page 1 Algebra 2 and Trigonometry In implementing the Algebra 2 and Trigonometry process and content performance indicators, it is expected that students will identify and justify mathematical relationships,

More information

AP Calculus AB. Limits & Continuity.

AP Calculus AB. Limits & Continuity. 1 AP Calculus AB Limits & Continuity 2015 10 20 www.njctl.org 2 Table of Contents click on the topic to go to that section Introduction The Tangent Line Problem Definition of a Limit and Graphical Approach

More information